MJO与南海热带气旋活动的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以探索热带气旋活动规律为主要目标,利用1949-2009年的台风年鉴和NCEP/NCAR再分析资料等分析了南海范围季节内振荡特征及其与南海热带气旋活动之间的关系。针对南海区域创建了一个新的能表示MJO活动的指数,分析了该指数对南海热带气旋活动规律的指示及对应的大气环流特征。其次验证了区域气候模式RegCM3.0对南海范围季节内振荡特征的模拟能力,并运行了基于侧边界信号的数值试验来探讨影响南海范围季节振荡强弱的信号来源。
     全文主要结论包括:(1)首先针对南海地区创建了一个新U指数,经验证该指数能够较好的描述南海地区MJO的具体特征;(2)利用U指数把MJO活动划分了8个位相,发现其位相变化和南海地区热带气旋活动有很好的对应关系,其中U指数的不活跃期(第4-6位相)对应南海生成气旋和登陆气旋均明显减少,而活跃期(第7-3位相)情况刚好相反;(3)合成分析表明,指数的活跃期时南海地区对应负OLR异常(强对流)和气旋式切变,同时副热带高压强度较弱,东退明显,为气旋生成发展创造有利的大尺度环境场。活跃期以第2位相特征最明显,强度最强;不活跃期则抑制对流及气旋发展,以第6位相表现最强。说明热带MJO东传时,伴随对流中心位置的东移,南海地区对应不同的气旋活动特征;(4)把U指数与广义的CPC-MJO指数进行比较,发现CPC-MJO120指数对南海地区最有代表性,且其与U指数相关性是存在大概一个的时间位相差。此外,CPC-MJO120指数不能清楚地判明南海地区气旋活动归属于活跃与否两类,从反面证明了U指数对于表征南海地区的优越性;(5)进一步从积云对流能源供应的角度来探讨气旋发展,发现加热中心、强对流中心及水汽通量散度配合一致。活跃位相整层热源的垂直剖面均反映南海对应强上升运动和中层加热;不活跃位相则情况相反。热带气旋发展也依赖加热的垂直分布。活跃位相的加热峰值高度正好对应对流系统的发展期,适合气旋发展。因此,热带MJO东传会影响南海地区加热配置,从而影响热带气旋活动;(6)数值试验结果表明,相对于南海范围内部信号,外部的信号传入起了很重要的作用。来自北边和西边的季节内振荡信号的传入对南海范围季节内振荡强弱影响最大,尤其是北边信号。推测是中高纬度振荡向低纬传播和源于印度洋的季节内振荡的东传对南海地区30-60天尺度的振荡影响最大。
In order to study the tropical cyclone (TC) activity, the characteristics of intra-seasonal oscillation (MJO) over the South China Sea (SCS) was examined to discuss the relationship between the MJO and cyclones over the SCS by using the tropical cyclones data from year 1949 to 2009 and NCEP/NCAR reanalysis data et al. A new index named U index was created to describe the MJO activity over the SCS. The filtered time series of the zonal wind at 850hPa was divided into 8 phases. The tropical cyclone activity and atmospheric circulation features were studied according to the phase variation. In addition, the oscillation simulation ability of the regional climate model was tested and three groups of sensitive simulation tests were carried out to find out the most influential signal based on the lateral boundaries.
     The main conclusions are as follows: (1) The new U index was able to describe the MJO activity over the SCS effectively; (2) The MJO process was divided into 8 phases using the U index. The phase variation was found to be in accordance with the tropical cyclone activity over the SCS with less TC formation and landfall during inactive period (phase 4-6) while the situation was quite contrary during active period (phase 7-3); (3) The composite analysis indicated that there were negative OLR anomaly (strong convection), weak subtropical high and cyclonic shear during active MJO period, which created a favorable circumstance for TC generation. The majority of TC genesis locations came from the Northwestern Pacific and the TC from the SCS also increased evidently. The phase 2 and 6, regarded as the representation of the most active and inactive period of U index respectively, had the most significant characteristics of each period. Therefore TC activity was quite different accompany with the eastward propagation of convective centers of MJO; (4) The U index was found to have a phase deviation with the CPC-MJO index. As the CPC-MJO120 index had the highest correlation coefficient with other three indexes, it was treated as the deputy of the index to represent the SCS. The CPC-MJO index was found to be incapable of grouping the TC activity over the SCS into two main classes, although phase 3 and 7, as the delegation of the most active and inactive period, revealed such a tendency to some extent; (5) Convection was of great importance both for MJO and TC grow up. The composite analysis of the horizontal and vertical convective heating distribution according to different MJO phases was studied. The results showed that in different phases, the heating source was quite different. In combination with the convergence and divergence of the moisture transport fluxes, the modulation of TC activity by MJO can be revealed effectively from the energy aspect. Thus, the U index was more suitable for describing the MJO propagation eastward over the SCS and the wind at 850hPa corresponded well with the MJO phases as well; (6) Numerical simulation results showed that the intraseasonal oscillation signal comes from the north and west boundaries have the most influential impact on the MJO intensity over the South China sea, especially that from the north. It is supposed to be the propagation of the intraseasonal oscillation from the middle-high latitude to the low-latitude and the eastward propagation from the India ocean to the South China sea.
引文
Anthes R A. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon.Wea. Rev.,1977,105:270-286.
    Adam H. Sobel, Eric D. Maloney. Effect of ENSO and MJO on western North Pacific tropical cyclones. Geophysical research letters, 2000, 27(12) : 1739-1742.
    Bessafi, M., M. C. Wheeler. Modulation of south Indian Ocean tropical cyclones by the Madden-Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 2005,134, 638-656.
    Carvalho, L, C. Jones, B. Liebmann. The South Atlantic convergence zone: Intensity, Form, Persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 2004, 17: 88-108.
    Chan J L. Tropical cyclone activity in west Pacific in relation to the El Nino/Southern Oscillation phenomenon. Mon.Wea.Rev., 1985, 113:599-606.
    Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere-atmosphere transfer scheme (bats) version as coupled to the ncar community climate model.Technical report, National Center for Atmospheric Research, 1993.
    Dickinson R E, Kennedy P J, Giorgi F,et al. A regional climate model for the western United States. Clim. Change, 1989, 15:383~422.
    Dickinson R E,Kennedy P J,Henderson-Sellers A,et al. Biosphere-atmosphere transfer scheme (bats) for the ncar community climate model.Technical report,National Center for Atmospheric Research, 1986.
    Dennis L. Hartmann, Eric D. Maloney. The Madden-Julian Oscillation, Barotropic dynamics, and North Pacific tropical cyclone formation. PartⅡ: Stochastic Barotropci modeling. Journal of the Atmospheric Sciences, 2001, 58: 2559-2570.
    Frank W M. Tropical cyclone formation [ C ]∥A Global View of Tropical Cyclones. Office of Naval Research, 1987: 53290.
    Frank. W. M., P. E. Roudy. The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 2006, 134, 2397-2417.
    Gray W M. Hurricanes: Their formation , structure and likely role in t he tropical circulation [M]∥Shaw D B. Meteorology over the Tropical Oceans. Roy. Meteor. Soc., James Glaisher House ,Grenville Place , Bracknell, Berkshire, 1978. , RG12 1BX , 1552218.
    Gray. W. M. Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, James Glaisher House, 1979, 155-218.
    Gualdi S, et al. Tropical intraseasonal oscillation appearing in operational analyses and in a family of general circulation models. J Atmos Sci , 1997 , 54 : 1185.
    Giorgi F., Marinucci M R, Bates G T. Development of a second-generation regional climate model(RegCM2).Part I:Boundary-layer and radiative transfer processes. Mon.Wea. Rev., 1993a, 121: 2794-2813.
    Grell G, Dudhia J, Stauer D R. A description of the fifth-generation penn state/ncar mesoscale model (mm5). Technical report,National Center for Atmospheric Research,1994.
    Grell G. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon.Wea. Rev., 1993,121: 764-787.
    Holtslag A, de Bruijn E, Pan H L. A high resolution air mass transformation model for short-range weather forecasting.Mon.Wea.Rev.,1990,118:1561-1575.
    Hack J J,Boville B A, Briegleb B P. Description of the ncar community climate model (ccm2). Tech.Rep. NCAR/TN-382+STR, National Center for Atmospheric Research.
    Hayashi Y, Golder D G. Tropical intraseasonal oscillation appearing in the GFDL general circulation model and FGGE data. Part I. Phase propagation. J. Atmos. Sci., 1986, 43:3058-3067.
    Hendon H H, Liebmann B, Newman M, et al. Medium range forcasts errors associated with active episodes of the Madden-Julian oscillation. Mon. Wea. Rev., 2000, 128: 69-86.
    Higgins. R. W. Shi, Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 2001,14, 403-417.
    Hall, J. D., A. J. Matthews, D. J. Karoly. The modulation of tropical cyclone activity in the Australian region by the Madden-Julian oscillation. Mon. Wea. Rev., 2001, 129, 2970-2982.
    Hsie E Y,Anthes R A,Keyser D. Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos.Sci.,1984,41:2581-2594.
    Inness P M, Slingo J M, Woolnough S J, et al. Organization of tropical convection in a GCM with varying vertical resolution; Implications for the simulation of the Madden-Julian Oscillation. Climate Dyn., 2001, 17: 777-793.
    Jon Gottschalck, Vernon Kousky, Wayne Higgins. MJO_summary. 2005, [available at http://www.cpc.noaa.gov/products/precip/CWlink/MJO/MJO_summary.pdf].
    Jiangyu Mao, Guoxiong Wu. Intraseasonal modulation of tropical cyclogenesis in the western North Pacific: a case study. Theoretical and Applied Climatology, 2009, 100:397-411.
    Kemball-Cook S, Wang B, Fu X. Simulation of the intraseasonal oscillation in the ECHAM-E model: The impact of coupling with an ocean model. J. Atmos. Sci., 2002,59:1433-1453.
    Kim, J. H., C. H. Ho, H. S. Kim, C. H. Sui, S. K. Park. Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden-Jullian oscillation. J. Climate, 2008, 21, 1171-1191.
    Liguang Wu, Bin Wang, Shuqin Geng. 2005. Growing typhoon influence on east Asia. Geophysical research letters, 32, L18703, doi: 1029/2005Glo22937.
    Liebmann B H, Hendon H, Glick J D. The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden Julian Oscillation. J Meteor Soc Japan, 1994, 72: 401-411.
    Lin Ching, Chung-Hsiung Sui, Ming-Jen Yang.. An analysis of multi-scalse nature of tropical cyclone activities in June 2004. 2008.[available at: http://www.atm.ncu.edu.tw/93/academic/workshop/2008graduate.students.seminar/%E5%8D%9A%E5%A3%AB%E7%94%9F%E7%B5%84/%E9%9D%92%E9%BA%9F.pdf].
    Lau N-C, Lau K-M. The structure and propagation of intra-seasonal oscillation appearing in a GFDL general circulation model. J. Atmos. Sci., 1986,43:023:22047.
    Madden R A, Julian P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific [J]. Atmos Sci,1971, 28(5):702-708..
    Maloney, E. D., and D. L. Hartmann. Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian Oscillation. Science, 2000b , 287, 2002–2004.
    Maloney, E. D., and D. L. Hartmann. Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J. Climate, 2000a, 13, 1451-1460.
    Molinari, J., D. Vollaro. Planetary- and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 2000, 128, 3296-3307.
    Manabe, S., J. S. Smagorinsky, R. F. Strickler. Simulated climatology of a general ciuculation model with a hydrological cycle, Mon. Wea. Rev., 1965, 93,769-798.
    McBride, J. L., R. Zehr, Observational analysis of tropical cyclone formation. Part II: Comparison of nondeveloping versus developing systems. J. Atmos. Sci., 1981:38, 1132–1151.
    Nakazawa, T. Mean features of 30-60 day variations as in-ferred from 8-year OLR data. J. Meteor. Soc. Japan, 1986: 64,777-786.
    Ren Baohua, Huang Ronghui. 30-60 day oscillation of convection and circulation associated with the thermal state of the western Pacific warm pool during boreal summer. Advances in atmospheric sciences. 2003, 20 (5).
    Suzana J. Camargo, Matthew C. Wheeler, Adam H. Sobel. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. Mon. Wea. Rev.,2009,66: 3061- 74.
    Slingo J M. Sperber K R, Boyle J S, et al. Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnosis subproject. Climate Dyn., 1996, 12 (5) : 325-357 .
    Von Storch, H., A. Smallengange. The phase of the 30- to 60-day oscillation and the genesis of tropical cyclones in the western Pacific. Max-Planck-Institut für Meteorologie, Rep.,1991,66, 22.
    Wang W, Schlesinger M E. The dependance on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 1999, 12: 1423-1457.
    Waliser D E, Lau K M, Kim J H. The influence of coupled sea surface temperature on the Madden - Julian oscillation: A model perturbation experiment[J]. J Atmos Sci. 1999. 56: 333-358.
    Xue, Yan, R. W. Higgins, H.-K. Kim, V. Kousky. Impacts of the Madden Julian Oscillation on U.S. Temperature and Precipitation during ENSO-Neutral and Weak ENSO Winters. 2002, 26th Climate Diagnostics and Prediction Workshop. [Available athttp://www.cpc.ncep.noaa.gov/products/outreach/CDW26.html] .
    Yanai M, Esbensen S, Chu J H. Determination of bulk properties of tropical cluclusters from large-scale heat and moisture budgets[J]. J. Atmos. Sci., 1973,30:611-627.
    Zehr, R. M. Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 1992, 181 pp. [Available from U.S. Department of Commerce, NOAA/ NESDIS, 5200 Auth Rd., Washington, D.C. 20233.]
    董敏,李崇银.热带季节内振荡模拟研究的若干进展.大气科学, 2007, 31(6) : 1113-1122.
    陈世荣.西北太平洋的热带风暴源地.气象, 1990, 2 (16) : 23-27.
    陈光华,黄荣辉.西北太平洋低频振荡对热带气旋生成的动力作用及其物理机制.大气科学, 2009, 33 (2): 207- 214.
    陈光华,黄荣辉.西北太平洋热带气旋和台风活动若干气候问题的研究.地球科学进展, 2006, 21(6): 610-616.
    丁一汇,村上胜人.东亚季风,北京:气象出版社,1994:74-92.
    丁一汇.天气动力学中的诊断分析方法[M].北京:科学出版社,1989: 146.
    贾小龙,李崇银.热带大气季节内振荡数值模拟对积云对流参数化方案的敏感性.气象学报, 2007, 65(6) : 837-855.
    胡艰,王玉清.夏半年大气低频振荡与西北太平洋台风路径.气象学报, 1992, 50 (4): 420-428.
    黄荣辉,陈光华.西北太平洋热带气旋移动路径的年际变化及其机理研究.气象学报, 2007, 65 (5).
    黄立文,仪清菊,秦曾灏等.西北太平洋温带气旋爆发性发展的热力-动力学分析.气象学报, 1999, 57 (5) : 581-593 .
    刘舸,孙淑清,张庆云等.热带辐合带内的季节内振荡及其与热带气旋发生阶段性的关系.大气科学, 2009, 33 (4) : 879- 889.
    李崇银.大气季节内振荡研究的新进展.自然科学进展, 2004, 14 (7): 734-741.
    李崇银,贾小龙,董敏.大气季节内振荡的数值模拟比较研究,气象学报, 2006, 26 (4) : 412-419.
    李崇银,对流凝结加热与不稳定波.大气科学, 1983, 7(3): 260-268.
    李薇,郭裕福,张学洪.热带大气季节内振荡研究进展—观测、动力机制和数值模拟.地球科学进展, 2001, 16 (1): 72-78.
    潘静,李崇银,宋洁. MJO活动对西北太平洋台风的调制作用.大气科学, 2010(待刊).
    孙长,毛江玉,吴国雄.大气季节内振荡对夏季西北太平洋热带气旋群发性的影响.大气科学, 2009, 33 (5). 950-958.
    田华,李崇银,杨辉.热带大气季节内振荡与对西北太平洋台风生成数的影响研究.热带气象学报, 2010, 26 (3) : 283-292.
    王慧,丁一汇,何金海.西北太平洋夏季风的变化对台风生成的影响.气象学报, 2006, 3: 425-444.
    徐祥德,丁一汇,解以扬等.不同垂直加热率对爆发性气旋发展的影响.气象学报,1996. 54 (1):73-81.
    俞永强,蒋国荣,何金海.大气季节内振荡的数值模拟-全球变暖的影响.大气科学. 2007, 31(4) :577-585.
    朱乾根,林锦瑞,寿绍文等.天气学原理和方法,北京:气象出版社,2003: 637-638.
    祝从文, Tetsuo Nakazawa,李建平.大气季节内振荡对印度洋-西北太平洋地区热带低压/气旋生成的影响.气象学报, 2004, 62(1): 42-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700