西北太平洋热带气旋活动的年际变化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于西北太平洋暖池是全球海洋最暖海域,也是全球海-气相互作用最剧烈之处。因此,本论文以西北太平洋暖池次表层海温异常作为西太平洋冷暖状态的指标,来划分西太平洋热状态的差异,通过资料分析,动力诊断和数值模拟系统地研究了西北太平洋TC和台风活动的年际变化及其机理。得到如下主要结论:
     1.从1958~2003年西太平洋暖池次表层海温与WNP区域TC活动之间的关系分析表明:当西太平洋暖池处于热状态时,热带西太平洋季风槽位置偏向于西北侧,使得上升支向西北偏移,这使得西北太平洋TC多生成于偏西北海域,从而导致TC经常在我国东南沿海登陆;相反,当西太平洋暖池处于冷状态时,情况正好相反,季风槽区向WNP东南侧延伸,使得环流上升支以及TC平均生成位置向东南侧转移,此时生成的TC移动路径向西北移动时容易发生朝向东北的转向,从而易于影响日本及其偏东地区。
     2.本研究还把WNP划分4个不同的区域,以此深入研究热带西太平洋不同区域中TC生成的动力作用。分析结果表明:在WNP的西南区域,低层纬向风的纬向辐合对TC生成数量的年际变化起着重要的动力作用;而纬向风的经向切变对热带西太平洋的西北和东南区域TC的生成的动力作用显著;纬向风垂直切变与热带西太平洋的西南和东南区TC数量的年际异常有明显相关。当西太暖池处于暖状态时,可以激发出类似PJ-EAP沿东亚向北美传播的波列,波列在WNP西北侧出现气旋式环流异常,使得在此区域TC异常偏多;相反,当西太平洋暖池处于冷状态时,WNP西北侧则出现反气旋式异常环流,而异常气旋式环流出现在WNP东南侧,从而使得在WNP东南侧的TC异常偏多。
     3.大部分热带西太平洋偏低纬TC的形成与来自赤道中东太平洋3~10天的天气尺度波动存在密切关系。在中东太平洋赤道地区,西传天气尺度波动的主要模态为MRG波动,它可以在季风槽南侧的纬向风辐合区发生波长缩短与波能累积的物理过程,并且此波动还逐渐偏离赤道而转向西北,转变为对流和气旋环流中心紧密耦合的热带TD型扰动;这种扰动呈现出东北-西南倾斜的结构特征,可以通过与季风槽气旋环流的相互作用,获得动能和热能从而得到发展,有利于最终诱发TC的形成。此外,研究结果还表明两类波动转变的位置存在着年际变化,在西太暖池偏暖时,季风槽偏西,MRG波向TD型波动转变的平均位置偏西;而当西太暖池为冷状态年时,季风槽东扩,使得两类波动转变位置也向东偏移。这种波动转变位置的东西偏移,在一定程度上调制了TC生成的平均经向位置。
     4.热带太平洋上空大气的30~60天的低频振荡(MJO)对WNP区域TC生成起到调制作用。当WNP西侧为MJO的西风位相时,通过高低频正压能量的转换,使得在此区域生成的TC数量相对于东风位相要明显的偏多,而且随着西风位相中西风的加强(东风位相中东风的加强),TC的生成概率将得到增加(减少);并且分析结果也表明了在WNP东侧海域,MJO对TC活动的调制作用要减弱许多。此外,MJO经向的传播也可以使得WNP季风槽的槽线位置发生南北的偏移,从而对TC生成的平均位置产生调制。此外,在西太暖池处于暖年时,WNP西侧的MJO活动频繁,西风位相活跃,从而有利于此区域TC的生成,而冷年的情况正好相反。
     5.通过全球大气环流模式ECHAM5进行的控制试验和敏感性试验,结果表明,模式可以较好的模拟对海温响应的热带西太平洋季风槽的位置分布。虽然由于模式分辨率和物理过程等原因造成模拟TC的数量要明显偏少,但是其地理位置和季节分布比较合理。敏感试验也表明,对应于暖池偏暖(冷)状态,季风槽系统位置偏西(东),从而使得TC的平均生成位置偏西(东)。
Considering the warm pool (WP) in western North Pacific (WNP) is the place with not only the warmest water but also the strongest air-sea interaction in the globe, the subsurface temperature anomaly in the WP is identified as index to quantitatively define thermal state of the WNP. The interannual variation in tropical cyclones (TCs) and its mechanism is systematically explored in this dissertation using data analysis, dynamic diagnosis and numerical simulation. The follows are the main results:
     1. The relationship between subsurface temperature in the WP and TCs activity for the period 1959~2003 show that, during the warm state years in the WP, monsoon trough location shifts northwest which is accompanied by the shift of anomalous convection and cyclonic circulation center, hence more TCs tend to form at higher latitudes and further westward while the subsidence branch is located in the southeast quadrant to suppress TC genesis there. The consequences in cold years are reversed. Anomalous westerly and monsoon trough are likely to penetrate eastward and southward, so that more TCs form at that quadrant and tend to recurve northeast.
     2. To assess dynamic impacts of monsoonal circulation on TCs formation in different areas over the WNP, the WNP is divided into four domains. In the southwestern part of the WNP, the interannual variation in TCs number is attributed to the convergence of zonal wind in low troposphere; the latitudinal shear of zonal wind plays an important role in cyclogenesis at the northwestern and southeast quadrants over the WNP; the vertical shear of zonal wind is well correlated with annual TCs number in the southwest and southeast of the WNP. During the warm state in the WP, the wave train like PJ-EAP is induced to propagate from the East Asian to North America, accompanied by anomalous cyclonic circulation lying in the northwest of the WNP, which is favorable for cyclogenesis in this domain. On the contrary, during the cold state years, the circulation pattern is characterized by anticyclonic anomaly in the northwest of the WNP and cyclonic anomaly in the southeast of the WNP, which leads to more TCs formation at the southeast quadrant of the WNP.
     3. A large number of TCs forming in low latitude over the WNP is associated with 3~10 day filtered disturbances with synoptic scale. The main mode represents Mixed Rossby-gravity waves (MRG waves) in the middle and eastern Pacific equatorial area. MRG waves can experience the physical process with wavelength reduction and energy accumulation under the influences of convergence of zonal wind to the south of monsoon trough. Meanwhile, MRG waves gradually deviate from the equator and propagate northwestward, evolving into tropical-depression-type disturbances (TD-type disturbances) with cyclonic center tightly coupled with convection. The disturbances possess northeast-southwest tilt structure, which is conducive to obtain kinetic energy and heat energy to develop into TCs through the interaction with monsoon trough flow. In addition, it is found that the regional variation of low tropospheric wave transition is well correlated with the thermal states in the WP. When the WP is in the warm phase, monsoon trough lie in the west of the WNP, which induces the westward shift of the waves transition point along the equator. On the contrary, during the cold phase of the WP, the active convection and monsoon trough extend eastward further to the central Pacific, which produce eastward displacement of wave transition location. The interannual variation in TCs formation location is partly ascribed to regional variation of transition of tropical waves.
     4. The Madden-Julian Oscillation (MJO) can modulate the TCs activity over the WNP. When MJO westerly prevails in the west of WNP, TCs is likely to form in that area through the transition of barotropic energy in the high and low frequency waves, compared with MJO easterly. The probability of cyclogenesis should increase (reduce) with enhanced MJO westerly (easterly). However, the effects of modulation of MJO would be reduced in the eastern part of the WNP. Besides, the latitudinal shift of MJO could change the meridional location of monsoon trough, and modulate TCs mean location. In addition, during the warm years of the WP, MJO event is frequent and westerly is active in the west of the WNP, which benefits to TCs formation, while the situation is reversed in the cold years of the WP.
     5. The atmospheric model ECHAM5 is used to conduct the control and sensitivity simulations, and the results suggest that model has good skill in simulating geographic distribution of monsoon trough over the WNP responding to sea surface temperature. Despite the reduction of simulated TCs number due to coarse resolution and deficiency in parameterization process, the TCs geographic and seasonal distribution is reasonable. The sensitivity simulations show that the shift westward (eastward) of monsoon trough, which corresponds to the warm (cold) state in the WP, can cause the mean location of TCs genesis westward (eastward).
引文
陈联寿、丁一汇,1979: 西太平洋台风概论. 北京:科学出版社,491pp.
    —、徐祥德等. 1997: 台风异常运动及其外区热力不稳定非对称结构的影响效应. 大气科学,21(1):83-90
    高由禧、曾佑思,1952: 台风路径图集. 北京:科学出版社.
    黄荣辉、郭其蕴、孙安健等编,1997: 中国气候灾害分析图集. 北京:海洋出版社.,103pp.
    —、李维京. 1988:夏季热带西太平洋上空热源异常对东亚上空副热带高压的影响及其物理机制. 大气科学,特刊,95-107.
    —、孙凤英. 1994:热带西太平洋暖池上空对流活动对东亚夏季风季节变化的影响. 大气科学,18,456-465.
    李崇银. 1986:厄尔尼诺和南海的台季风活动. 热带气象,2(2), 117-125.
    —. 1987: 厄尔尼诺影响西太平徉台风活动的研究. 气象学报, 45(2), 229-236.
    李英、陈联寿、张胜军,2004: 登陆我国热带气旋的统计特征. 热带气象学报,20,14~22.
    —、—、王继志,2004: 登陆热带气旋长久维持与迅速消亡的大尺度环流特征. 气象学报, 61,167~179.
    —、—、徐详德,2005: 水汽输送影响登陆热带气旋维持和降水的数值模拟.大气科学,29,91~98.
    林惠娟,张耀存. 2004:影响我国热带气旋活动的气候特征及其与太平洋海温的关系. 热带气象学报,20:216-224
    施能, 周家德. 1989: ENSO 与南海台风活动的统计分析. 气象, 15(4), 9-14.
    —, —. 1990: 西北太平洋台风活动与 ENSO 关系的统计分析. 南京气象学院学报, 13(3), 402-409.
    孙建华、赵思雄,2000: 登陆台风引发的暴雨过程之诊断研究. 大气科学,24,223~237.
    王斌,R. L. Elsberry, 王玉清,吴立广,1998: 热带气旋运动的动力学研究进展. 大气科学, 22, 535~547.
    徐亚梅、伍荣生,2005: 热带气旋碧丽斯(2000)发生的数值模拟:非对称的发展及转换. 大气科学, 29,79~89.
    张庆云、彭京备,2003: 夏季东亚环流年际和年代际变化对登陆中国台风的影响. 大气科学,27,97~106.
    Aiyyer, A., and J. Molinari. 2003: Evolution of mixed Rossby-gravity waves in idealized MJO environments. J. Atmos. Sci., 60, 2837-2855.
    Bengtsson, L., H. Bottger, and M. Kanamitsu, 1982: Simulation of hurricane-type vortives in a general circulation model. Tellus, 34, 440–457.
    —, M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73.
    Briegel, L. M., and W. M. Frank. 1997: Large-scale influences tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397-1413.
    Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 1917-1920.
    Chan, J. C.-L. 1985: Tropical cyclone activity in the northwest Pacific in relation to the EL Nino/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606.
    —, 1995: Tropical cyclone activity in the northwest Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Wea. Rev., 123, 2567–2571.
    —, 1998: Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Weather Forecasting, 13, 997-1004.
    —, 2000: Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events. J. Climate, 13, 2960–2972.
    —, and K. S. Liu. 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate., 17, 4590-4602.
    Chang, C.-P., J. M. Chen, P. A. Harr, and L. E. Carr. 1996: Northwestward propagating wave patterns over the tropical western North Pacific during summer. Mon. Wea. Rev., 124, 2245-2266.
    Chen, T.-C., and J.-M. Chen, 1997: On the relationship between the stream function and velocity potential of the Madden-Julian oscillation. J. Atmos. Sci., 54, 679– 685.
    —, S.-P. Weng, N. Yamazaki, and S. Kiehne. 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080–1090.
    Chia, H.-H., and C. F. Ropelewski. 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.
    Cornejo-Garrido A. G, Stone P H. 1977: On the heat balance of the Walker circulation. J. Atmos. Sci., 34: 1155~1162.
    Dickinson, M., and J. Molinari. 2002: Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59, 2183-2196.
    Dümenil, L. and E. Todini, 1992: A rainfall-runoff scheme for use in the Hamburg climate model. In: J.O. Kane (Ed.) Advances in Theoretical Hydrology, a Tribute to James Dooge. European Geophysical Society Series on Hydrological Sciences, pp. 129-157. Elsevier, Amsterdam.
    Dunkerton, T. J., 1993: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Vertical structure and interannual variability. J. Atmos. Sci., 50, 3292–3307.
    —, and M. P. Baldwin, 1995: Observation of 3–6-day meridional wind oscillations over the tropical Pacific, 1973–1992: Horizontal structure and propagation. J. Atmos. Sci., 52, 1585–1601.
    Ebert, E.E. and J.A. Curry, 1992: A parameterization of cirrus cloud optical properties for climate models. J. Geophys. Res., 97, 3831-3836.
    Elsberry, R. L., 1995: Global perspectives on tropical cyclone. WMO. TD-NO. 693, Ch. 4, 106~197.
    Emanuel, K. A. 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-689.
    Frank, W. M. 1977: The structure and energetic of the tropical cyclone. Part I: Storm structure. Mon. Wea. Rev. 105, 1119-1135.
    Ferreira, R. N., W. H. Schubert, and J. J. Hack, 1996: Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. J. Atmos. Sci., 53, 929–945.
    —, and —. 1997: Barotropic aspects of ITCZ breakdown. J. Atmos. Sci., 54, 251-285. Frank, W. M. 1987: Tropical cyclone formation. A Global View of Tropical Cyclones. Office of Naval Research. 53–90.
    Gill, A., 1980: Some simple solutions for hear induced tropical circulations. Quart. J. Roy. Meteor. Soc., 106, 447-462.
    Gray, W. M. 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
    —, 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.
    —, 1984: Atlantic seasonal hurricane frequency. Part I: El Ni?o and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649-1668.
    Guinn T. A., and W. H. Schubert. 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380-3408.
    Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247-257.
    Hagemann, S, 2002: An improved land surface parameter data set for global and regional climate models. Report No. 336, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 21 pp.
    —, and S. Emori, 2005: Tropical cyclones and associated precipitation over the western North Pacific: T106 atmospheric GCM simulation for present-day and doubled CO2 climates. SOLA, 1, 145-148. doi:10.2151/sola.2005-038 .
    Hall, J. D., A. J. Matthews, and D. J. Karoly, 2001: The modulation of tropical cyclone activity in the Australian region by the Madden-Julian Oscillation. Mon. Wea. Rev., 129, 2970-2982.
    Harr, P. A and Elsberry, R. L, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev, 123, 1225-1246.
    Hawkins, H. F. and Imbembo, S. M. 1976: The structure of a small, intense hurricane, Inez1966. Mon. Wea. Rev. 104, 418-442.
    Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47, 2227–2240.
    —, and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 2225–2237.
    Hess, J. C., J. B. Elsner, and N. E. LaSeur. 1995: Improving seasonal hurricane predictions for the Atlantic basin. Weather Forecasting, 10, 425-432.
    Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J. Atmos. Sci., 43, 606-630.
    Ho, C-H J-J. Baik, J-H. Kim, and D-Y. Gong. 2004: Interdecadal changes in summertime typhoon tracks. J Climate, 17, 1767–1776.
    Holland, G. J., 1986: Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon. Wea. Rev., 114, 594–604.
    Hsu, H.-H. 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate., 9, 2386– 2406.
    Huang Ronghui and Lu Li. 1989: Numerical simulation of the relationship between the anomaly of the subtropical high over East Asia and the convective activities in the tropical western Pacific. Adv. Atmos. Sci., 6, 202-214.
    —and Sun Fengying. 1992: Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70(1B), 243-256.
    Kessler,W. S., M. J. McPhaden, and K. M.Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res., 100, 613–631.
    Kim, J. H., C. –H. Ho and Sui, C. H., 2005: Circulation features associated with the record-breaking typhoon landfall on Japan in 2004. Geophys. Res. Lett., 32, doi:10.1029/2005GL022494.
    Kleeman, R., 1989: A modeling study of the effect of the Andes on the summertime circulation of tropical South America. J. Atmos. Sci., 46, 3344–3362.
    Knutson, T. R, R. E. Tuleya, W. Shen, and I. Ginis. 2001: Impact of CO2 induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate., 14, 2458-2468.
    Krishnamurti, T. N., 1988: Some recent results on numerical weather prediction over the tropics. Aust. Meteor. Mag., 36, 141–170.
    —, R. Correa-Torres, M. Latif, and G. Daughen-baugh. 1998: The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes. Tellus, 50A, 186-210.
    Kuo, H.-C., J. –H. Chen, R. T. Williams, and C. –P. Chang. 2001: Rossby waves in zonally opposing mean flow: Behavior in Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035-1050.
    Lander, M. A. 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.
    Lau, K. M, and L. Peng, 1987: Origin of low frequency oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950-972.
    —, and P. H. Chan, 1988: Intraseasonal and interannual variations of tropical convection: A possible link between the 40–50 day oscillation and ENSO? J. Atmos. Sci., 45, 506–521.
    Lau, K. H., and N. G. Lau. 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118, 1888-1913.
    Li Chong-yin. 1985: Actions of summer monsoon troughs (ridges) and tropical cyclones over south Asia and the moving CISK mode. Science in China, 28, 1197-1207.
    Li, C. 1988: Actions of typhoon over the western Pacific (including the South China Sea) and El Ni?o. Adv. Atmos. Sci., 5, 107–115.
    Liebmann, B., and H. H. Hendon. 1990: Synoptic-scale disturbances near the equator. J. Atmos. Sci., 47, 1463-1479.
    —, —, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412.
    Madden, R. A., and P. R. Julian. 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.
    —, and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837.
    Maloney, E. D., and D. L. Hartmann, 2000:Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460.
    Manabe, S., J. L. Holloway, and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580–613.
    Matthews, A. J., and G. N. Kiladis. 1999: The tropical-extratropical interaction between high-frequency transients and the Madden-Julian oscillation. Mon. Wea. Rev., 127, 661–677.
    —, 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 2637–2652.
    Matsuura, T., M. Yumoto and S. Iizuka. 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105-117.
    Mcbride, J. L., and R. M. Zehr, 1982: observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132-1151.
    —, 1995: Tropical cyclone formation, Chapter 3, Global Perspectives on Tropical Cyclones. R. L. Elsberry, Editor. Tech. Doc. WMO/TD No. 693, World Meteorological Organization, Geneva, Switzerland , 63-105.
    McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25, 19-36.
    Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S.A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated kcorrelated model for the longwave. J. Geophys. Res., 102, 16663-16682.
    Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.
    Monthly Report on Climate. System.Japan Meteorological Agency. Agust 2004.
    Monthly Report on Climate. System.Japan Meteorological Agency. Agust 2006.
    Nicholls, N. 1992: Recent performance of a method for forecasting Australian seasonal tropical cyclone activity. Australian Meteorological Magazine, 40, 105-110.
    Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 64, 373-390.
    Ren, B. H, and R. H. Huang, 2003: 30-60-day oscillations of convection and circulation associated with the thermal state of the western Pacific warm pool during boreal summer. Adv. Atmo. Sci., 20, 781-793.
    Ritchie, E. A and Holland, G. J, 1999: Large –scale pattern associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev, 127, 2027-2043.
    Roeckner, E., G. B?uml, L. Bonaventura, R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and A. Tompkins, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany 127pp.
    Saunders, M. A. and A. S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434, 1005-1008.
    Shapiro, L. J., 1980: The effect of nonlinearities on the evolution of barotropic easterly waves in a nonuniform environment. J. Atmos. Sci., 37, 2631–2643.
    Simmons, A.J. and D.M. Burridge, 1981: An energy and angular-momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758-766.
    Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic - scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 3106–3127.
    Straub, K. H., and G. N. Kiladis, 2003a: Extratropical forcing of convectively coupled Kelvin waves during austral winter. J. Atmos. Sci., 60, 526–543.
    Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA Global Model. J. Meteor. Soc. Japan, 80, 249-272.
    Takayabu, Y. N., and T. Nitta. 1993: 3-5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221-245.
    Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779-1800.
    Vitart, F. and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129, 2521-2539.
    Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 84, 33-50.
    Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900-907.
    —, and C. –P. Chang, 1969: Spectrum analysis of large-scale wave disturbances in the tropical lower troposphere. J. Atmos. Sci., 26, 1010-1025.
    Wang, B., and J. C. L. Chan. 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.
    —and R. Wu. 1997: Peculiar temporal structure of the South China Sea summer monsoon. Adv. Atmos. Sci., 14, 177–194.
    Webster, P. J., and H. R. Chang, 1988: Energy accumulation and emanation region at low latitudes: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803-829.
    — and G. J. Holland, J. A. Curry, H. –R. Chang. 2005: Changes in tropical cyclones number, duration, and intensity in a warming environment. Science, 309, 1844-1846.
    Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO Index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932.
    —, and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374–399.
    Wu, L., and B. Wang. 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate., 17, 1686-1698.
    Wu, G., and N.-C. Lau. 1992: A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev., 120, 958–977.
    Yamagata, T., and Y. Hayashi, 1984: A simple diagnostic model of the 30–50 day oscillation in the Tropics. J. Meteor. Soc. Japan, 62, 709–717.
    Yanai, M., and T. Maruyama, 1966: Stratospheric wave disturbances propagating over the equatorial Pacific. J. Meteor. Soc. Japan., 44, 291-294.
    —. Maruyama, T. Nita and Y. Hayashi, 1968: Power spectra of large-scale disturbances over the tropical Pacific. J. Meteor. Soc. Japan. 46, 308-323.
    Yoshimura, J., and M. Sugi, 2005: Tropical cyclone climatology in a high-resolution AGCM-- Impacts of SST warming and CO2 increase --. SOLA, 1, 133-136. doi:10.2151/sola.
    —,M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405-428.
    Yumoto, M. and T. Matsuura. 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 23-35.
    Zanvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics Part I: Dynamic analysis in the wavenumber-frequency domain. J. Atmos. Sci., 37, 283-298.
    Zhang, C., and P. J. Webster, 1989: Effects of zonal flows on equatorially trapped waves. J. Atmos. Sci., 46, 3632–3652.
    Zhang, G., X. Zhang and F. Wei. 1994: A study on the variations of annual frequency of tropical cyclone in northwest Pacific during the last hundred years. J. Trop. Meteor., 11, 315-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700