电磁搅拌工艺对AZ31镁合金铸态组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上镁资源最为丰富的国家,菱镁矿已探明储量约占世界的1/4,具有发展镁产业的先天性基础条件。镁合金作为目前实际应用中最轻的金属材料,以其密度小、比强度高等优良的性能在汽车制造业和3C产品领域中倍受关注,镁及镁合金产品的市场应用前景非常广阔。但目前中国镁及镁合金产业的发展与国外同行业相比较还存在较大的差距,资源优势没有很好的转化为技术优势和经济优势。因此,大力发展镁及镁合金产业对中国的可持续发展将具有异常重要的战略意义。
     本文以目前使用非常广泛的AZ31镁合金为研究对象,在其凝固过程中施加不同的电磁搅拌工艺,研究了在不同电磁场条件作用下AZ31镁合金的微观组织、力学性能及凝固时间的变化规律。
     采用金相显微镜和X射线衍射仪对在不同磁场作用下AZ31镁合金的凝固组织进行了观察和分析,结果表明:电磁场对AZ31镁合金的影响非常显著。在交流磁场作用下,镁合金晶粒细化效果非常明显,随着磁感应强度的加强(0.1T~0.2T),AZ31镁合金晶粒细化效果越加明显。当磁场旋转方向进行正反交替变化时所得到的AZ31镁合金凝固组织更加细化,与其他时间间隔条件下比较,改变时间间隔为4S时,电磁搅拌对AZ31镁合金晶粒细化效果更好。当磁感应强度到达0.2T,磁场方向改变时间间隔为4S时,AZ31镁合金晶粒细化效果最好,晶内溶质分布更加均匀。
     力学性能试验结果表明,电磁搅拌作用下,AZ31镁合金的布氏硬度、抗拉强度明显提高,但伸长率变化不大。合金硬度变化具有一定的规律性,随着磁感应强度的加强,合金硬度呈上升趋势,在同一磁感应强度下,磁场旋转方向改变时间间隔为4S时,合金硬度值最高;随着磁感应强度的逐步加强,合金抗拉强度整体上呈上升趋势,当磁场旋转方向进行正反交替变化时,合金的抗拉强度会进一步得到提升;当磁感应强度达到0.2T,磁场旋转方向改变时间间隔为4S时,合金的硬度值82HB以及抗拉强度140.9MPa达到最佳,布氏硬度和抗拉强度增幅分别达到最高的17%和22.1%。
     采用热分析法,在不同磁场条件作用下,得到了AZ31镁合金的凝固温度曲线,结果表明:施加电磁搅拌能有效缩短合金的凝固时间,当磁场进行正反交替变化时,能进一步缩短合金凝固时间,磁场强度为0.2T时,合金凝固时间相对较短,磁场方向改变时间间隔为6s时达到最大缩短幅度为21.9%。
China is the country which has the most rich magnesium resources in the world. According to the discovery, china has 1/4 reserve of magnesium in the world. Magnesium alloy, which is the lightest metal material in actual application, attracts much attention in automotive industry and 3C product fields because of its excellent physical and mechanical properties. At present, magnesium and magnesium alloy industry in china still have large gaps compare with foreign country. The resources did not translate well to technology and economic advantages. Therefore,it is important to improve magnesium alloy industry in china.
     In this paper, Magnesium alloy of AZ31 is used as the research object, and different electromagnetic stirring is applied in the process of its solidification. The microstructure, mechanical properties and solidification time of AZ31 magnesium alloy are studied under different conditions.
     Microstructures of alloys are studied by optical microscope and X-ray diffraction. The result indicates that the effect of revolving magnetic field cause a large decrease in grain size. In AC magnetic field, the grain refinement of magnesium alloys is very clear. When the strengthening of the magnetic induction (0.1T ~ 0.2T), AZ31 magnesium alloy grain refining effect more remarkably. When the rotation direction of the magnetic field to do a regular clockwise and counterclockwise change, the grain of AZ31 will be more refinement; When the time interval is 4S, the electromagnetic stirring on the grain refinement of magnesium alloy AZ31 is the best. When the magnetic flux density reaches 0.2T and the time interval is 4S, AZ31 magnesium alloy grain will be smaller and much more uniform grain distribution within the solute.
     Mechanical performance test result shows that the effect of electromagnetic stirring can significantly increase the hardness and mechanical properties of AZ31 alloy, but elongation change little. The hardness changes with a regular pattern, when the magnetosphere induction increase, the hardness rise too. In the same magnetic filed, when the time interval is 4S, the hardness is the highest. Increase the magnetic filed, the tensile strength of AZ31 alloy upgrade. When the rotation direction of the magnetic field to do a regular change, the tensile strength of AZ31 alloy will further be enhanced; When the magnetic filed reaches 0.2T and the time interval is 4S, the alloy's hardness 82HB and tensile strength 140.9MPa are the best, the increase is 17% and 22.1%.
     The temperature measuring instrument is used in this experiment. AZ31 magnesium alloy solidification temperature curve can be got under different magnetic field conditions. The result shows that: Electromagnetic stirring can effectively shorten the solidification time. When the magnetic field changes the direction of rotation, it can further reduce the solidification time. When the magnetic field is 0.2T and the time interval is 6S, the maximum shortening is 21.9%.
引文
[1] Usk B R S. Magnesium Products Design. New York: The InternationalMagnesium Association, 1987
    [2] Roehrig Klaus. Taschenbuch der Giesserei-Praxis. Berlin: Fachverlag Schiele & Schoen GmbH, 2000
    [3]刘正,王越,王光中等.镁合金压力充型与凝固过程的研究.材料研究学报, 1999, 13 (6) : 642-645
    [4]陆树荪,顾开道,郑来苏编.有色铸造合金及熔炼.北京:国防工业出版社, 1983
    [5]赵健康主编.铸造合金及其熔炼.北京:机械工业出版社, 1985
    [6] Clark J B. Age Hardening in a Mg-9wt.% Al Alloy. ACTA Metallurgica, 1968(16): 145-150
    [7]布鲁克斯C R.有色合金的热处理组织与性能.丁夫译.北京:冶金工业出版社, 1988
    [8]刘正,刘重阳,王中光等.固溶和时效对压铸AZ91HP合金机械性能的影响.金属学报, 1999(8): 670-672
    [9] Schreiber Radtke, Werkstoffe. 21Nichteisenmetalle, Germany. Georgwestermann Verlag, 1967(7): 35-41
    [10]姜文辉,周晓明,张海峰等.镁基非晶合金研究进展.金属热处理学报, 2001(22): 22-25
    [11] Lim Suk-won, Imai Tsunemichi, Nishida, Yoshinori, Choh. Takao. High Strain Rate Superplasticity of Tic Particulate Reinforced Magnesium Alloy Composite by Vortex Method. Scripta Metallurgicaet Materialia, 1995, 32 (11): 1713-1717
    [12] Warrendale PA.Proceedings of the International Symposium, Rosemont, 1994. United States: Minerals, Metals and Materials Society, 1994
    [13] Oakley R, Cochrane R F, Stevens R. High Performance Metal and Ceramic Matrix composites, San Francisco, 1994. United states: The Minerals, Meterials Society, 1994
    [14] Wilks T E, King J F , Wardlow G D. Proceedings of the Third International Magnesium Conference, London, 1996. London : Institute of Materials (UK)1997
    [15] Rudajevova A, Lukac P, kiehn J, etc. Thermal Diffusivity of short-Fibre Reinforced Mg-Al-Zn Alloy. Scripta Materialia, 1998, 40(1): 58-62
    [16]崔昆主编.钢铁材料及有色金属材料.北京:机械工业出版社, 1986
    [17]张君尧,韩秉诚.镁合金的应用.国外轻金属, 1980(6): 38-45
    [18]黄昌耀.两岸三地镁合金压铸工业现况与前景.材料热处理学报, 2001(22): 9-16
    [19]刘正,王越,王光中等.镁基轻质材料的研究与应用.材料研究学报, 2000, 14(6) : 449-456
    [20]黄土宗.台湾镁合金成形产业技术能量与竞争优势,北京压铸镁国际研讨会论文集,北京, 2000.北京:中国没业促进会, 2000: 293-309
    [21]龙思远,游理华, Hausmann Ch等.镁基合金含量对Mg/T300纤维复合材料强度及失效行为的影响.材料热处理学报, 2001, 22(增刊): 92-96
    [22]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力[J].特种铸造及有色合金, 1998, (3): 40-41
    [23]杨明波,唐丽文,杨慧等.高强镁合金的研究现状及进展[J].材料导报, 2007, 21(5): 307-319
    [24] Michael M A, Huge B. Magnesium and Magnesium alloys[M]. Materials Park(OH), ASM International, 1999, 12
    [25] Raymond F, Decker. The renaissance in magnesium[J]. Advanced Materials & Processes, 1998, 154(3): 31-33
    [26]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术, 2004, 32(3): 5-12
    [27]丁文江,傅正义,刘兵等.镁合金科学与技术[M].北京,科学出版社, 2007, 19-27
    [28]张世军,黎文献,余瑶等.镁合金的晶粒细化工艺[J].铸造, 2001, 50(7): 373-375
    [29]袁广银,孙扬善. Ba对AZ91镁合金时效析出动力学过程的影响[J].上海交通大学学报, 2001, 35(3): 451-456
    [30]袁广银,孙扬善,王震. Sb低合金化对Mg-9Al基合金显微组织和力学性能影响[J].中国有色金属学报, 1999, 9(4): 779-784
    [31]闵学刚,孙扬善,杜温文等. Ca. Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版), 2002, 32(3): 409-414
    [32]张诗昌,魏伯康,林汉同等.钇及铈镧混合稀土对AZ91镁合金铸态组织的影响[J].中国有色金属学报, 2001, 11(2): 99-102
    [33] Yu Yoshida, Keita Arai, Shota Itoh, etal. Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working[J]. Science and Technology of Advanced Materials, 2005, 6(2): 185-194
    [34]刘子利,丁文江,袁广银.镁铝基耐热铸造镁合金的进展[J].机械工程材料, 2001,25(11): 1-4
    [35]李淑波,郑明毅,甘为民等. SiCW/AZ91镁基复合材料及AZ91镁合金的高温变形行为[J].复合材料学报, 2005, 22(3): 103-108
    [36]顾金海,张小农,何利舰等.混杂增强镁基复合材料的力学和阻尼性能[J].稀有金属材料与工程, 2005, 34(9): 1423-1426
    [37] Nakagawa M, Wada T, Kamado S, etal. Manufacturing Conditions and Mechanical Properties of Aluminium Short Fiber/AZ91D Magnesium Alloy Composites[J]. Journal of Japan Institutes of Light Metals, 1995, 45(1): 21-26
    [38]余琨,黎文献,王日初等.快速凝固镁合金开发原理及研究进展[J].中国有色金属学报, 2007, 17(7): 1026-1033
    [39] Ruden T J, Albright D L. High Ductility Magnesium Alloys in Automotive Applications[J]. Advanced Materials & Processes, 1994, 145(6): 28-32
    [40] Claudio Mus. Magnesium Die Casting, History, Principles and State of the Art. Magnesium Industry, 2001(2): 21-25
    [41]陈力禾,赵慧捷,刘正等.镁合金压铸及其在汽车工业中的应用.铸造, 1999(10): 45-50
    [42] Luo A, Pekguleryuz M O. Review of cast magnesium alloys for elevated temperature applications[J]. Journal of Material Science, 1994, 29(12): 5259-5271
    [43]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力[J].特种铸造及有色合金, 1998, (3): 40-41
    [44] Mordike B L, Ebert T. Magnesium properties-applications-potential[J]. Materials Science and Engineering, 2001, A 302: 37-45
    [45] Ruden T J, Albright D L. High Ductility Magnesium Alloys in Automotive Applications[J]. Advanced Materials & Processes, 1994, 145(6): 28-32
    [46]李玉兰.镁合金压铸件在汽车上的应用[J].特种铸造及有色合金, 1999, 8(1): 120-122
    [47]张永忠,张奎等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金, 1999, (3): 54-57
    [48] Brown R. International Magnesium Association 49th Annual World Conference[J]. Light Metal Age, 1992, 50(56): 21-24
    [49]王渠东,丁文江.镁合金及其成型技术的国内外动态与发展[J].世界科技研究与发展, 2006, 26(3): 39-46
    [50]吉泽升,辛德明,梁维中等.压铸镁合金的研究现状及应用前景[J].新材料产业, 2003, (7): 19-22
    [51]卫爱丽,付珍,赵浩峰.镁合金生产及应用[J].铸造设备研究, 2003, (1): 34-37
    [52]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用[J].材料导报, 2000, 14(6): 22-24
    [53]李晓敏.压铸镁合金在电子产业中的应用及发展前景[J].轻金属, 2003, (7): 37-38
    [54]刘长瑞,王伯建,胡裕邦.镁合金材料在电子行业的开发应用前景[J].铝镁通讯, 2001, (2): 53-55
    [55]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004
    [56]韩至成.电磁冶金学[IM].北京:冶金工业出版社.2001
    [57] Bamberger M . Structural refinement of cast magnesium alloys[J] . Mater SciTech,2001,(1):15-24
    [58] Tamura Y,KonoN,Motigi T,et a1.Grain refinement of east Mg-Al alloys[J].Japan institute of Light Metals,1998,48(4):395-399
    [59] Charles Vi- Elaboration of semisolid alloys by means of new electromagnetic the casting process[J]. Metall.Trans.B. 1992,(23B): 189-206
    [60] W.D.Grifths,D.GMcCarmey[J].MatetSci.Eng.,A 1996,(216):47-60
    [61] X.Q.Wu,Q.Zhan,YS.Yang,Z.Q.Hu. The effect of electromagnetic stirring during solidification of the structure of Al-Si alloys[J] J. Mater. Sri.Lett. 1998,(17):1403-1405
    [62] Shigeo ASAI et al. Theoretical analysis and model experiments on electromagnetic ally flow in continuous casting, Trans[J]. ISU, 1982, (22):126-133.
    [63]胡汉起、郑口琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报, 1990,26(4):313-316.
    [64] Yano E.Effect of pure carbon powder on grain refining of east magnesium ahoy AZ91[J]. Japan institute of light metals, 2001, (11):599-604
    [65] Kubota K Review processing and mechanical properties of fine-grained magnesium alloys[J]. Mater Sci,1999,(34):2255-2262
    [66] Wei L Y.The intergranular microstructure of east Mg-Zn and Mg-Zn-rare earth alloys[J]. Metall Mater Trans.A,1995,26A(8):1947-1956
    [67] COLLEEN J Bettles; MARK A Gibson. Wrought magnesium alloys: strengths andweaknesses [J]. JOM, 2005, 57(5): 46-49
    [68]余琨,李文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2): 27-28
    [69] WILIAM Kinzy Jones. Modeling of metal delivery systems sued in electromagnetic and direct-chill semi continuous casting of aluminum[D]. University of Califomia, 1999
    [70]杨必成,杜东朝,朱学新,等.电磁搅拌对Mg-Al-Si合金组织的影响[J].特种铸造及有色金属合金, 2004(3): 26-28
    [71]崔建忠,乐奇志,路贵民,等.镁合金电磁低温半连续铸造方法:中国, 03133390. 7[P]. 2003-12-10 [72 ]刘静安.镁合金加工技术发展趋势与开发应用前景[J ] .轻合金加工技术. 2001, 129 : 1-7 [73 ]黎文献.镁及镁合金[M] .长沙:中南大学出版社, 2005 :97-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700