高压直流电缆用纳米碳纤维/EVA复合半导电材料电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流输电是解决远距离电力传输的研究方向之一,绝缘材料的发展推动了高压直流输电技术的提高。本论文将纳米碳纤维取向分散到聚合物中,并初步研究了材料的介电性能,希望纳米碳纤维的取向分散能够在直流输电电缆中有所应用。
     论文首先对纳米碳纤维进行表面改性,在纤维表面沉积镍纳米层,实现纳米碳纤维的表面金属化。通过检测发现,改性后的纳米碳纤维表面沉积了一层约8nm的镍层,镍层上附着部分团聚纳米镍颗粒。
     随着改性中使用的NiCl_2溶液浓度增大,镍层上附着的团聚的纳米镍颗粒越来越多;改性过程中的纤维分散方式对纤维形貌也有影响,超声分散效果比机械搅拌效果好,得到的纤维表面团聚颗粒较少。
     将表面改性后的纳米碳纤维在磁场的作用下分散到EVA中,通过观察可看到纤维的取向。分析纳米碳纤维/EVA介电谱,取向复合与非取向复合样品的介电性能发生变化。
     纳米碳纤维掺杂浓度为0.1wt%和0.5wt%时,取向复合材料比非取向复合材料的相对介电常数低,掺杂浓度为1.0wt%和5.0%wt时,取向复合材料比非取向复合材料的相对介电常数高;掺杂浓度为1.0wt%和5.0wt%时,低频区取向复合材料介质损耗因数高于非取向复合材料,高频区取向复合材料介质损耗因数低于非取向复合材料。
High-voltage direct current transmission(HVDC)is studied to deal with the long-distance power transmission. And the advanced insulating materials have promoted the development of HVDC. In this paper, the carbon nanofibers(CNFs)doped in polymer were dispersed in orientation,and the dielectric properties were studied. The oriented-dispersion of CNFs aimed to be applied in HVDC cable.
     Surface metallization of CNFs was obtained by Ni deposition. The characterizations show that Ni coating is about 8nm with small amount of Ni attached to the surface.
     As the concentration of NiCl_2 rises, Ni nanoparticles adhesion on the surface increases. And dispersion methods also influence the surface morphology of CNFs. Compared with the mechanical stirring, ultrasonic dispersion could make the solution more homogeneous, and leads to less Ni attachment.
     Oriented CNFs have been observed by microscope after EVA is composited with modified CNFs under the magnetic field. It is known from the analysis of dielectric spectra of CNFs/EVA that the dielectric properties have changed compared with un-oriented CNFs/EVA.
     When CNFs concentration was 0.1wt% and 0.5wt%, relative permittivity of oriented CNFs/EVA is smaller than that of un-oriented CNFs/EVA. When the concentration rises to 1.0wt% and 5.0wt%, results are completely opposite. The dissipation factor of oriented CNFs/EVA is greater at low frequency and smaller at high frequency than un-oriented CNFs/EVA as CNFs concentration is 1.0wt% and 5.0wt%.
引文
[1]郑肇骥,电力电缆,北京,中国工业出版社,1963,1-3
    [2]卓金玉,电力电缆设计原理,北京,机械工业出版社,1999,1-5
    [3]戴熙杰,直流输电基础,北京,水利电力出版社,1990,32-37
    [4]林永生,胡良珍,严朗威,高压直流输电,上海,上海科学技术出版社,1982,1-4
    [5] Jokannessor K, Antonischki J, Ericssonk A, et. al, The development of an extruded HVDC cable system, France, Versailles, 1999, 201-205
    [6]马义永,高压交流输电和高压直流输电的优缺点比较,物理教学探讨,2006,24:25-26
    [7] Damamme G, Le Gressus C, De Reggi A S, Space charge characterization for the 21th century, IEEE Transactionon Dielectrics and ElectricalInsulation, 1997, 4(5): 558-583
    [8] Zhang Yewen, Lewiner J J, AlquiéC, et. al, Evidence of strong correlation between space charge buildup and break down in cable insulation, IEEE Transactionon Dielectricsand Electrical Insulation, 1996, 3(6): 778-783
    [9] Fukuma M, Nagao M, Kosaki M, et. al, Measurements of conduction current and electric field distribution up to electrical breakdown in two-layer polymer film, IEEE Dielectrics and Insulation Society:2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Victoria, Canada: OMNIPRESS, 2000, 721-724
    [10] Kao K C, Electrical conduction and breakdown in insulating polymers, IEEE Dielectrics and Electrical Insulation Society: Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, China, 2000, 1-17
    [11] Mitsumoto S, TanakaK, Muramoto Y, et. al, Space charge distribution measured with short period interval up to electrical breakdown in polyethylene, IEEE Dielectrics and Insulation Society: 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, USA, Austin, 1999, 634-637
    [12] Chong Y L, Chen G, Hosier I L, Heat treatment of cross-linked polyethylene and its effect on morphology and space charge evolution, IEEE Transaction on Dielectrics and Electrical Insulation, 2005, 12(6): 1209-1221
    [13] Terashima K, Sukuki H, Hara M, et. al, Research and development of 250kV DC XLPE cable, IEEE Transactions on Power Delivery, 1998,13(1): 7-16
    [14] Hanley T L, Burford R P, Fleming R J, A general review of polymeric insulation for use in HVDC cables, IEEE Electrical Insulation Magazine, 2003,19(1): 13-24
    [15]张志焜,崔作林,纳米技术与纳米材料,北京,国防工业出版社,2000,1-82
    [16] Iijima S, Helical microtubules of graphitic carbon, Nature, 1991, 354:56-58
    [17] Joo S H, Kwak J, Oh I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 412:169-172
    [18] Vinu A, Ariga K, Nakanishi T, Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride, Advanced Material, 2005, 17(13):1648-1652
    [19] Lee J, Kim J, Yoon S, et. al, Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites, Chemistry of Materials, 2004, 16: 3323-3330
    [20] Zhou H, Zhu S, Honma I, et. al, Methane gas storage in self-ordered mesoporous carbon, Chemical Physics Letters, 2004, 396:252-257
    [21] Yang H, Yan Y, Liu Y, et. al, Simple melt impregnation method to synthesize ordered meso- porous carbon and carbon nanofiber bundles with graphitized structure from pitches, Journal of Physical Chemistry B, 2004, 108:17320-17328
    [22] Tao X Y, Zhang X B, Zhang L, et. al, Synthesis of multi-branched porous carbon nanofibers and their application in electrochemical double-layer capacitors, Carbon, 2006, 44:1425-1428
    [23]张乾,谢发勤,碳纤维的表面改性研究进展,金属热处理,2001,26(8):1-4
    [24]乌云其其格,碳纤维表面处理,高科技纤维与应用,2001,26(5):24-28
    [25]毕辉,寇开昌,赵清新,等,碳纤维表面化学镀镍的研究进展,材料导报,2008,22(4): 71-75
    [26]王银春,王育人,于泳,一种新型的碳纤维和碳纳米管化学镀镍工艺,中国表面工程,2005,18(4):45-48
    [27]孙跃,万喜伟,姜久兴,等,碳纤维表面化学镀镍前处理工艺研究,中国表面工程,2007,20(5):41-49
    [28]舒卫国,张连锋,碳纤维的化学镀镍,新工艺?新技术?新设备,1997,6:27-28
    [29]杜金红,苏革,白朔,等,气相生长纳米碳纤维表面化学镀镍,新型炭材料,2000,15 (4):49-53
    [30]张积桥,杨玉国,朱红,碱性条件下碳纤维镀镍,表面技术,2008,37(2):37-39
    [31]晋传贵,檀杰,化学还原法制备金属镍纳米颗粒,安徽工业大学学报,2007,24(1):36-38
    [32] Calema S A, Microwave chemistry, Chemical Society Reviews, 1997, 26:233-238
    [33]张寒畸,金铁汉,微波化学,大学化学,2001,16:1-5
    [34] Gedye R, Smith F, Westaway K, et. al, The use of microwave ovens for rapid organic synthesis, Tetrahedron Letters, 1986, 27(3):279-282
    [35] Giguere R J, Bray T L, Duncan S M, et. al, Application of commercial microwave ovens to organic synthesis, Tetrahedron Letters, 1986, 27(41): 4945-4948
    [36] Kappe C O, Controlled microwave heating in modern organic synthesis, Angewandte Chemie International Edition in English, 2004, 43:6250-6284
    [37] Kappe C O, Dallinger D, The impact of microwave synthesis on drug discovery, Nature Reviews Drug Discovery, 2006, 5:51-63
    [38] Roberts B A, Strauss C R, Toward rapid, green?, predictable microwave-assisted synthesis, Accounts of Chemical Research, 2005, 38: 653-661
    [39] Hoz A, Diaz-Ortiz A, Moreno A, Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chemical Society Reviews, 2005, 34(2):164-178
    [40] Tsuji M, Hashimoto M, Nishizawa Y, et. al, Microwave-assisted synthesis of metallic nano- structures in solution, Chemistry, 2005, 11(2):440-452
    [41] Tu W X, Liu H F, Continuous synthesis of colloidal metal nanoclusters by microwave irradia- tion, Chemistry of Materials, 2000, 12:564-567
    [42] Tompsett G A, Conner W C, Yngvesson K S, Microwave synthesis of nanoporous materials, Chemphyschem, 2006, 7:296-319
    [43] Pastoriza-Santos I, Liz-Marza´ L M, Formation of pvp-protected metal nanoparticles in DMF, Langmuir, 2002, 18:2888-2894
    [44] John W Doolittle Jr, Prabir K Dutta, Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system, Langmuir, 2006, 22:4825-4831
    [45] Bensebaa F, Farah A A, Wang D, et. al, Microwave synthesis of polymer-embedded pt-ru catalyst for direct methanol fuel cellm, Journal of Physical Chemistry B, 2005, 109:15339-15344
    [46] Glaspell G, Fuoco L, El-Shall M S, Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation, Journal of Physical Chemistry B, 2005, 109:17350-17355
    [47] Ledwith D, Pillai S C, Watson G W et. al, Microwave induced preparation of a-axis oriented double-ended needle-shaped ZnO microparticles, chemical communications, 2004, 20: 2294-2295
    [48] Jhung S H, Yoon J W, Hwang J S, et. al, Facile synthesis of nanoporous nickel phosphates without organic templates under microwave irradiation, Chemistry of Materials, 2005, 17:4455- 4460
    [49] Mintova S, Mo S, Bein T, Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis, Chemistry of Materials, 1998, 10:4030-4036
    [50] López-Macipe A, Gómez-Morales J, Rodríguez-Clemente R, Nanosized hydroxyapatite preci- pitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating, Advanced Material, 1998, 10: 49-53
    [51] M Holzl, S Mintova, T Bein, Novel colloidal aluminophosphate synthesized under microwave irradiation, Journal of Physical Chemistry B, 2004, 14:2972-2974
    [52] Harpeness R, Gedanken A, Microwave-assisted synthesis of nanosized Bi2Se3, New Journal of Chemistry, 2003, 27:1191-1193
    [53] Jiang Y, Zhu Y J, Microwave-assisted synthesis of sulfide M2S3 (M: Bi, Sb) nanorods using an ionic liquid, Journal of Physical Chemistry B, 2005, 109:4361-4364
    [54] Jiang Y, Zhu Y J, Cheng G F, Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid, Crystal Growth and Design, 2006, 6:2174-2176
    [55] Ni Y H, Liu H J, Wang F, et. al, Shape controllable preparation of PbS crystals by a simple aqueous phase route, Crystal Growth and Design, 2004, 4:759-764
    [56] Kerner R, Palchik O, Gedanken A, Sonochemical and microwave-assisted preparations of PbTe and PbSe: a comparative study, Chemistry of Materials, 2001, 13:1413-1419
    [57] Gao F, Lu Q Y, Komarneni S, Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions, Chemistry of Materials, 2005, 17:856-860
    [58] Zhu Y J, Wang W W, Qi R J, et. al, Microwave-assisted synthesis of single-crystalline tellu- rium nanorods and nanowires in ionic liquids, Angewandte Chemie International Edition, 2004, 43: 1410-1414
    [59] Yang L X, Zhu Y J, Wang W W et. al, Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid, Journal of Physical Chemistry B, 2006, 110:6609-6614
    [60] Wang W W, Zhu Y J Microwave-assisted synthesis of cobalt oxalate nanorods and their ther- mal conversion to Co3O4 rods, Materials Research Bulletin, 2005, 40:1929-1935
    [61] Patra C R, Alexandra G, Patra S, et. al, Microwave approach for the synthesis of rhabdophane- type lanthanide orthophosphate (Ln = La, Ce, Nd, Sm, Eu, Gd and Tb) nanorods under solvother- mal conditions, New Journal of Chemistry, 2005, 29:733-739
    [62] Panda A, Glaspell G, El-Shall M, Microwave synthesis of highly aligned ultra-narrow semi- conductor rods and wires, Journal of the American Chemical Society, 2006, 128:2790-2791
    [63] Zhu J F, Zhu Y J, Microwave-assisted one-step synthesis of polyacrylamide-metal (M) Ag, Pt, Cu) nanocomposites in ethylene glycol, Journal of Physical Chemistry B, 2006, 110:8593-8597
    [64] Zhu J F, Zhu Y J, Ma M G, et. al, Simultaneous and rapid microwave synthesis of poly- acrylamide-metal sulfide (Ag2S, Cu2S, HgS) nanocomposites, Journal of Physical Chemistry B, 2007, 111:3920-3926
    [65]孟中岩,姚熹,电介质理论基础,北京,国防工业出版社,1980,189-255
    [66]倪尔瑚,材料科学中的介电谱技术,北京,科学出版社,1999,10-19
    [67]杨保初,刘晓波,戴玉松,高电压技术,重庆,重庆大学出版社,2001,39-56
    [68]孙艳飞,菜籽绝缘油及其油纸绝缘介电谱和击穿特性的研究,[学位论文]重庆大学,2008
    [69]刘炳尧,电气设备绝缘试验,北京,水利电力出版社,1993,16-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700