棉花叶片衰老表达谱分析及相关基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国重要的经济作物,棉花叶片的早衰严重影响产量和品质。因此,揭示棉花叶片衰老的机制对提高棉花产量和改善纤维品质具有重要的现实和理论意义。
     本研究以陆地棉中棉所36盛花期的叶片为材料,采用基因组饱和杂交的原理构建了叶片发育全生育期全长均一化cDNA文库。随机选取11,623个克隆进行了测序,获得9,874条高质量的EST序列,经过拼接和组装后得到5,191条Unigene。将这些序列与公共数据库DFCI中已有的棉花EST序列和Unique sequence进行比较分析,结果有2,400条ESTs和991条Unigene是未见报道的。对5,191条Unigene进行功能注释,结果表明这些序列绝大部分与双子叶植物蓖麻(25.0%)、葡萄(23.1%)和杨树(22.2%)中的序列比对上,而与棉花序列注释上的仅有11.2%。该文库为点制芯片和表达谱分析提供了良好的序列基础。进一步利用新一代测序技术对中棉所36成熟叶片和衰老叶片进行了转录组测序,通过序列拼接及聚类处理得到82,867条Unigene,为构建棉花叶片发育和衰老表达谱提供了参考基因序列。随后,根据叶片的表型特征及生化指标(叶绿素和丙二醛含量)的测定,分别构建了六个数字表达谱文库,包括幼嫩期叶片到衰老期叶片。将测序所得的clean tag,采取分级匹配的方式与参考数据库进行匹配,对其中唯一比对到一个基因的Tag(Unambiguous Tags)进行基因注释和分析,结果表明有53%左右的Unambiguous Tags,一共匹配到49,890个基因。我们分别利用转录组测序和荧光定量PCR两种方法验证数字表达谱基因表达量分析的结果,发现这两种方法得到的结果与数字表达谱结果的相关性都比较好,即数字表达谱的结果是可靠的,能用于陆地棉叶片衰老相关基因的表达分析。
     本实验将构建的数字表达谱进行了分析,鉴定到了4,398个差异表达基因。通过基因表达模式聚类分析,分别得到2,064个上调表达的基因和2,325个下调表达的基因,将差异表达基因进行了pathway显著性富集分析,结果显示一些保护性的途径在上调表达基因中显著富集,而光合作用、卟啉和叶绿素代谢及碳固定等途径在下调基因中显著富集。
     利用生物信息学方法全面鉴定和分析了差异表达基因中可能参与衰老调控过程的转录因子和激素相关基因及他们的表达模式,本研究鉴定了649个转录因子,其中,MADS,WRKY,C3H,AP2-EREBP家族的基因显著上调表达,鉴定了1,419个参与激素pathway相关的基因,结果表明脱落酸、乙烯、水杨酸、茉莉酸及油菜素内酯可能正调控叶片衰老过程,而细胞分裂素、生长素及赤霉素可能在叶片衰老过程中起到负调控作用。这些相关的基因为研究棉花叶片衰老提供了丰富的候选基因资源和理论依据。
     同时,本研究从鉴定到的大量叶片衰老相关的候选基因中,用荧光定量PCR实验初步分析了一些参与不同功能的基因的表达模式,并通过克隆和分析GhYLS5/8/9基因,发现它们均在衰老叶片中优势表达,特别是GhYLS9基因,这些基因可以作为研究棉花叶片衰老潜在的分子标记基因。
Cotton (Gossypium hirsutum L.) is an important economic crop in China. Leaf prematuresenescence can reduce cotton yield and fiber quality. So it is very important in practice and theory tostydy the mechanism of cotton leaf senescence.
     In this study, based on the strategy of saturation hybridization with genomic DNA, a normalizedwhole-life-cycle cDNA library was constructed during the plant blooming stage using short seasonupland cotton cultivar CCRI36. The results showed that11,623clones was randomly selected andsequenced,9,874high-quality ESTs were obtained. Thereafter, these ESTs were clustered andassembled into5,191Unigene. Comparative analysis with DFCI database showed that2,400ESTs and991Unigene were new in our library. The functional annotation showed that most Unigene hadsignificant similarity to known genes of dicots, such as Ricinus (25.5%), Vitis (23.1%), Populus (22.2%),whereas only11.2%of the best matches were to cotton. So this library will provide good sequenceresources for preparation chip and gene expression profiling analysis.
     Two transcriptome libraries were constructed using mature leaf and senescence leaf samples bynext-generation sequencing technology.82,867Unigene were obtained by assembly and clustering. Itwill provide reference sequences for construction of leaf development and senescence expression profile.According to phenotype characteristics and biochemical indices such as chlorophyll andmalondialdehyde levels, six digital gene expression (DGE) libraries were constructed including youngleaf and senescence leaf samples. All clean tags were mapped to the reference sequences, and allowedno more than one nucleotide mismatch, approximately53%of all clean tags could be unambiguouslymapped to one gene in the reference database, and49,890genes were detected. Transcriptome sequencedata and quantitative real-time PCR were performed to demonstrate the utility of DGE profiles. Theresults showed that the data of DGE profiles were reliable for gene expression analysis.
     In total,4,398genes were identified as differentially expressed genes during leaf senescence.Based on the expression patterns analysis, these genes could be divided into two major groups including2,064up-regulated genes and2,325down-regulated genes. Pathway enrichment analysis revealed thatphotosynthesis, porphyrin and chlorophyll metabolism, metabolic pathways, and carbon fixation weresignificantly overrepresented in the down-regulated pathways, while certain protective activitypathways were significantly enriched in the up-regulated genes.
     Transcription factor (TF) and hormone related genes that possibly involved in regulating leafsenescence in differentially expressed genes were analyzed by bioinformatics. We identified649TFs,MADS, WRKY, C3H, AP2-EREBP family genes were significantly up-regulated during leafsenescence. Abscisic acid, ethylene, salicylic acid, jasmonic acid and brassinosteroid might havepositive regulation in leaf senescence, whereas, cytokine, auxin and gibberellin might have negativeregulation in the process leaf senescence. These genes provide abundant candidate gene resource andtheoretical basis for clarifying the mechanisms of leaf senescence in cotton.
     Simultaneously, quantitative real-time PCR were performed to investigate the expression patternsof some representative genes and characterize the role of these genes in the cotton leaf senescence. Thefull length of GhYLS5/8/9genes were cloned and analyzed. The three genes were all up-regulated insenescent leaves, especially GhYLS9. These genes could serve as potential molecular markers fordistinguishing the complex regulatory networks in leaf senescence processes.
引文
1.陈亮,赵丽萍,高其康.茶树新梢cDNA克隆测序和表达序列标签(ESTs)特性分析.农业生物技术学报,2005,13(1):21-25.
    2.段咏新,李松泉,傅家瑞.钙对延缓杂交水稻叶片衰老的作用机理.杂交水稻,1997,12(6):23-25.
    3.胡根海.棉花Cu/Zn-SOD基因的克隆与表达的初步研究[博士学位论文].北京:中国农业科学院,2006.
    4.沈法富.短季棉衰老的激素变化及衰老相关基因的克隆[博士学位论文].北京:中国农业科学院,2004.
    5.沈法富,喻树迅,范术丽,李静,黄祯茂.不同短季棉品种生育进程中主茎叶内源激素的变化动态.中国农业科学,2003,36(9):1014-1019.
    6.谢庆恩.棉花子叶衰老过程中的细胞程序性死亡.[硕士学位论文].山东:山东农业大学,2007.
    7.杨晴.氮、磷对小麦光合性能的调节机制研究.[硕士学位论文].郑州:河北农业大学,
    2002.
    8.喻树迅.我国短季棉遗传改良成效评价及其早熟不早衰的生化遗传机制研究.[博士学位论文].杨凌:西北农林科技大学,2003.
    9.喻树迅,范术丽.清除活性氧酶类对棉花早熟不早衰特性的遗传影响.棉花学报,1999,11(2)100-105.
    10. Abeles F. B., Dunn L. J., Morgens P., Callahan A., Dinterman R. E., Schmidt J.Induction of33-kD and60-kD Peroxidases during Ethylene-Induced Senescence of CucumberCotyledons.[J]. Plant Physiol,1988,87(3):609-615.
    11. Adams M. D., Kelley J. M., Gocayne J. D., Dubnick M., Polymeropoulos M. H., Xiao H.,Merril C. R., Wu A., Olde B., Moreno R. F., et al.Complementary DNA sequencing:expressed sequence tags and human genome project.[J]. Science,1991,252(5013):1651-1656.
    12. ADDICOTT F. T., LYNCH R. S., CARNS H. R.Auxin gradient theory of abscissionregulation.[J]. Science,1955,121(3148):644-645.
    13. Andersson A., Keskitalo J., Sjodin A., Bhalerao R., Sterky F., Wissel K., Tandre K.,Aspeborg H., Moyle R., Ohmiya Y., Bhalerao R., Brunner A., Gustafsson P., Karlsson J.,Lundeberg J., Nilsson O., Sandberg G., Strauss S., Sundberg B., Uhlen M., Jansson S.,Nilsson P.A transcriptional timetable of autumn senescence.[J]. Genome Biol,2004,5(4):24.
    14. Ascencio-Ibanez J. T., Sozzani R., Lee T. J., Chu T. M., Wolfinger R. D., Cella R.,Hanley-Bowdoin L.Global analysis of Arabidopsis gene expression uncovers a complex arrayof changes impacting pathogen response and cell cycle during geminivirus infection.[J]. PlantPhysiol,2008,148(1):436-454.
    15. Audic S., Claverie J. M.The significance of digital gene expression profiles.[J]. Genome Res,1997,7(10):986-995.
    16. Balazadeh S., Riano-Pachon D. M., Mueller-Roeber B.Transcription factors regulating leafsenescence in Arabidopsis thaliana.[J]. Plant Biol (Stuttg),2008,10Suppl1(63-75.
    17. Balazadeh S., Siddiqui H., Allu A. D., Matallana-Ramirez L. P., Caldana C., Mehrnia M.,Zanor M. I., Kohler B., Mueller-Roeber B.A gene regulatory network controlled by the NACtranscription factor ANAC092/AtNAC2/ORE1during salt-promoted senescence.[J]. Plant J,2010,62(2):250-264.
    18. Balazadeh S.,Wu A.,Mueller-Roeber B. Salt-triggered expression of the ANAC092-dependentsenescence regulon in Arabidopsis thaliana.[J]. Plant Signal Behav,2010,5(6):733-735.
    19. Bate N. J., Rothstein S. J., Thompson J. E.Expression of Nuclear and ChloroplastPhotosynthesis-Specific Genes During Leaf Senescence [J]. J Exp Bot,1990,42(6):801-811.
    20. Becker A., Kaufmann K., Freialdenhoven A., Vincent C., Li M. A., Saedler H., Theissen G.Anovel MADS-box gene subfamily with a sister-group relationship to class B floral homeoticgenes.[J]. Mol Genet Genomics,2002,266(6):942-950.
    21. Beevers Leonard, Guernsey Frances S.Interaction of growth regulators in the senescence ofNasturtium leaf disks [J].1967,
    22. Belknap William R., Garbarino Joan E.The role of ubiquitin in plant senescence and stressresponses [J].1996,1(10):331-335.
    23. Bethke Paul C., Jones Russell L.Cell death of barley aleurone protoplasts is mediated byreactive oxygen species [J].2001,25(1):19-29.
    24. Bleecker A. B., Patterson S. E.Last exit: senescence, abscission, and meristem arrest inArabidopsis.[J]. Plant Cell,1997,9(7):1169-1179.
    25. Bonaldo M. F., Lennon G., Soares M. B.Normalization and subtraction: two approaches tofacilitate gene discovery.[J]. Genome Res,1996,6(9):791-806.
    26. BORRELL ANDREW, HAMMER GRAEME, van OOSTEROM ERIK.Stay-green: Aconsequence of the balance between supply and demand for nitrogen during grain filling [J].Ann Appl Biol,2001,138(1):91-95.
    27. Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C., Kiddle S., Kim Y. S.,Penfold C. A., Jenkins D., Zhang C., Morris K., Jenner C., Jackson S., Thomas B., Tabrett A.,Legaie R., Moore J. D., Wild D. L., Ott S., Rand D., Beynon J., Denby K., Mead A.,Buchanan-Wollaston V.High-resolution temporal profiling of transcripts during Arabidopsisleaf senescence reveals a distinct chronology of processes and regulation.[J]. Plant Cell,2011,23(3):873-894.
    28. Brouquisse R., Evrard A., Rolin D., Raymond P., Roby C.Regulation of protein degradationand protease expression by mannose in maize root tips. Pi sequestration by mannose mayhinder the study of its signaling properties.[J]. Plant Physiol,2001,125(3):1485-1498.
    29. Buchanan-Wollaston V., Earl S., Harrison E., Mathas E., Navabpour S., Page T., Pink D.Themolecular analysis of leaf senescence--a genomics approach.[J]. Plant Biotechnol J,2003,1(1):3-22.
    30. Buchanan-Wollaston V., Page T., Harrison E., Breeze E., Lim P. O., Nam H. G., Lin J. F., WuS. H., Swidzinski J., Ishizaki K., Leaver C. J.Comparative transcriptome analysis revealssignificant differences in gene expression and signalling pathways between developmentaland dark/starvation-induced senescence in Arabidopsis.[J]. Plant J,2005,42(4):567-585.
    31. Buchanan-Wollaston Vicky, Earl Simon, Harrison Elizabeth, Mathas Evy, Navabpour Saeid,Page Tania, Pink David.The molecular analysis of leaf senescence–a genomics approach[J].Plant Biotechnology Journal,2003,1(1):3-22.
    32. Calderini Ornella, Bovone Tessa, Scotti Carla, Pupilli Fulvio, Piano Efisio, ArcioniSergio.Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlledby the senescence-specific promoter SAG12[J].2007,26(5):611-615.
    33. Cano-Delgado A., Yin Y., Yu C., Vafeados D., Mora-Garcia S., Cheng J. C., Nam K. H., Li J.,Chory J.BRL1and BRL3are novel brassinosteroid receptors that function in vasculardifferentiation in Arabidopsis.[J]. Development,2004,131(21):5341-5351.
    34. Cao J., Jiang F., Sodmergen, Cui K.Time-course of programmed cell death during leafsenescence in Eucommia ulmoides.[J]. J Plant Res,2003,116(1):7-12.
    35. Carninci P., Shibata Y., Hayatsu N., Sugahara Y., Shibata K., Itoh M., Konno H., Okazaki Y.,Muramatsu M., Hayashizaki Y.Normalization and subtraction of cap-trapper-selected cDNAsto prepare full-length cDNA libraries for rapid discovery of new genes.[J]. Genome Res,2000,10(10):1617-1630.
    36. Chang C. W.Carbon dioxide and senescence in cotton plants.[J]. Plant Physiol,1975,55(3):515-519.
    37. Chen M. K., Hsu W. H., Lee P. F., Thiruvengadam M., Chen H. I., Yang C. H.The MADSbox gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organsenescence and abscission in Arabidopsis.[J]. Plant J,2011,68(1):168-185.
    38. Chen W., Provart N. J., Glazebrook J., Katagiri F., Chang H. S., Eulgem T., Mauch F., LuanS., Zou G., Whitham S. A., Budworth P. R., Tao Y., Xie Z., Chen X., Lam S., Kreps J. A.,Harper J. F., Si-Ammour A., Mauch-Mani B., Heinlein M., Kobayashi K., Hohn T., Dangl J.L., Wang X., Zhu T.Expression profile matrix of Arabidopsis transcription factor genessuggests their putative functions in response to environmental stresses.[J]. Plant Cell,2002,14(3):559-574.
    39. Chu Zhaohui, Peng Kaiman, Zhang Lida, Zhou Bin, Wei Jun, Wang Shiping.Construction andcharacterization of a normalized whole-life-cycle cDNA library of rice[J].2003,48(3):229-235.
    40. Clouse S. D.Molecular genetic studies confirm the role of brassinosteroids in plant growthand development.[J]. Plant J,1996,10(1):1-8.
    41. Clouse S. D., Sasse J. M.BRASSINOSTEROIDS: Essential Regulators of Plant Growth andDevelopment.[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49(427-451.
    42. Conesa A., Gotz S., Garcia-Gomez J. M., Terol J., Talon M., Robles M.Blast2GO: a universaltool for annotation, visualization and analysis in functional genomics research.[J].Bioinformatics,2005,21(18):3674-3676.
    43. Crasta O. R., Xu W. W., Rosenow D. T., Mullet J., Nguyen H. T.Mapping of post-floweringdrought resistance traits in grain sorghum: association between QTLs influencing prematuresenescence and maturity.[J]. Mol Gen Genet,1999,262(3):579-588.
    44. Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., GranotD.Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reducesphotosynthesis, and induces rapid senescence.[J]. Plant Cell,1999,11(7):1253-1266.
    45. De Michele R., Formentin E., Todesco M., Toppo S., Carimi F., Zottini M., Barizza E.,Ferrarini A., Delledonne M., Fontana P., Lo Schiavo F.Transcriptome analysis of Medicagotruncatula leaf senescence: similarities and differences in metabolic and transcriptionalregulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling.[J].New Phytol,2009,181(3):563-575.
    46. Delorme Valérie G. R., McCabe Paul F., Kim Dae-Jae, Leaver Christopher J.A MatrixMetalloproteinase Gene Is Expressed at the Boundary of Senescence and Programmed CellDeath in Cucumber[J]. Plant Physiol,2000,123(3):917-928.
    47. Dreher K., Callis J.Ubiquitin, hormones and biotic stress in plants.[J]. Ann Bot,2007,99(5):787-822.
    48. Ellis C. M., Nagpal P., Young J. C., Hagen G., Guilfoyle T. J., Reed J. W.AUXINRESPONSE FACTOR1and AUXIN RESPONSE FACTOR2regulate senescence and floralorgan abscission in Arabidopsis thaliana.[J]. Development,2005,132(20):4563-4574.
    49. Eulgem T., Somssich I. E.Networks of WRKY transcription factors in defense signaling.[J].Curr Opin Plant Biol,2007,10(4):366-371.
    50. Fan L., Zheng S., Wang X.Antisense suppression of phospholipase D alpha retards abscisicacid-and ethylene-promoted senescence of postharvest Arabidopsis leaves.[J]. Plant Cell,1997,9(12):2183-2196.
    51. Fang S. C., Fernandez D. E.Effect of regulated overexpression of the MADS domain factorAGL15on flower senescence and fruit maturation.[J]. Plant Physiol,2002,130(1):78-89.
    52. Fernandez D. E., Heck G. R., Perry S. E., Patterson S. E., Bleecker A. B., Fang S. C.Theembryo MADS domain factor AGL15acts postembryonically. Inhibition of perianthsenescence and abscission via constitutive expression.[J]. Plant Cell,2000,12(2):183-198.
    53. Fletcher R. A., Oegema T., Horton R. F.Endogenous gibberellin levels and senescence inTaraxacum officinale.[J]. Planta,1969,86(1):98-102.
    54. Fode B., Siemsen T., Thurow C., Weigel R., Gatz C.The Arabidopsis GRAS protein SCL14interacts with class II TGA transcription factors and is essential for the activation ofstress-inducible promoters.[J]. Plant Cell,2008,20(11):3122-3135.
    55. Fujiki Y., Ito M., Nishida I., Watanabe A.Multiple signaling pathways in gene expressionduring sugar starvation. Pharmacological analysis of din gene expression insuspension-cultured cells of Arabidopsis.[J]. Plant Physiol,2000,124(3):1139-1148.
    56. Fujiki Y., Yoshikawa Y., Sato T., Inada N., Ito M., Nishida I., Watanabe A.Dark-induciblegenes from Arabidopsis thaliana are associated with leaf senescence and repressed bysugars.[J]. Physiol Plant,2001,111(3):345-352.
    57. Fukuda H.XYLOGENESIS: INITIATION, PROGRESSION, AND CELL DEATH.[J]. AnnuRev Plant Physiol Plant Mol Biol,1996,47(299-325.
    58. Gan S.Senescence processes in plants[M]. Oxford: Blackwell,2007.
    59. Gan S., Amasino R. M.Inhibition of leaf senescence by autoregulated production of cytokinin.[J]. Science,1995,270(5244):1986-1988.
    60. Gan Susheng, Amasino Richard M.Cytokinins in plant senescence: from spray and pray toclone and play [J]. Bioessays,1996,18(7):557-565.
    61. Gepstein S., Sabehi G., Carp M. J., Hajouj T., Nesher M. F., Yariv I., Dor C., BassaniM.Large-scale identification of leaf senescence-associated genes.[J]. Plant J,2003,36(5):629-642.
    62. Gepstein S., Thimann K. V.Changes in the abscisic acid content of oat leaves duringsenescence.[J]. Proc Natl Acad Sci U S A,1980,77(4):2050-2053.
    63. Giovannoni Jim.Molecular biology of fruit maturation and ripening[J]. Annu Rev Plant Biol,2001,52(1):725-749.
    64. Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., Adiconis X.,Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N.,di Palma F., Birren B. W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A.Full-lengthtranscriptome assembly from RNA-Seq data without a reference genome.[J]. Nat Biotechnol,2011,29(7):644-652.
    65. Grbi Vojislava, Bleecker Anthony B.Ethylene regulates the timing of leaf senescence inArabidopsis.
    66.[J]. The Plant Journal,1995,8(4):595-602.
    67. Gregersen P. L., Holm P. B.Transcriptome analysis of senescence in the flag leaf of wheat(Triticum aestivum L.).[J]. Plant Biotechnol J,2007,5(1):192-206.
    68. Guinn Gene, Brummett Donald L.Leaf age, decline in photosynthesis, and changes in abscisicacid, indole-3-acetic acid, and cytokinin in cotton leaves[J].1993,32(3):269-275.
    69. Guo Y., Gan S.AtNAP, a NAC family transcription factor, has an important role in leafsenescence.[J]. Plant J,2006,46(4):601-612.
    70. Hajouj T., Michelis R., Gepstein S.Cloning and characterization of a receptor-like proteinkinase gene associated with senescence.[J]. Plant Physiol,2000,124(3):1305-1314.
    71. Han Z. G., Guo W. Z., Song X. L., Zhang T. Z.Genetic mapping of EST-derivedmicrosatellites from the diploid Gossypium arboreum in allotetraploid cotton.[J]. Mol GenetGenomics,2004,272(3):308-327.
    72. Harms K., Atzorn R., Brash A., Kuhn H., Wasternack C., Willmitzer L., Pena-CortesH.Expression of a Flax Allene Oxide Synthase cDNA Leads to Increased EndogenousJasmonic Acid (JA) Levels in Transgenic Potato Plants but Not to a Corresponding Activationof JA-Responding Genes.[J]. Plant Cell,1995,7(10):1645-1654.
    73. He Y., Fukushige H., Hildebrand D. F., Gan S.Evidence supporting a role of jasmonic acid inArabidopsis leaf senescence.[J]. Plant Physiol,2002,128(3):876-884.
    74. He Y., Fukushige H., Hildebrand D. F., Gan S.Evidence supporting a role of jasmonic acid inArabidopsis leaf senescence.[J]. Plant Physiol,2002,128(3):876-884.
    75. He Y., Gan S.Molecular characteristics of leaf senescence, Kerala, Research Signpost, P1-17,2003
    76. He Y., Gan S.A gene encoding an acyl hydrolase is involved in leaf senescence inArabidopsis.[J]. Plant Cell,2002,14(4):805-815.
    77. He Y., Tang W., Swain J. D., Green A. L., Jack T. P., Gan S.Networkingsenescence-regulating pathways by using Arabidopsis enhancer trap lines.[J]. Plant Physiol,2001,126(2):707-716.
    78. Hensel L. L., Grbic V., Baumgarten D. A., Bleecker A. B.Developmental and age-relatedprocesses that influence the longevity and senescence of photosynthetic tissues inarabidopsis.[J]. Plant Cell,1993,5(5):553-564.
    79. Hickman R., Hill C., Penfold C. A., Breeze E., Bowden L., Moore J. D., Zhang P., Jackson A.,Cooke E., Bewicke-Copley F., Mead A., Beynon J., Wild D. L., Denby K. J., Ott S.,Buchanan-Wollaston V.A local regulatory network around three NAC transcription factors instress responses and senescence in Arabidopsis leaves.[J]. Plant J,2013,75(1):26-39.
    80. Hildebrand David F., Fukushige Hirotada, Afitlhile Meshack, Wang Cunxi.Lipoxygenases inplant development and senescence, London, Portland Press, P151-181,1998
    81. Hinderhofer K., Zentgraf U.Identification of a transcription factor specifically expressed at theonset of leaf senescence.[J]. Planta,2001,213(3):469-473.
    82. Hong S. B., Sexton R., Tucker M. L.Analysis of gene promoters for two tomatopolygalacturonases expressed in abscission zones and the stigma.[J]. Plant Physiol,2000,123(3):869-881.
    83. Hortensteiner S., Feller U.Nitrogen metabolism and remobilization during senescence.[J]. JExp Bot,2002,53(370):927-937.
    84. Hung K. T., Kao C. H.Hydrogen peroxide is necessary for abscisic acid-induced senescenceof rice leaves.[J]. J Plant Physiol,2004,161(12):1347-1357.
    85. Hung K. T., Kao C. H.Nitric oxide counteracts the senescence of rice leaves induced byabscisic acid.[J]. J Plant Physiol,2003,160(8):871-879.
    86. Iseli C., Jongeneel C. V., Bucher P.ESTScan: a program for detecting, evaluating, andreconstructing potential coding regions in EST sequences.[J]. Proc Int Conf Intell Syst MolBiol,1999,138-148.
    87. Jiang C. Z., Rodermel S. R., Shibles R. M.Photosynthesis, Rubisco Activity and Amount, andTheir Regulation by Transcription in Senescing Soybean Leaves.[J]. Plant Physiol,1993,101(1):105-112.
    88. Jing H. C., Schippers J. H., Hille J., Dijkwel P. P.Ethylene-induced leaf senescence dependson age-related changes and OLD genes in Arabidopsis.[J]. J Exp Bot,2005,56(421):2915-2923.
    89. Jing H. C., Sturre M. J., Hille J., Dijkwel P. P.Arabidopsis onset of leaf death mutants identifya regulatory pathway controlling leaf senescence.[J]. Plant J,2002,32(1):51-63.
    90. John C. F., Morris K., Jordan B. R., Thomas B., A-H-Mackerness S.Ultraviolet-B exposureleads to up-regulation of senescence-associated genes in Arabidopsis thaliana.[J]. J Exp Bot,2001,52(359):1367-1373.
    91. John Isaac, Drake Rachel, Farrell Aldo, Cooper Wendy, Lee Pam, Horton Peter, GriersonDon.Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants:molecular and physiological analysis[J]. The Plant Journal,1995,7(3):483-490.
    92. Jones Alan M., Dangl Jeffery L.Logjam at the Styx: programmed cell death in plants[J].Trends Plant Sci,1996,1(4):114-119.
    93. Jordi W., Schapendonk AHCM, Davelaar E., Stoopen G. M., Pot C. S., De Visser R., VanRhijn J. A., Gan S., Amasino R. M.Increased cytokinin levels in transgenic PSAG12–IPTtobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and Npartitioning[J].2000,23(3):279-289.
    94. Kajimura T., Mizuno N., Takumi S.Utility of leaf senescence-associated gene homologs asdevelopmental markers in common wheat.[J]. Plant Physiol Biochem,2010,48(10-11):851-859.
    95. Kakani V. G., Reddy K. R., Zhao D., Gao W.Senescence and hyperspectral reflectance ofcotton leaves exposed to ultraviolet-B radiation and carbon dioxide.[J]. Physiol Plant,2004,121(2):250-257.
    96. Kaup M. T., Froese C. D., Thompson J. E.A role for diacylglycerol acyltransferase during leafsenescence.[J]. Plant Physiol,2002,129(4):1616-1626.
    97. Kim Hyo Jung, Ryu Hojin, Hong Sung Hyun, Woo Hye Ryun, Lim Pyung Ok, Lee In Chul,Sheen Jen, Nam Hong Gil, Hwang Ildoo.Cytokinin-mediated control of leaf longevity byAHK3through phosphorylation of ARR2in Arabidopsis[J]. P Natl Acad Sci Usa,2006,103(3):814-819.
    98. Kim J. I., Murphy A. S., Baek D., Lee S. W., Yun D. J., Bressan R. A., Narasimhan M.L.YUCCA6over-expression demonstrates auxin function in delaying leaf senescence inArabidopsis thaliana.[J]. J Exp Bot,2011,62(11):3981-3992.
    99. Komiya T., Tanigawa Y., Hirohashi S.A large-scale in situ hybridization system using anequalized cDNA library.[J]. Anal Biochem,1997,254(1):23-30.
    100. Kong X., Luo Z., Dong H., Eneji A. E., Li W., Lu H.Gene expression profiles decipheringleaf senescence variation between early-and late-senescence cotton lines.[J]. PLoS One,2013,8(7):69847.
    101. Kong Z., Li M., Yang W., Xu W., Xue Y.A novel nuclear-localized CCCH-type zinc fingerprotein, OsDOS, is involved in delaying leaf senescence in rice.[J]. Plant Physiol,2006,141(4):1376-1388.
    102. Lee B. Y., Howe A. E., Conte M. A., D'Cotta H., Pepey E., Baroiller J. F., di Palma F.,Carleton K. L., Kocher T. D.An EST resource for tilapia based on17normalized libraries andassembly of116,899sequence tags.[J]. BMC Genomics,2010,11(278.
    103. Lee D. J., Zeevaart J. A.Molecular cloning of GA2-oxidase3from spinach and its ectopicexpression in Nicotiana sylvestris.[J]. Plant Physiol,2005,138(1):243-254.
    104. Lee I. C., Hong S. W., Whang S. S., Lim P. O., Nam H. G., Koo J. C.Age-dependent action ofan ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsisleaves.[J]. Plant Cell Physiol,2011,52(4):651-662.
    105. Lee R. H., Wang C. H., Huang L. T., Chen S. C.Leaf senescence in rice plants: cloning andcharacterization of senescence up-regulated genes.[J]. J Exp Bot,2001,52(358):1117-1121.
    106. Lichtenthaler Hartmut K.Chlorophylls and carotenoids: Pigments of photosyntheticbiomembranes[J]. Method Enzymol,1987,148(350-382.
    107. Lim P. O., Kim H. J., Nam H. G.Leaf senescence.[J]. Annu Rev Plant Biol,2007,58(115-136.
    108. Lim P. O., Nam H. G.The molecular and genetic control of leaf senescence and longevity inArabidopsis.[J]. Curr Top Dev Biol,2005,67(49-83.
    109. Lim P. O., Woo H. R., Nam H. G.Molecular genetics of leaf senescence in Arabidopsis.[J].Trends Plant Sci,2003,8(6):272-278.
    110. Lin J. F., Wu S. H.Molecular events in senescing Arabidopsis leaves.[J]. Plant J,2004,39(4):612-628.
    111. Lister R., Gregory B. D., Ecker J. R.Next is now: new technologies for sequencing ofgenomes, transcriptomes, and beyond.[J]. Curr Opin Plant Biol,2009,12(2):107-118.
    112. Liu L., Zhou Y., Zhou G., Ye R., Zhao L., Li X., Lin Y.Identification of earlysenescence-associated genes in rice flag leaves.[J]. Plant Mol Biol,2008,67(1-2):37-55.
    113. Liu Y., Zhang S.Phosphorylation of1-aminocyclopropane-1-carboxylic acid synthase byMPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis inArabidopsis.[J]. Plant Cell,2004,16(12):3386-3399.
    114. Lohman Karin N., Gan Susheng, John Manorama C., Amasino Richard M.Molecular analysisof natural leaf senescence in Arabidopsis thaliana[J].1994,92(2):322-328.
    115. Lutts S., Kinet JM, Bouharmont J.NaCl-induced Senescence in Leaves of Rice (Oryza sativaL.) Cultivars Differing in Salinity Resistance [J]. Ann Bot-London,1996,78(3):389-398.
    116. Maere S., Heymans K., Kuiper M.BiNGO: a Cytoscape plugin to assess overrepresentation ofgene ontology categories in biological networks.[J]. Bioinformatics,2005,21(16):3448-3449.
    117. Masclaux C., Valadier M. H., Brugiere N., Morot-Gaudry J. F., Hirel B.Characterization ofthe sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogenmanagement and leaf senescence.[J]. Planta,2000,211(4):510-518.
    118. Matthews R.Disease symptoms and effects on metabolism [J]. Plant Virology,1991,380-422.
    119. McCabe M. S., Garratt L. C., Schepers F., Jordi W. J., Stoopen G. M., Davelaar E., van RhijnJ. H., Power J. B., Davey M. R.Effects of P(SAG12)-IPT gene expression on developmentand senescence in transgenic lettuce.[J]. Plant Physiol,2001,127(2):505-516.
    120. Mei M., Syed N. H., Gao W., Thaxton P. M., Smith C. W., Stelly D. M., Chen Z. J.Geneticmapping and QTL analysis of fiber-related traits in cotton (Gossypium).[J]. Theor ApplGenet,2004,108(2):280-291.
    121. Miao Y., Laun T., Zimmermann P., Zentgraf U.Targets of the WRKY53transcription factorand its role during leaf senescence in Arabidopsis.[J]. Plant Mol Biol,2004,55(6):853-867.
    122. Miao Y., Zentgraf U.The antagonist function of Arabidopsis WRKY53and ESR/ESP in leafsenescence is modulated by the jasmonic and salicylic acid equilibrium.[J]. Plant Cell,2007,19(3):819-830.
    123. Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K.AP2/ERF family transcription factors inplant abiotic stress responses.[J]. Biochim Biophys Acta,2012,1819(2):86-96.
    124. Morel Jean-Benoit, Dangl Jeffery L.The hypersensitive response and the induction of celldeath in plants[J]. Cell Death&Differentiation,1997,4(8):671-683.
    125. Morris K., MacKerness S. A., Page T., John C. F., Murphy A. M., Carr J. P.,Buchanan-Wollaston V.Salicylic acid has a role in regulating gene expression during leafsenescence.[J]. Plant J,2000,23(5):677-685.
    126. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M.Thetranscriptional landscape of the yeast genome defined by RNA sequencing.[J]. Science,2008,320(5881):1344-1349.
    127. Nakano T., Suzuki K., Fujimura T., Shinshi H.Genome-wide analysis of the ERF gene familyin Arabidopsis and rice.[J]. Plant Physiol,2006,140(2):411-432.
    128. Nam H. G.The molecular genetic analysis of leaf senescence.[J]. Curr Opin Biotechnol,1997,8(2):200-207.
    129. Noh Y. S., Amasino R. M.Identification of a promoter region responsible for thesenescence-specific expression of SAG12.[J]. Plant Mol Biol,1999,41(2):181-194.
    130. Noodén L. D., Leopold Aldo Carl.Senescence and Aging in Plants., NoodénLeopold,Abscisic acid, auxin, and other regulators of senescence., San Diego, Academic Press,P329-367,1988
    131. Noodén Larry D., Guiamét Juan J., John Isaac.Senescence mechanisms [J].1997,101(4):746-753.
    132. Oh S. A., Lee S. Y., Chung I. K., Lee C. H., Nam H. G.A senescence-associated gene ofArabidopsis thaliana is distinctively regulated during natural and artificially induced leafsenescence.[J]. Plant Mol Biol,1996,30(4):739-754.
    133. Okushima Y., Mitina I., Quach H. L., Theologis A.AUXIN RESPONSE FACTOR2(ARF2):a pleiotropic developmental regulator.[J]. Plant J,2005,43(1):29-46.
    134. Ono K., Nishi Y., Watanabe A., Terashima I.Possible mechanisms of adaptive leafsenescence[J].2001,3(3):234-243.
    135. Ori Naomi, Juarez Michelle T., Jackson David, Yamaguchi Judy, Banowetz Gary M., HakeSarah.Leaf Senescence Is Delayed in Tobacco Plants Expressing the Maize Homeobox Geneknotted1under the Control of a Senescence-Activated Promoter[J]. The Plant Cell,1999,11(6):1073-1080.
    136. Otegui M. S., Noh Y. S., Martinez D. E., Vila Petroff MG, Staehelin L. A., Amasino R. M.,Guiamet J. J.Senescence-associated vacuoles with intense proteolytic activity develop inleaves of Arabidopsis and soybean.[J]. Plant J,2005,41(6):831-844.
    137. Park J. H., Oh S. A., Kim Y. H., Woo H. R., Nam H. G.Differential expression ofsenescence-associated mRNAs during leaf senescence induced by differentsenescence-inducing factors in Arabidopsis.[J]. Plant Mol Biol,1998,37(3):445-454.
    138. Paul M. J., Foyer C. H.Sink regulation of photosynthesis.[J]. J Exp Bot,2001,52(360):1383-1400.
    139. Peng J., Harberd N. P.Gibberellin deficiency and response mutations suppress the stemelongation phenotype of phytochrome-deficient mutants of Arabidopsis.[J]. Plant Physiol,1997,113(4):1051-1058.
    140. Pennell R. I., Lamb C.Programmed Cell Death in Plants.[J]. Plant Cell,1997,9(7):1157-1168.
    141. Pontier D., Gan S., Amasino R. M., Roby D., Lam E.Markers for hypersensitive response andsenescence show distinct patterns of expression.[J]. Plant Mol Biol,1999,39(6):1243-1255.
    142. Quirino B. F., Noh Y. S., Himelblau E., Amasino R. M.Molecular aspects of leafsenescence.[J]. Trends Plant Sci,2000,5(7):278-282.
    143. Quirino B. F., Noh Y. S., Himelblau E., Amasino R. M.Molecular aspects of leafsenescence.[J]. Trends Plant Sci,2000,5(7):278-282.
    144. Quirino B. F., Normanly J., Amasino R. M.Diverse range of gene activity during Arabidopsisthaliana leaf senescence includes pathogen-independent induction of defense-related genes.[J].Plant Mol Biol,1999,40(2):267-278.
    145. Quirino B. F., Reiter W. D., Amasino R. D.One of two tandem Arabidopsis geneshomologous to monosaccharide transporters is senescence-associated.[J]. Plant Mol Biol,2001,46(4):447-457.
    146. Rao M. V., Davis K. R.The physiology of ozone induced cell death.[J]. Planta,2001,213(5):682-690.
    147. Rao M. V., Lee H. I., Davis K. R.Ozone-induced ethylene production is dependent onsalicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-inducedcell death.[J]. Plant J,2002,32(4):447-456.
    148. Richmond AE, Lang A.Effect of kinetin on protein content and survival of detachedXanthium leaves.[J]. Science,1957,125(3249):650-651.
    149. Riefler Michael, Novak Ondrej, Strnad Miroslav, Schmülling Thomas.Arabidopsis CytokininReceptor Mutants Reveal Functions in Shoot Growth, Leaf Senescence, Seed Size,Germination, Root Development, and Cytokinin Metabolism[J]. The Plant Cell,2006,18(1):40-54.
    150. Robatzek S., Somssich I. E.Targets of AtWRKY6regulation during plant senescence andpathogen defense.[J]. Genes Dev,2002,16(9):1139-1149.
    151. Robatzek S., Somssich I. E.A new member of the Arabidopsis WRKY transcription factorfamily, AtWRKY6, is associated with both senescence-and defence-related processes.[J].Plant J,2001,28(2):123-133.
    152. Roberts Irma, Murray Pedro Fernández, Passeron Susana, Barneix Atilio J.The activity of the20S proteasome is maintained in detached wheat leaves during senescence in darkness[J].2002,40(2):161-166.
    153. Rodrigues C., Vandenberghe L. P., de Oliveira J., Soccol C. R.New perspectives ofgibberellic acid production: a review.[J]. Crit Rev Biotechnol,2012,32(3):263-273.
    154. Rolland F., Moore B., Sheen J.Sugar sensing and signaling in plants.[J]. Plant Cell,2002,14Suppl(185-205.
    155. Rosenvasser S., Mayak S., Friedman H.Increase in reactive oxygen species (ROS) and insenescence-associated gene transcript (SAG) levels during dark-induced senescence ofPelargonium cuttings, and the effect of gibberellic acid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700