面向行人下肢碰撞保护的汽车前端结构快速优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行人与车碰撞保护设计具有相当的技术挑战,在汽车工业界的车型设计开发实践中,面向下肢模块碰撞保护的车前端结构设计主要依赖于基于工程经验的试验和计算仿真。本论文深入分析了车前端结构设计参数对下肢模块损伤指标的影响机理,建立了一个参数化分析模型,为车型前期设计中协调车前端结构的造型、部件布置以及预留碰撞吸能空间的矛盾关系提供依据;通过引入并改进空间映射算法,为车型开发后期设计改进提供了高效的优化工具。
     论文首先分析了车前端结构参数对下肢模块损伤指标的影响机理,对车前端结构的前期设计提供了指导。通过建立并简化行人下肢模块刚体动力学模型,得到了下肢模块损伤指标的近似解析解,并借助有限元模拟验证了该近似解析解与下肢模块损伤指标的相关性。基于动力学方程的近似解析解,论文分析了下肢模块胫骨加速度峰值、膝关节弯曲角度和剪切位移峰值的控制策略。
     论文基于下肢模块与车前端结构碰撞的有限元模型,对车前端的吸能空间进行了更准确的估计,为车型前期设计中确定针对下肢碰撞保护所需的吸能空间提供了理论支持。能量分析的结果表明,下肢模块初始动能仅有约三分之一被车前端结构吸收。本论文通过引入了能量转化率,吸能效率和有效质量系数等三个参数,改进了现有吸能空间估计方法。通过试验设计统计了以上三个参数的取值,计算得到了更合理的吸能空间估计值。
     车前端结构的参数化模型被广泛用于行人下肢模块碰撞保护的参数分析研究中,然而传统的将车前端结构分为三个区域的参数化模型不能准确反映下肢模块与实车结构碰撞的响应。论文提出了四区域模型,将保险杠区域的吸能结构分为两部分,准确反映了实车对下肢模块膝关节区域碰撞力的作用点。
     为了提高优化设计效率,论文将空间映射算法引入到车前端结构参数优化设计中。精度较高的实车前端有限元模型往往计算效率较低。空间映射优化算法允许设计者通过精度较低、计算效率高的粗糙模型作为辅助设计工具,对精细模型进行优化设计。与传统的响应面优化方法相比,空间映射优化算法对精细模型的计算次数显著减少,优化效率高于基于响应面的直接优化方法。作为一个应用性算例,论文最后建立了以梯形薄壁管为吸能结构的车前端参数化模型,应用空间映射优化算法对薄壁吸能结构的截面形状进行了优化设计,结果表明空间映射优化算法能够适用于行人下肢模块碰撞保护的优化设计。
Vehicle front-end design for pedestrian impact protection has been a challenge forstructural engineers. For engineering practices during the vehicle development forpedestrian leg protection, expert experience and intuitive judgment have been mainlydepended on to conduct the tests and simulations. This study is to exploit how thevehicle front-end structures influence the pedestrian legform injury parameters, andbuild a parametric analytical model, which provides more basis in the concept designstage for balancing the requirements of styling, general layout and energy-absorberpackaging. Also, the space mapping algorithm is introduced and modified to developa more efficient optimization tool for the detail design stage, which will shorten thedevelopment period and improve the design quality.
     In order to provide guidance for the front-end design in the early stage of vehicledevelopment, the influence mechanism of the front-end structure design on the legforminjury parameters is analyzed. The kinetic equation of the legform movement is built.To develop a kind of approximate analytic solution of the legform injury parameters,the legform knee joint is simplified to be rigid. The finite element (FE) model isutilized to verify the correlation between the legform injury parameters and the vehiclefront-end design. Based on the approximate analytic solution, the design strategies arediscussed to prevent legform injury parameters from exceeding the standard scope.
     By using the FE model of legform to vehicle bumper impact, a more reasonableequation to estimate the energy absorption (EA) space is proposed, which providestheoretical support for determining appropriate space in the early stage design. Theenergy partitioning analysis indicates that about one third of the initial kinematic energyof legform was absorbed by vehicle front-end structures. A modified method forestimating EA space is proposed by introducing3parameters (energy absorbing rate,EA efficiency and effective mass). Then parametric study is conducted to statisticallydetermine values of the3parameters, and more reasonable estimation of the EA spaceis obtained.
     Vehicle front-end parametric model has been widely used in the variablesensitivity study related to the legform impact test. It is, however, inaccurate for traditional3-part parametric model to represent real vehicle front-end structures inlegform impact simulation. Thus, a4-part parametric model is developed based on adetailed FE model of a real vehicle front-end, in which the structure near the bumperbeam area is modeled as two parts. The4-part parametric model could better simulatethe contact force of vehicle acted on the legform.
     Then, space mapping algorithm is utilized to improve the efficiency of optimizingthe vehicle front-end structures. In the vehicle design for legform impact protection,detailed FE model of real vehicle is able to ensure the predicting accuracy, butcomputationally time-consuming. The optimization algorithm with the space mappingtechnique allows the designer to use a computationally efficient, but inaccurate FEmodel (coarse model) as a meta-model for predicting the optimal design of the detailedFE model. Compared to the traditional response surface optimization method, the SMbased method requires much fewer number of detailed FE model simulations, so it ismore efficient. Finally, a new vehicle front-end system consisting of trapezoidal tubesis developed, and the cross section shape parameters are optimized using the SM basedoptimization method, which demonstrated that the SM based optimization method couldsolve the problem related to the pedestrian legform protection design.
引文
[1] World Health Organization. World Report on Road Traffic Injury Prevention: Summary [R].Geneva: WHO,2004.
    [2] World’s first road death. London, RoadPeace,2011.http://admin.roadpeace.org/articles/worldfir.html, accessed on7June2011.
    [3] EEVC Working Group17. Improved Test Methods to Evaluate Pedestrian ProtectionAfforded by Passenger Cars [R].2002.
    [4]公安部交通管理局.中华人民共和国道路交通事故统计年报.2004-2007.
    [5] World Health Organization. Global Status Report on Road Safety: Time for action [R].2009.
    [6] National Highway Traffic Safety Administration. Traffic Safety Facts1999-Pedestrians [R].US Department of Transportation, Washington, DC,1999.
    [7]刘明君,单连龙.“十一五”我国交通安全发展回顾[J].综合运输,2011(4). DOI:CNKI:SUN:YSZH.0.2011-04-005
    [8] Svoboda J, Solc Z. Vehicle-pedestrian collision [R]. Report Z01-01CTU/U221, Prague,2001.
    [9] Tamura A. A numerical study of traumatic brain injury due to ground impact in anSUV-pedestrian crash using full-scale finite element models [C]. Proceedings of the ASME2010International Mechanical Engineering Congress&Exposition, Nov.,2010, Vancouver,Canada.
    [10] Otte D, Pohlemannn T. Analysis and Load Assessment of Secondary Impact to AdultPedestrians after Car Collisions on Roads [C]. Proceedings of the International IRCOBIConference on the Biomechanics of Impacts, Isle of Man, United Kingdom,2001:143–157.
    [11] Kendall R, Meissner M, and Crandall J. The causes of head injury in vehicle-pedestrianimpacts: comparing the relative danger of vehicle and road surface [C]. Society ofAutomotive Engineers Transactions, SAE Paper No.2006-01-0462,2006.
    [12] Alexander B, Markus E, Thomas E B. Estimation of benefits resulting from impactor-testingfor pedestrian protection [C].18th ESV Conference, Paper Number142,2003.
    [13] Mizuno Y. Summary of IHRA Pedestrian Safety WG Activities (2003)-Proposed TestMethods to Evaluate Pedestrian Protection Afforded by Passenger Cars [C]. Proceedings ofthe18th International Technical Conference on the Enhanced Safety of Vehicles,2003.
    [14] Association for the Advancement of Automotive Medicine (AAAM). Abbreviated InjuryScale (AIS)1990-update98. Barrington: AAAM,1998.
    [15] Aekbote K, Schuster P, Kankanala S, et al. The Biomechanical Aspects of PedestrianProtection [J]. International Journal of Vehicle Design,2003,32(1/2):28-52.
    [16] Zhou Q, Du H L, Kong F Z. Recent Progress in Pedestrian Impact Protection [C]. Theeighth Chinese conference of automotive safety technology.2004.
    [17] Kajzer J, Cavallero C, Ghanouchi S, et al. Response of the Knee Joint in LateralImpact-Effect of Shearing Loads [C]. Proceedings of the International IRCOBI Conference onthe Biomechanics of Impacts,1991.
    [18] Kajzer J, Cavallero C, Bonnoit J, et al, Response of the Knee Joint in Lateral Impact-Effect ofBending Moment [C]. Proceedings of the International IRCOBI Conference on theBiomechanics of Impacts,1993.
    [19] Kajzer J, Schroeder G, Ishikawa H, et al. Shearing and Bending Effects at the Knee Joint atHigh Speed Lateral Loading [C]. Proc.41st Stapp Car Crash Conference. SAE Paper No.973326,1997:151-163.
    [20] Kajzer J, Matsui Y, Ishikawa H, et al. Shearing and Bending Effects at Knee Joint at LowSpeed Lateral Loading [C]. SAE paper No.1999-01-0712.1999.
    [21] Ramet M, Bouquet R, Bermond F, et al. Shearing and Bending Human Knee Joint Tests inQuasi-static Lateral Load [C]. Proceedings of the International IRCOBI Conference on theBiomechanics of Impacts,1995.
    [22] Bose D, Bhalla K, Rooij L V, et al. Response of the Knee Joint to the Pedestrian ImpactLoading Environment [C]. SAE paper No.2004-01-1608,2004.
    [23] Nyquist G, Cheng R, EL-Bohy A, et al. Tibia Bending: Strength and Response [C]. SAEpaper No.851728,1985.
    [24] Yang J K, Review of Injury Biomechanics in Car-Pedestrian Collisions [R]. Report toEuropean Pasive Safety Network.2002.
    [25] Bunketorp O, Romanus B, Hansson T, et al. Experimental Study of a Comliant BumperSystem [C]. SAE paper No.831623,1983.
    [26] Schroeder G. Injury Mechanism of Pedestrian during a Front-End Collision with a LateModel Car [C]. Forum Text of Pedestrian Safety in Japan, JSAE,2000.
    [27] Kam C Y, Kerrigan J, Meissner M, et al. Design of a Full-Scale Impact System for Analysisof Vehicle Pedestrian Collisions [C]. SAE paper No.2005-01-1875.2005.
    [28] Kerrigan J, Murphy D, Drinkwater D, et al. Kinematic Corridors for PMHS tested inFull-scale Pedestrian Impact Tests [C].19thESV conference, Paper Number394,2005.
    [29] Lawrence G. A study on the feasibility of measures relating to the protection of pedestriansand other vulnerable road users [R]. UPR/VE/045/06,2006.
    [30] Soni A, Chawla A, Mukherjee S, et al. Effect of Active Muscle Forces on the Response ofKnee Joint at Low Speed Lateral Impacts [C], SAE paper No.2006-01-0460.2006.
    [31] Soni A, Chawla A, Mukherjee S, et al. Response of lower limb in full-scale car-pedestrianlow-speed lateral impact-influence of muscle contraction [C]. International Journal ofCrashworthiness,2009,14(4):339-348.
    [32] Artis M, McDonald J, White R, et al. Development of a New Biofidelic Leg for Use with aPedestrian Dummy [C]. Proceedings of the International IRCOBI Conference on theBiomechanics of Impacts,2000.
    [33] Akiyama A, Okamoto M, Rangarajan N, et al. Development and Application of the NewPedestrian Dymmy [C].17thESV conference, Paper Number463,2001
    [34] Bose D, Subit D, Ivarsson B, et al. Biofidelity Improvements to the Polar-II PedestrianDummy Lower Extremity [C]. SAE paper No.2007-01-0757,2007.
    [35] Akiyama A, Okamoto M, Ito O, et al. Development of Omni-directional Injury Criteria for aPedestrian Dummy for Evaluating Rib Fracture [C]. SAE paper No.2009-01-1210,2009.
    [36] Akiyama A, OkamotoM, Takahashi Y. Estimation of Injury Measures for a PedestrianDummy Pelvis [C]. JSAE conference, SAE paper No.2009-08-0342,2009.
    [37] Shin J, Untaroiu C, Kerrigan J, et al. Investigating Pedestrian Kinematics with the Polar-IIFinite Element Model [C]. SAE paper No.2007-01-0756,2007.
    [38] Wallentowitz H, Bovenkerk J, Sahr C, et al. Challenge and approach to real-world pedestrianprotection-investigated by Polar-II pedestrian dummy [J], International Journal ofCrashworthiness,14:5,457-467,2009
    [39] Takahashi Y, Kikuchi Y, Biofidelity of Test Devices and Validity of Injury Criteria forEvaluating Knee Injuries to Pedestrians [C].17thESV conference, paper number373,2001
    [40] Matsui A, Wittek A, Konosu A. Comparison of Pedestrian Subsystem Safety Tests UsingImpactors and Full-Scale Dummy Tests [C], SAE paper No.2002-01-1021,2002.
    [41] Yasuki T. A Survey on the Biofidelity of the Knee Bending Angle of the TRL Lower LegImpactor [C].19thESV conference, paper number101,2005.
    [42] Ishikawa T, Kore H, Furumoto A. Evaluation of Pedestrian Protection Stuctures UsingImpactors and Full-Scale Dummy Tests [C].18thESV conference, paper number271,2003.
    [43] Lawrence G J L, Hardy B J. Pedestrian Safety Testing Using the EEVC Pedestrian Impactors
    [C].16thESV conference, paper Number98-S10-O-03,1998.
    [44] Lawrence G J L. The Next Steps for Pedestrian Protection Test Methods [C].19th ESVconference, paper Number0379,2005.
    [45] Kuehn M, Froeming R, Schindler V. An Advanced Testing Procedure for thepedestrian-car-collision [C].18th ESV conference, paper No.272,2001.
    [46] Bermond F, Ramet M, Bouquet R, et al. A finite element model of the pedestrian knee-joint inlateral impact [C]. Proceedings of the International IRCOBI Conference on the Biomechanicsof Impacts,1993.
    [47] Bermond F, Ramet M, Bouquet R, et al. A finite element model of the pedestrian leg in lateralimpact [C].14th ESV conference,1994.
    [48] Yang J, Wittek A, Kajzer J. Finite element model of the human lower extremity skeletonsystem in a lateral impact [C]. Proceedings of the International IRCOBI Conference on theBiomechanics of Impacts,1996.
    [49] Schuster P, Chou C, Prasad P. Development and Validation of a Pedestrian Lower LimbNon-Linear3-D Finite Element Model [J]. Stapp Car Crash Journal, Vol.44,2000-01-SC21,2000.
    [50] Takahashi Y, Kikuchi Y, Konosu A, et. al. Development and Validation of the Finite ElementModel for the Human Lower Limb of Pedestrians [J]. Stapp Car Crash Journal,2000-01-SC22,2000,44.
    [51] Beillas P, Begeman P, Yang K, et al. Lower Limb: Advanced FE Model and NewExperimental Data [J]. Stapp Car Crash Journal,2001,45.
    [52] Takahashi Y, Kikuchi Y, Mori F, et al. Advanced FE Lower Limb Model for Pedestrians [C].18th ESV paper, paper No.218,2003.
    [53] Untaroiu C, Darvish K, Crandall J, et al. A finite element model of the lower limb forsimulating pedestrian impacts [J]. Stapp Car Crash Journal,2005,49:157-181.
    [54] Kerrigan J, Parent D, Untaroiu C, et al. A New Approach to Multibody Model Development:Pedestrian Lower Extremity [J]. Traffic Injury Prevention,2009.10(4):386-397.
    [55] Yang J, L vsund P. Development and Validation of a Human-Body Mathematical Model forSimulation of Car-Pedestrian Impacts [C]. Proc. of the International IRCOBI Conference onthe Biomechanics of Impacts,1997:133-149.
    [56] Yang J, L vsund P, Cavallero C, et al. A Human-Body3D Mathematical Model forSimulation of Car-Pedestrian Impacts [J]. Traffic Injury Prevention,2000,2(2):131-149.
    [57] Maeno T, Hasegawa J. Development of a finite element model of the total human model forsafety (THUMS) and application to car-pedestrian impacts [C].17thESV conference, paperNo.494,2001.
    [58] Yasuki T, Yamamae Y, Validation of Kinematics and Lower Extremity Injuries Estimated byTotal Human Model for Safety in SUV to Pedestrian Impact Test [J]. Journal ofBiomechanical Science and Engineering,2010,5(4):340-356.
    [59] Yang K H, Review of mathematical human models for incorporation into vehicle safetydesign [J]. International Journal of Vehicle Design,2001,26(4):430-441.
    [60] EEVC Working Group10. Proposals for test methods to evaluate pedestrian protection forcars [C].13th ESV Conference,1991.
    [61] EEVC Working Group10. Proposals for methods to evaluate pedestrian protection forpassenger cars [R].1994.
    [62] Konosu A, Issiki T, Tanahashi M. Development of a Biofidelic Flexible Pedestrian Leg-FormImpactor (Flex-PLI2004) and Evaluation of its Biofidelity at the Component Level and at theAssembly Level [C]. SAE paper No.2005-01-1879,2005.
    [63] Wittek A, Konosu A, Matsui Y, et al. A New Legfom Impactor for Evaluation of CarAggressiveness in Car-pedestrian Accidents [C].17thESV conference, paper number184,2001.
    [64] Konosu A, Issiki T, Tanahashi M, et al. Development of a Biofidelic Flexible PedestrianLegform Impactor Type GT (Flex-GT)[C].20thESV conference, Paper number178,2007.
    [65] Konosu A, Issiki T, Takahashi Y, et al. Development of a Biofidelic Flexible PedestrianLegform Impactor Type GTR Prototype Part1: Development and Technical Evaluations [C].21th ESV conference, paper number145,2009.
    [66] Zander O, Lorenz B, Gehring D, et al. Prediction of Lower Extremity Injury Risks During anImpact on Modern Car Fronts with a Flexible Pedestrian Legform Impactor and thePedestrian Legform Impactor According to EEVC WG17[C].20thESV conference, papernumber206,2007
    [67] Matsui Y, Takagi S, Tanaka Y, et al. Characteristics of the TRL Pedestrian Legform and theFlexible Pedestrian Legform Impactors in Car-front Impact Tests [C].21th ESV conference,paper number206,2009.
    [68] Zhou Q, Quade M, Du H L. Concept Design of a4-DOF Pedestrian Legform [C].20thESVconference, paper number196,2007.
    [69] Huang J, Nie B, Zeng L, et al. Development of a Legform Impactor with4-DOF Knee-Jointfor Pedestrian Safety Assessment in Omni-Direction Impacts [C]. SAE paper No.2011-01-0085,2011.
    [70] Anderson R, Ponte G, Searson D. Potential Benefits of an Australian Design Rule onPedestrian Protection [C]. Australasian Road Safety Research, Policing and EducationConference,2008.
    [71] REGULATION (EC) No78/2009[S], Official Journal of the European Union,2009.
    [72] European New Car Assessment Programme (EuroNCAP). Pedestrian Testing Protocal(Version5.1). January,2010.
    [73] European New Car Assessment Programme (EuroNCAP) Assessment Protocal–PedestrianProtection, Version5.0, May,2009.
    [74]中国人民共和国国家标准.汽车对行人的碰撞保护[S]. GB/T24550-2009,2009.
    [75] Green J. A Technical Evaluation of the EEVC Proposal on Pedestrian Protection Test [C].ESV conference, paper number98-S10-O-04,1998.
    [76] European Automobile Manufactures Association (ACEA). ACEA Commitment Relating tothe Protection of Pedestrians and Cyclists.2001.
    [77] Clemo K, Davies R. The Practicalities of Pedestrian Protection [C]. ESV conference, papernumber98-S10-P-16,1998.
    [78]加里布朗.关于全球行人保护要求不断提高情况下的车辆设计展望[J].轻型汽车技术,2004.
    [79] Schuster P J, Current Trends in Bumper Design for Pedestrian Impact [C]. SAE paper2006-01-0464,2006.
    [80] Danner M, Langwieder K, Wachter W. Injuries to Pedestrians in Real Accidents and TheirRelation to Collision and Car Characteristics [C]. SAE paper791008,1979.
    [81] Ashton S. A preliminary assessment of the potential for pedestrian injury reduction throughvehicle design [C]. Stapp Car Crash Conference, paper No.801315,1980.
    [82] Harris J. Safer Cars for the Pedestrian [C]. Proceedings of the Conference on Progresstowards Safer Passenger Cars in the United Kingdom, London, England: IMechE,1980.
    [83] Ashton S, Mackay G. Benefits from Changes in Vehicle Exterior Design-Field Accident andExperimental Work in Europe [C]. SAE paper No.830626,1983.
    [84] Bosma F, Gaalman H, Souren W. Closure and Trim Design For Pedestrian Impact [C].17thESV Conference, paper number322.2001.
    [85] Naughton P, Rottger J, Bowser B, et al. Bonded Hybrid Front-End Systems-An Approach toDesign and Platform Strategies [C]. SAE paper No.2002-01-2028.2002.
    [86] McMahon D, Mooijman F, Shuler S. Engineering Thermoplastic Energy Absorber Solutionsfor Pedestrian Impact [C]. SAE paper No.2002-01-1225,2002.
    [87] Shah B, Sturt R, Kasparian A. Pedestrian Protection: Use of LS-DYNA to Influence Stylingand Engineering [C].6th. European LS-DYNA Users Conference,2000.
    [88] Evans D, Morgan T. Engineering thermoplastic energy absorbers for bumpers [C]. SAE paperNo.1999-01-1011,1999.
    [89] Murata S, Shioya S, Suffis B. Expanded Polypropylene (EPP)–A Global Solution forPedestrian Safety Bumper Systems [C]. SAE paper No.2004-01-1703,2004.
    [90] Shuler S, Mooijman F, Nanda A. Bumper Systems Designed for Both Pedestrian Protectionand FMVSS Requirements: Part Design and Testing [C]. SAE paper No.2004-01-1610,2004.
    [91] Fayaz S, Kulkarni S, Haarda M, et al. A Novel Energy Absorber Design Technique for anIdealized Force-Deformation performance [C]. SAE paper No.2008-01-0184,2008.
    [92] Droste A, Naughton P, Cate P. The Virtual Stiffness Profile-A Design Methodology forPedestrian Safety [C]. SAE paper No.2001-01-2119,2001.
    [93] Glasson E, Maistre V, Laurent C. Car front end module structure development regardingpedestrian protection and other mechanical constraints [C]. SAE paper No.2001-01-0761,2001.
    [94] Detwiler D, Miller R. Development of a Sport Utility Front Bumper System for PedestrianSafety and5Mph Impact Peformance [C].17thESV conference, paper number01-S6-W-145,2001.
    [95] Neal M O. Front Structure Design Procedure for Optimal Pedestrian Leg Impact Performance
    [C]. ASME Conference Proceedings,2004:199-205.
    [96] Shuler S, Mooijman F, Nanda A, et al. Improved Energy Absorber and Vehicle DesignStrategies for Pedestrian Protection [C]. SAE paper No.2005-01-1872,2005.
    [97] Uikey D, Evans D, Abad S, et al. Design Exploration of Bumper Systems Using AdvancedCAE Techniques [C]. SAE paper No.2005-01-1340,2005.
    [98] Neal M, Tu J, Jones D. A Response Surface Based Tool for Evaluating Vehicle Performancein the Pedestrian Leg Impact Test [C]. SAE paper No.2008-01-1244,2008.
    [99] Abvabi A, Nasr A, Noorpoor A, et al. Lower extremity injuries in vehicle-pedestriancollisions using a legform impactor model [J]. Journal of Zhejiang University-Science A,2010,11:97-105.
    [100]朱亚涛,陈方,李高华,等.基于多学科参数化建模和灵敏度分析的飞行器分级优化设计方法[J].宇航学报,2011,32(4):721-726.
    [101] Han Y, Lee Y. Development of a vehicle structure with enhanced pedestrian safety [C]. SAEpaper No.2003-01-1232,2002.
    [102] Matsui Y, Takagi S, Hosokawa, et al. Pedestrian leg protection performance in current vehicledesign in an event of vehicle-to-pedestrian accident [J]. International Journal of VehicleSafety,2008,3(4):307-318.
    [103] Kalliske I, Friesen F. Improvements to Pedestrian Protection as Exemplified on aStandard-sized Car [C].17thESV conference, paper Number283,2001
    [104] Lee J, Shin M, Yoon K, et al. An Orthogonal-Array-Based Design-of-Experiments Methodfor Designing a Vehicle Hood and Bumper Structure [J]. Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2008,222:161-171.
    [105]苗强,高卫民,王大志,等.概念设计与FE仿真评估在行人腿部保护车身设计中的应用[J].汽车技术,2009(5):11-14.
    [106]曾宪中,章桐.序列二次规划法在行人小腿保护的保险杠系统优化中的应用[J].汽车工程,2011,33(2):122-126.
    [107] Han Y H, Lee Y W. Optimization of bumper structure for pedestrian lower leg impact [C].SAE paper No.2002-01-0023,2002.
    [108]徐中明,刘世谦,张志飞,张亮.面向行人综合保护的汽车前部结构参数优化[J].汽车工程,2011,33(6):497-501.
    [109] Park D K, Jang C D, Lee S B, et al. Optimizing the shape of a bumper beam sectionconsidering pedestrian protection [J]. International Journal of Automotive Technology,2010,11(4):489-494
    [110]吴斌,朱西产,王大志,等.乘用车与行人碰撞腿部保护设计要素研究.汽车设计,2010(11):33-37.
    [111] Shin M K, Yi S I, Kwon O T, et al. Structural optimization of the automobile frontal structurefor pedestrian protection and the low-speed impact test [J]. Proceedings of the Institution ofMechanical Engineers Part D-Journal of Automobile Engineering222(D12),2008:2373-2387.
    [112]陆秋明,黄世霖.汽车撞行人模拟计算研究[J].汽车工程,1999(3):177-183.
    [113] Du H, Huang S, Zhang J, et al. A Study on Injury of Pedestrian Leg&Knee during Impactionto Bumper [C]. Proceedings of the2002International Symposium on Safety Science andTechnology (2002ISSST) Part B,2002.
    [114]程秀生,张吉国,周刚,等.汽车保险杠参数对人体腿部损伤程度的影响[J].吉林大学学报(工学版),2003,33(2):25-31.
    [115]赵桂范,吴应娴,杜星文.人-车相撞动力响应研究及汽车保险杠参数评价[J].哈尔滨工业大学学报,2004,36(4):490-492.
    [116]黄俊,刘奇,聂冰冰,等.基于EEVC要求的行人碰撞试验台的研制和评估[J].汽车工程,2008,30(12):1056-1060.
    [117]沈玉婷,朱大勇.基于行人腿部伤害指标的保险杠参数分析[J].汽车技术,2007(10).
    [118]陈晓东,张劲.基于行人碰撞小腿保护的汽车保险杠研究[J].汽车技术,2009(12).
    [119]赵正,陈超卓,吴沈荣.车体前端造型及材料对于行人腿部伤害指标的影响[J].汽车安全与节能学报,2010(4):297-306.
    [120]张凯,陈现岭,岳国辉.长城某轿车行人保护改进分析[J].汽车工程,2008,30(11):975-978.
    [121]王浩.吉利某款轿车的小腿行人保护改进分析[J].北京汽车,2009(5).
    [122]肖宏伟,陆善彬,武栎楠.基于行人腿部保护的保险杠造型优化设计[J].汽车技术,2010(10):30-33.
    [123]赵继峰.总布置设计对行人保护的重要影响[J].汽车工程师,2009(2):24-26.
    [124] Pinecki C, Zeitouni R. Technical solutions for enhancing the pedestrian protection [C].20thESV conference, paper Number307,2007.
    [125] Nagasaka K, Mizuno K, Tanaka E, et al. Finite Element Analysis of Knee Injury Risks inCar-to-Pedestrian Impacts [J], Traffic Injury Prevention,2003,4(4):345-354.
    [126]陈鹏飞,颜海棋,王纯,等.前保系统行人保护小腿碰撞优化[J].机械工程师,2011(3).
    [127] Kalagnanam J, Diwekar U. An Efficient Sampling Technique for Off-Line Quality Control.Technometrics,1997,39:308-319.
    [128] Subramanyan K, Wu Y, Diwekar U M, et al. New Stochastic Simulation Capability Appliedto the GREET Model. Int. J. LCA.,2008,13:278–285.
    [129] LSTC. LS-DYNA Keyword User’s Manual (Volume1), Version971,2007.
    [130] Jensen M R, Graf O, Bui K D, et al. LSTC Legform Impactor Finite Element Model-Version2.1.2009.
    [131] Lim G, Chou C, Patel N, et al. Estimating the Minimum Space to Meet Federal Interior HeadImpact Requirements [C], SAE paper No.950333,1995.
    [132] He S X, Devilbiss T, Angamuthu R. A Design Methodology for Interior Components toComply with FMVSS201Head Impact Requirement [C], SAE paper No.2000-01-0638,2000.
    [133] Bastien C, Laing K, Distin K. Style and package requirements to maximize pedestrianprotection [C], Proceedings of the3rd IMechE Automobile Division Southern CentreConference, Brighton, United kingdom,2004.
    [134] Chou C, Nyquist G. Analytical Studies of the Head Injury Criterion (HIC)[C]. SAE paper No.740082,1974.
    [135] Wu J, Beaudet B. Optimization of Head Impact Waveform to Minimize HIC [C]. SAE paper2007-01-0759,2007.
    [136] Kim H, Hong S G. Optimization of Bumper System under Various Requirements [C]. SAEpaper2001-01-0354,2001.
    [137] Dunmore M C, Brooks R, Madeley N J, et al. The effect of leg fracture level and vehiclefront-end geometry on pedestrian knee injury and response [J]. Proceedings of the Institutionof Mechanical Engineers, Part H: Journal of Engineering in Medicine,2006,220:857-869.
    [138] Svoboda J, Kuklik M. Influence of Bumper Design to Lower Leg Impact Response [C],FISITA2006World Automotive Congress, Yokohama, Japan,2006.
    [139] Bhagat M, Chalipat S, Ranade A. Influence of Vehicle Front End Design on Pedestrian LowerLeg Performance for SUV Class Vehicle [C]. SAE paper2011-01-0084,2011.
    [140] Stupak P R, Donovan J A. Deformation and energy absorption of polymer foams as a functionof2-D indenter and absorber geometries [J]. Polymer Engineering and Science,1994,34(10):857-864.
    [141] Swanson J, Rockwell T, Beuse N, et al. Evaluation of Stiffness Measures from the U.S. NewCar Assessment Program [C].18thESV conference, Paper Number527,2003.
    [142] Martinez L, Guerra L, Ferichola G. Stiffness Corridors of The European Vehicles forPedestrian Simulations [C].20thESV conference, Paper Number267,2007.
    [143] Schmit L A. Structural design by systematic synthesis [C]. Proceeding of the secondConference on Electronic Computation, New York: ASCE,1960:105-132.
    [144]许素强,夏人伟.结构优化方法研究综述[J].航空学报,1995,16(4):385-396.
    [145] Luenberger D G. Linear and Nonlinear Programming, Kluwer Academic Pub.,2003.
    [146] Chong E K P. An Introduction to Optimization. Wiley,2001.
    [147] Yang R J, Tseng L, Nagy L, et al. Feasibility study of crash optimization [C]. Proceedings ofthe1994ASME Design Technical Conferences, Part1, September14, Minneapolis, MN,USA, ASME,1994.
    [148] Stander N, Goel T. Metamodel Sensitivity to Sequential Sampling Strategies inCrashworthiness Design [C].12th AIAA/ISSMO Multidisciplinary Analysis andOptimization Conference,2008, Victoria, British Columbia.
    [149] Stander N, Roux W, Goel T, et al. LS-Opt User’s Manual-A Design Optimization andProbabilistic Analysis Tool for the Engineering Analyst. LSTC,2010.
    [150] Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthinessoptimization [J]. International Journal of Impact Engineering,2006.DOI:10.1016/j.ijimpeng.2005.01.007.
    [151] Kim M S, Hong K J, Choi D H. Augmented D-optimal design for effective response surfacemodeling and optimization [J]. Journal of Mechanical Science and Technology,2002,16(2):203-210.
    [152] Redhe M, Jansson T, Marklund P, et al. Using the response surface methodology and theD-optimality criterion in crashworthiness related problems [J]. Struct. Multidisc. Optim.,2002,24:185-194.
    [153] Untaroiu C D, Shin J, Crandall J R. A design optimization approach of vehicle hood forpedestrian protection [J]. International Journal of Crashworthiness,2007,12(6):581-589.
    [154] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques undermultiple modeling criteria. Struct. Multidisc. Optim.,2001,23(1):1-13.
    [155] Fang H, Horstemeyer M F. Global response approximation with radial basis functions.Engineering optimization,2006,38(4):407-424.
    [156]杨进,向东,姜立峰,段广洪.基于响应面法的汽车车架耐撞性优化.机械强度,2010(5).
    [157] Wang G G, Shan S. Review of Metamodeling Techniques in Support of Engineering DesignOptimization. Journal of Mechanical Design,2007,129(4):370-380.
    [158]赵秋玲.结构优化新方法的简介[J].北京机械工业学院学报,1997,12(2):59-63.
    [159]蔡新,李洪煊,武颖利.工程结构优化设计研究进展[J].河海大学学报(自然科学版),2011,39(3):269-276.
    [160] Das I, Dennis J E. A closer look at drawbacks of minimizing weighted sums of objectives forPareto set generation in multicriteria optimization problems [J]. Structural Optimization,1997,14(1):63-69.
    [161] Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering [J].Struct. Multidisc. Optim.,2004,26:369-395.
    [162] Lin J G. On min-norm and min-max methods of multi-objective optimization [J].Mathematical Programming,2005,103(1):1-33.
    [163]张建科,李立峰,周畅.一类非线性极小极大问题的改进粒子群算法[J].计算机应用,2008,28(5):1194-1196.
    [164] Myers R H, Montgomery D C. Response Surface Mehodology-Process and ProductOptimization using Designed Experiments. Wiley,1995.
    [165] Koch P N, Simpson T W, Allen J K, et al. Statistical Approximations for MultidisciplinaryOptimization: The Problem of Size [J]. Journal of Aircraft,1999,36(1):275–286.
    [166]景宜明.行人小腿冲击器与保险杠系统碰撞的参数化模型开发.清华大学本科学位论文,2009.
    [167] Bandler J W, Cheng Q S, Dakroury S A, et al. Space mapping: the state of the art [J].Microwave Theory and Techniques, IEEE Transactions on,2004,52(1):337-361.
    [168] Bandler J W, Biernacki R M, Chen S H, et al. Space mapping technique for electromagneticoptimization [J]. IEEE Trans. Microwave Theory Tech.,1994,42:2536–2544.
    [169] Bandler J W, Biernacki R M, Chen S H, et al. Electromagnetic optimization exploitingaggressive space mapping [J]. IEEE Trans. Microwave Theory Tech.,1995,43:2874–2882.
    [170] Bakr M H, Bandler J W, Biernacki R M, et al. A trust region aggressive space mappingalgorithm for EM optimization [J]. IEEE Trans. Microwave Theory Tech.,1998,46:2412–2425.
    [171] Bandler J W, Cheng Q S, Nikolova N K, et al. Implicit space mapping optimization exploitingpreassigned parameters [J]. IEEE Trans. Microwave Theory Tech.,2004,52:378–385.
    [172] Bandler J W, Cheng Q S, Gebre-Mariam D H, et al. EM-based surrogate modeling and designexploiting implicit, frequency and output space mappings. Microwave Symposium Digest,2003IEEE MTT-S International,2003.
    [173] Meng J, Koziel S, Bandler J W, et al. Tuning Space Mapping: A Novel Technique forEngineering Design Optimization [C]. Microwave Symposium Digest,2008IEEE MTT-SInternational,2008,4(3):361-373.
    [174] Redhe M, Nilsson L. Optimization of the new Saab9-3exposed to impact load using a spacemapping technique [J]. Struct. Multidisc. Optim.,2004,27(5):411-420.
    [175] Redhe M, Nilsson L. A multipoint version of space mapping optimization applied to vehiclecrashworthiness design [J]. Struct. Multidisc. Optim.,2006,31(2):134-146.
    [176]张立新,高学仕,付志远,郝小龙.结合空间映射及响应面法的结构优化[J].石油大学学报:自然科学版,2005,29(3):92-95.
    [177]张立新,王大勇,许朝辉,郝小龙.结合空间映射及响应面法的结构优化[J].石油大学学报:自然科学版,2007,31(3):90-93.
    [178]夏勇,黄俊.多种人车碰撞工况下的汽车保险杠行人下肢保护优化设计[R].中国国家自然科学基金项目结题报告.项目号50705046,2010.
    [179] Koziel S J, Bandler J W, Madsen K. Quality assessment of coarse models and surrogates forspace mapping optimization [J]. Optimization and Engineering,2008.9(4):375-391.
    [180] TASS. MADYMO Model Manual Release7.3,2010, Nov.
    [181] Bandler J W, Biernacki R M, Chen S H. Fully automated space mapping optimization of3Dstructures [C]. IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA,1996:753–756.
    [182] Bandler J W, Biernacki R M, Chen S H, et al. Space mapping optimization of waveguidefilters using finite element and mode-matching electromagnetic simulators. Int. J. RFMicrowave Computer-Aided Eng.,1999,9:54–70.
    [183]苏成谦,吕振华.横向冲击载荷下的车身薄壁梁结构截面内力特性仿真分析方法.中国机械工程,2008,10(9):1127-1133.
    [184] Kisielewicz L T, Park K H, Shin S H, et al. Optimization of the Crashworthiness of aPassenger Car using Iterative Simulations. SAE Paper No.931977,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700