镁合金管材力学性能环向拉伸测试方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金管材常用挤压方法生产,为了评价由挤压过程导致的管材各向异性,需要对管材环向力学性能进行测试。但目前对管材环向力学性能的评价方法并没有统一的标准,因此研究镁合金管材环向力学性能的测试方法具有十分重要的意义。
     建立了一种管材力学性能环向拉伸测试方法,根据径向正压力线性假设和边界条件,推导出环向拉伸等宽试样径向正压力和环向拉力公式;分析了环向拉力与角度及摩擦系数的关系。
     对镁合金管材的环向拉伸过程进行了有限元分析。初步验证了由径向正压力线性假设推导得到的环向拉力公式;分析了摩擦系数、标距位置、温度对破裂点位置、应变分布和伸长率的影响。
     进行了挤压针挤压管材试样的环向拉伸实验,通过对等宽试样的环向拉伸实验,验证了环向拉力分布的公式和模拟结果;研究了摩擦系数、标距角度和温度对环向拉伸应变分布和伸长率的影响;进行了不同温度下分流模挤压管材试样的环向拉伸实验,得出了焊缝位置对应变分布的影响;对比了三种不同管材试样的变形分布及伸长率。
     设计了简易的管材自由胀形装置。进行了镁合金管材不同温度下自由胀形实验,得到了不同温度下管材的极限膨胀率,并与环向拉伸结果进行了对比。
The Magnesium alloy tubes manufacting process by extruding have significant anisotropy, which leads to great difference between the transverse direction and the axial direction. To evaluate the anisotropy behavior resulting form the tube-making process, tube transverse tensile properties must be obtained. There is no convenient standard test method to measure transverse tube tensile properties without flattening the material.
     The ring hoop tension test was established to obtain the transverse tensile properties. Under the positive pressure linear transform assumed condition and the boundary condition, the relational expression of the positive pressure and the hoop tension about the angle and the friction coefficient were derived.
     The ring hoop tension test process of magnesium alloy tubes was simulated to proof the relational expression of the hoop tension obtained above. The influence of friction coefficient, the angle of gage section and temperature on the location of deformation zone, the distribution of deformation and the total deformation rate were researched.
     The ring hoop tension tests at different temperatures were carried out. The equal wide sample was adopted to prove the relational expression of the hoop tension. The influence of friction coefficient, the angle of gage section and temperature on the location of deformation zone, the distribution of deformation and the total deformation rate were researched. The influence of the welded seam, which was existed on the divergent die extruding tubes, was researched according to the test with divergent die extruding tubes samples. The distribution of deformation and the total deformation rate were considered comparing the three kind of samples.
     Warm hydroforming experiments of magnesium alloy tubes at different temperatures were carried out to study the trend curve of bulging rate, whose results were compared with that of the ring hoop tension test.
引文
1柴蓉霞. AZ31镁合金管弹性内模胀形实验研究与数值模拟.太原理工大学硕士学位论文. 2006: 1~27
    2曾小勤,王渠东,吕宜振,丁文江,朱燕萍.镁合金应用新进展.铸造. 1998, 39~42
    3张士宏,许沂,王忠堂,周文龙,莫立华.镁合金成形加工技术.世界科技研究与发展. 2002, 23(6): 19~20
    4王忠堂,张士宏,许沂等.镁合金管材挤压工艺及力能参数实验研究沈阳工业学院学报2001, 20(4): 66~69
    5张青来,李强,卢晨,丁文江. AZ31B变形镁合金压力成形.轻合金加工技术. 2004, 32(1): 30~34
    6王里进. AZ31B镁合金板材的塑性加工成型研究.重庆大学工程硕士学位论文. 2006, 39~51
    7 Murai T, Matsuoka S, Miyamoto S, et al.Effects of Extrusion Conditions on Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Extrusions. Journal of Materials Processing Technology. 2004, 146(3): 408
    8翟秋亚,王智民,袁森等.西安理工大学学报2002, 18(3): 256~257
    9贾俐俐.挤压工艺及模具.机械工业出版社. 2004: 194~241
    10赵云路,唐志玉.铝型材挤压成形技术.机械工业出版社. 2000: 43~104
    11王文贵.分流模在挤压生产中的应用.模具制造. 2002, (8): 48~49
    12张青来,卢晨,丁文江.分流挤压镁合金管材工艺研究.轻合金加工技术. 2003, 31(10): 28~30
    13蔡薇,柳瑞清,饶克.镁合金型材挤压模具研究.轻合金加工技术. 2006, 34(15): 28~30
    14 Kleiner S, Uggowitzer P J. Mechanical Anisotropy of Extruded Mg-6%Al-1%Zn Alloy. Materials Science and Enineering. 2004, 379: 258
    15周仕刚,付强. RPM管环向拉伸强度的测试.玻璃钢/复合材料. 2004, (6): 3~5
    16方玉香,林光磊,宋辉.制样方法对铝挤压管材整管拉伸实验的影响.轻金加工技术. 2003, 31(3):39~41
    17张长义,宁广胜,佟振峰. M5锆合金包壳管轴向和环向拉伸性能测试.原子能科学技术. 2005, 39(1): 34~36
    18温彤.管材成形技术综述.机械设计及制造. 2006, (11): 77~79
    19 T. Sokolowski, K. Gerke, M. Ahmetoglu, T. Altan. Evaluation of Tube Formability and Material Characteristics: Hydraulic Bulge Testing of Tubes. Journal of Materials Processing Technology 2000, (98) 34~40
    20 Taylan Altan. Advances in Hydroforming for Manufacturing Automotive Parts. Journal of Testing and Evaluation. 2002, 361-372
    21杨连发,郭成,黄美发.管材自由胀形时极限载荷及成形极限的确定.塑性工程学报. 2006, 13(1): 13~17
    22柴蓉霞,温莉敏,许树勤等. AZ31镁合金挤压管材力学性能测试.轻金加工技术. 2006,.34(l2): 21~23
    23 Songmene V. A Comparision of High Strength Steel to Mild Steel in the Corner Fill Hydroforming Test. IRDI Report for Phase I Hydroforming experiments, Canada, 2001: 2~3
    24 Black K. The Effect of Coating, Material Type and Thickness on Straight Tube and Tent Corner Fill Hydroforming Experiments. IRDI Report for Phase II Hydroforming experiments. 2003: 26~30
    25 Mathias Liewald, Stefan Wagner. State-of-the-Art of Hydroforming Tubes and Sheets in Europe. Shijian Yuan, Ken-ichi Manabe. International Conference on Tube Hydroforming Technology, Harbin, China, 2007: 19~26
    26 Price, E. G. Hydride Orientation and Tension Properties of Zr-2.5wt%Nb Pressure Tubing Hydrided while Internally Pressurized. Canadian Metallurgical Ouarterly. 1972, 11(1): 129
    27 S. Arsense and J. Bai. A New Approach to Measuring Transverse Properties of Structural Tubing by a Ring Test. J of Testing and Evaluation. 1996, 24(6): 386~391
    28 S. Arsene, J. B.Bai. A New Approach to Measuring Transverse Properties of Structural Tubing by Ring Test -Experimental Investigation. Journal of testing and Evaluation. 1998, 26(1): 26~30
    29 A. B. Cohen, S. Majumdar, W. E. Ruther, M. C. Billone, H. M. Chung, and L. A. Neimark. Modified Ring Stretch Tensile Testing of Zr-1Nb Cladding. Report of Energy Technology Division Argonne National Laboratory. 1999: 2~5
    30 Douglas W. Bates, Donald A. Koss, and Arthur T. Motta. Influnce of SpecimenDesign on the Deformation and Failure of Zircaloy Cladding. 2000: 51~55
    31 T.M. Link, D.A. Koss, A.T. Motta. Failure of Zircaloy Cladding Under Transverse Plane-Strain Deformation. Nuclear Engineering and Design 1998, (186): 379~394
    32 Hermina Wang, Real Bouchard, Robert Eagleson. Ring Hoop Tension Test (RHTT): A Test for Transverse Tensile Properties of Tubular Materials. Journal of Testing and Evaluation. 2002, 382~391
    33苑世剑,郎利辉,王仲仁.内高压成形技术研究与应用进展.哈尔滨工业大学学报. 2000, 32(5): 60~61
    34许爱军. AZ31镁合金管材热态内高压成形极限研究.哈尔滨工业大学硕士学位论文. 2006: 15~26
    35 Ono N, Rowak R. Effect of Deformation Temperature on Hall-Petch Relationship Registered for Polycrystalline Magnesium. Material Letters, 2003, (58): 39
    36陈振华.变形镁合金.化学工业出版社. 2005: 64~65
    37张星,李保成,张治民.温变形对AZ31镁合金组织的影响.塑性工程学报. 2004, 11(3): 52~54
    38 Koike J. New Deformation Mechanisms in Fine-grain Mg Alloy. Materials Science Forum. 2003, (189): 419~422
    39 A. Couret, D. Cailiard. Prismatic Glide in Divalent Hcp Metals. Philosophical Magazine. 1991, 63(5): 1045
    40 J. C. Tan, M. J. Tan. Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-Zn Alloy Sheet. Materials Science and Engineering . 2003, (209): 139
    41陈振华,许芳艳,傅定发等.镁合金的动态再结晶.化工进展. 2006, 25(2): 140~146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700