半固态高铬铸铁组织及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属半固态成形技术是上世纪70年代开始兴起的一门新兴的成形技术。随着人们对半固态成形技术认识的加深及对其成形规律的研究。半固态成形技术在轻金属低熔点合金中得到了很好的商业应用,然而对高熔点的钢铁材料半固态成形工艺的研究尚处于起步阶段。本文以高熔点的高铬铸铁为研究对象,采用电磁搅拌的方法制备了半固态高铬铸铁坯料,研究了半固态成形制备的坯料和铸态高铬铸铁微观组织、力学性能,探索出一种制备高性能半固态高铬铸铁坯料的工方法,为高铬铸铁半固态成形技术的进一步发展提供理论和试验基础,加快半固态成形技术在高熔点材料领域的商业应用。
     试验中以搅拌时间和影响电磁搅拌程度主要因素的电压作为处理工艺参数变量,采用对比试验的方法,分别设置了输入电压为160v、180v、200v,搅拌时间为75s、90s、120s,研究了工艺参数对高铬铸铁组织性能的影响。试验结果表明:使用电磁搅拌制备高铬铸铁半固态坯料组织是有效的,可行的;高铬铸铁初生奥氏体由传统铸态下的粗大树枝晶转变为蔷薇状及近球状;平均等效直径大幅度下降,平均等效直径为49.9μm,最高下降幅度为67.6%,晶粒细化效果极其明显,细化程度及分布都比较均匀;形状因子也有了大幅度的提升,平均形状因子为0.709,最大提高幅度为83.2%,晶粒趋于椭圆、近球状;在同一输入电压下,初生奥氏体晶粒等效直径随着搅拌时间的增加在不断减小,其形状因子在不断上升,当搅拌时间达到某一数值后,其等效直径和形状因子趋于稳定;在不同输入电压下,初生奥氏体的等效直径随着输入电压的升高先降低而后略微上升,形状因子不断的提升后略微下降,表明输入电压并非越高越好,当其达到一定数值后,高铬铸铁组织变化趋于稳定,电磁搅拌对高铬铸铁组织影响力下降;半固态高铬铸铁试样的力学性能也有了大幅度提高,同一输入电压下,半固态高铬铸铁试样硬度随搅拌时间先升后降,韧性变化不大,在同一搅拌时间下,半固态高铬铸铁试样也有类似的变化趋势;磁场对高铬铸铁凝固曲线有散热、加热两个方面的影响,随着输入电压的不同,这两方面影响的主导地位不同,就得到不同的凝固曲线。
     本文还研究了经同一热处理工艺处理后组织性能。结果表明,经过电磁搅拌处理后试样的组织其残余奥氏体及马氏体组织更为明显,其中马氏体较为细小,二次碳化物分布弥散;材料性能有较大提高,未经热处理的半固态高铬铸铁试样较常规铸造试样及其热处理后的性能都有提高。因此,在同等条件下,获得同样性能的高铬铸铁试样,半固态成形方法可以省去热处理工艺,减少工业生产中的工序和生产成本,有很大的商业应用价值。
     在本试验中,确定了使用电磁搅拌方法制备半固态高铬铸铁的最佳工艺参数,即输入电压为180v,搅拌时间在90s左右,为高铬铸铁的半固态成形技术的进一步研究奠定了基础。
Semi-solid metal forming is a new forming technology on the rise of the 70s.In recent years, it had a deep understanding and shaping the law of the Semi-solid forming. Semi-solid forming had got a good commercial applications in the low melting point alloy and the light metal, but in the high melting point semi-solid forming of steel materials, the process is still in the initial stage. In this paper, the high chromium cast iron with high melting point was chosen for the study, semi-solid billets of the high chromium cast iron were papered by electromagnetic stirring. Compared the performance of high chromium cast iron in different electromagnetic stirring process with the conventional high chromium cast iron, we hope that we can obtain the optimal process of high-chromium iron billets. And the optimal processing to prepare the semi-solid ingot of high-chromium cast iron has been explored, providing the basis for the further study on the semi-solid forming technology of high-chromium cast iron. The commercial application of Semi-solid forming technology can be speeded up in the high melting point material.
     In this experiment, we take the voltage of the main factors affecting the magnetic induction and the mixing time as a high-chromium cast iron melt variable process parameters, using comparative methods to study the process parameters on high-chromium cast iron performance. We set the input voltage at 160v、180v、200v,stirring time at 75s、90s、120s, The results showed that:the use of electromagnetic stirring semi-solid preparation of high chromium cast iron billet organization is effective and feasible; Primary austenite of the high-chromium alloy cast iron morphology changed from the traditional large-cast into a petal-shaped dendrite and agglomerate; The average equivalent diameter of primary austenite significant decline, the average equivalent diameter is 49.9μm, the largest average diameter of primary austenite decreased by 67.6%, Primary austenite become smaller and the distribution is more uniform; The shape factor of primary austenite was improved significant, the average shape factor is 0.709, the maximum increase rate of 83.2%. The primary austenite tends to elliptical and nearly spherical. In the same input voltage, the primary austenite grain equivalent diameter increases with the mixing time continuously decreased, the shape factor on the rise. When the mixing time to reach a certain value, its equivalent diameter and shape factor stabilized; in different input voltage, Increased with the input voltage intensity, the primary austenite equivalent diameter will be decreased firstly and then increased slightly, the shape factor will be decreased after upgrading continuously, which show that the input voltage is not as high as possible. The performance of semi-solid cast iron mechanical samples has also been greatly improved, When it reaches a certain value after the change of high chromium cast iron stabilized electromagnetic stirring on the influence of high chromium cast iron drop; Under the same magnetic flux density, hardness of semi-solid high-chromium cast iron will increase and the decrease with the adding mixing time, toughness changed little; under the same stirring time, the semi-solid high-chromium cast iron has the similar trend; There are two aspects on the solidification curve of the high-chromium cast iron in the magnetic field(heating、cooling), the dominant position of two aspects will be different with the different input voltage, and then we will get the different curves of solidification.
     This paper also studied the performance and structure of the high chromium cast iron under the same heat treatment. The results showed that the organization of the samples retained austenite and martensite is more obvious after the same heat treatment, in which martensite was relatively small, dispersed distribution of secondary carbides. Performance of the materials had a significant improvement. Performance of semi-solid without heat treatment will be better than both of the conventional high chromium cast iron sample and the sample with heat treatment. So, achieved the same performance of high chromium cast iron, prepared by semi-solid forming method eliminates the need for heat treatment process, which can reduce industrial production processes and production costs, It will have great commercial value.
     In my experiment, we get the best processing of the high chromium cast iron prepared by the semi-solid method of electromagnetic stirring (input voltage at 180v,stirring time at 90s),laying the foundation for the development of the semi-solid forming technology of high chromium cast iron.
引文
[1]罗守靖,田文彤,李金平.21世纪最具发展前景的近净成形技术[C].半固态加工.中国压铸、挤压铸造、半固态加工学术年会论文集,2001:1-6.
    [2]Flemings M.C. Behavior of Metal Alloys in the Semi-solid State [J]. Metal & Mater Trans A,1991,22(5):957-981.
    [3]Spencer D B, Mehrabian R, Flemings M C. Rheological Behavior of Sn-15%Pb in the Crystallization Range[J].Metal. Trans,1972,3(7):1925-1932.
    [4]管仁国,马伟民等.金属半固态成形理论与技术[M].北京:冶金工业出版社.2005.
    [5]谢水生,黄声宏等半固态金属加工技术及其应用[M].北京:冶金工业出版社1999.
    [6]M.C.Flemings,Metal.Trans,1991,22(A):975.
    [7]Kirkwood D H,Kapranos P.Semisolid Processing of metallic alloys [J].Metals and materials,1989,5(1):16-19
    [8]D.B.Spencer, R.Mehrabian and M.C.Flemings.Metal.Trans.1972,3.
    [9]Stuart B.Brown and Merton C.Flemings.Adv.Mater&Proeess.1993,1.
    [10]齐祥超.半固态AZ91D合金制备工艺及性能研究[D].北京:清华大学,2008.
    [11]毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004.
    [12]P.Kumar,C.L.Martin,and S.Borwn,Metall.Trnas.A,1993,24(A),1107.
    [13]刘静安.镁及镁合金材料的应用及其加工技术的发展[J].四川有色金属,2007,22(1):1-8.
    [14]邢书明,张励忠,张涛.半固态加工技术在机车车辆制造业中的应用前景[J].特种铸造及有色合金,2005 No.5,27-31
    [15]杨昭,张海峰,王爱民,等.半固态挤压成形高铬铸铁梯度组织材料[J].金属学报,2003,39(2):164-167.
    [16]邱克强,张海峰等.流变铸造亚共晶白口铸铁组织结构的演变[J].材料研究学报,2000,4,Vol.14No.2:167-172
    [17]Young K.P. Recent advances in semi-solid metal (SSM) cast aluminum and magnesium components.bid:229-233
    [18]Young K P, Kynka C P, Courtois T A. Fine Grained Metal Composition[P]. US: No.4415374,1983.
    [19]谭建波,李迅,李立新等.半固态金属成形技术的发展及应用现状[J].河北科技大学学报.2003,24(4):24-28.
    [20]Shibata R, Kaneuchi T, Soda T, et al. Formation of spherical solid phase in die casting shot sleeve without any agitation. Processing of the Fifth International Conference on Semi-Solid Processing of Alloys and Composites. Golden, Colorado, Colorado School of Mines,1998:465-470
    [21]Rivlin V G. International Metals Reviews,1984;29(4):299-327
    [22]郝石坚.现代铸铁学[M].北京:冶金工业出版社,2004
    [23]苏应龙,张学昆,张大勇等.高铬白口铸铁的强化原则[J]:北京工业大学学报,1991,17(3):58-65
    [24]郝石坚.高铬耐磨铸铁[M]北京:煤炭工业业出版社,1993
    [25]符寒光.提高低铬铸铁的强韧性和抗磨性研究的进展[J].热加工工艺,1995,(2):49-51
    [26]彭晓春.锰对铸态奥氏体高铬铸件基体组织的影响[J].铸造技术,1995,(6):37-39
    [27]王玉玮,石雯.钒在高铬铸铁中的作用[J].铸造,1986(5):9-12
    [28]张茂勋,大城桂作.高铬铸铁耐磨粒磨损特性[J].机械工程材料.1991(4):15-22
    [29]米增义.硅对高铬铸铁的显微组织和机械性能的影响[J].铸造,1988,(7):5-8
    [30]段希祥.降低粗磨机钢球尺寸的研究[J].矿山机械,1998,(10)
    [31]王兆昌,奥氏体白口铸铁与马氏体白口铸铁的磨料磨损行为及抗磨性能[J].铸造,1993,(9):24-28
    [32]沈阳铸造研究所,承德市合金铸铁厂.改善高铬白口铸铁韧性扩大其应用范围[J].铸造,1984,(10):1-8
    [33]李涌.高铬铸铁抗磨、耐热、耐蚀性能的研究[J].云南冶金,2005年12月,Vol.34No.6,50-77
    [34]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004
    [35]周尧和,胡壮麒,介万奇.凝固技术[M]北京:机械出版社,1998
    [36]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002
    [37]李涛,林鑫,刘振侠等.半固态凝固组织形成机理初探[C].中国压铸、挤压铸造、半固态加工学术年会论文集,2001:25-28
    [38]Kirwood D H. Semi-solid Metal Processing. International Materials Reviews,1994, 39:173-189
    [39]Fan Z. Semi-solid metal processing International Materials Reviews,2002, 47(2):49-85.
    [40]Chen T J,Ma Y,Hao Y,et al. Structural evolution of ZA27 alloy during semisolid isothermal heat treatment. Trans. Nonferrous Met.Soc.China,2001,11(1):98-102.
    [41]Ji S, Fan Z, Bevis M J. semi-solid processing of engineering alloy by a twin-screw rheomoulding process. Materials Science and Engineering,2001, A299:310-217.
    [42]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004.
    [43]马玉涛.变形镁合金电磁搅拌悬浮铸造与合金强化技术研究[D].大连:大连理工大学,2009.
    [44]王玉陶,游晓红.电磁搅拌制备半固态浆料的研究及应用现状[J].山西科技,2008,23(1):148.
    [45]Charles Vi-Elaboration of semisolid alloys by means of new electromagnetic rheocasting processe[J]. Metall.Trans.B.1992,(23B):189-206.
    [46]W.D.Grifths, D.G Mc Carmey[J].MatetSci.Eng,A1996,(216):47-60.
    [47]X.Q.Wu,Q.Zhan,YS.Yang,Z.Q.Hu. The effect of electromagnetic stirring during solidification of the structure of Al-Si alloys[J] J.Mater.Sri.Lett.1998,(17):1403-1405
    [48]Shigeo ASAI et al. Theoretical analysis and model experiments on electromagnetic alloy flow in continuous casting, Trans [J]. ISU,1982, (22):126-133.
    [49]胡汉起、郑口琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报,1990,26(4):313-316.
    [50]Yano E.Effect of pure carbon powder on grain refining of east magnesium ahoy AZ91 [J]. Japan institute of light metals,2001, (11):599-604.
    [51]Kubota K Review processing and mechanical properties of fine-grained magnesium alloys[J]. Mater Sci,1999,(34):2255-2262.
    [52]Wei L Y.The intergranular microstructure of east Mg-Zn and Mg-Zn-rare earth alloys[J]. Metall Mater Trans.A,1995,26A(8):1947-1956.
    [53]余滋润,王小同,周庆德等.高铭铸铁热处理的的研究[J].西安交通大学学报,1980,(4):25-27.
    [54]李传武.浅说高铬铸铁[J].铸造纵横,中国铸造协会,2005,(5),21-28
    [55]宋强,孟繁琴,张延华.热处理工艺对高铬铸铁组织性能的影响[J].铸造,1998(4):44.
    [56]Qiehang Bao, B M.He, Qingde zhou.A Study of The Impact Fatigue of Grinding Balls-Matrices and Retain Austenite.Wear,1991,151:13-21.
    [57]C.P.Tabrett, I.R.Sare. The Effeet of Heat Treatment On Abrasive Resistance of Alloy White Iron.Wear,1997,203:206-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700