吸附法制备蛋壳型Pt、Pd纳米催化剂及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型金属催化剂由于其活性高、易分离、金属可回收等特点被广泛应用于石油化工、精细化工和环境催化等领域。无论在实验室研究还是在工业化生产,都是极为重要的一类催化剂。目前,常用负载金属催化剂的制备方法有:浸渍法、离子交换法、共沉淀法、溶胶-凝胶法等。但是这些方法往往存在以下缺点:如制备过程复杂、非绿色化、影响因素较多、金属纳米颗粒可控性较差等。这些都会影响到催化剂的整体性能。
     本论文提出一类新的负载金属纳米催化剂制备方法,即采用载体直接吸附金属纳米颗粒的方法制备负载型金属催化剂,我们称之为吸附法。先将有机金属化合物在还原气氛下分解得到稳定的纳米溶胶,再用载体直接吸附金属纳米颗粒以制备负载型金属纳米催化剂。该方法可以制备粒径小、分布均匀、分散度好、结构可控的高性能催化剂。而且由于其制备纳米溶胶的方法的简单、绿色化使得制备得到的催化剂性能重复性高,污染较少。
     采用吸附法制备得到Pt/C纳米催化剂,并对载体进行了金属助剂的改性处理。通过TEM、ICP和XPS等手段的研究详细表征了催化剂的表面形态、金属负载量、金属电子状态及Pt纳米颗粒的分布情况等。以邻氯硝基苯催化加氢合成氯代苯胺反应为探针反应测试其催化性能,并进一步研究了该反应的加氢动力学。采用吸附法制备得到Pd/C催化剂,通过TEM、XRD及XPS详细表征了其表面形态、Pd的分布情况等。以溴代苯及氯代苯为底物的Suzuki偶联反应为探针测试其催化性能。具体内容如下:
     1.催化剂表征结果表明,对活性炭载体的Fe助剂处理可以使制备得到的Pt/C(Fe)催化剂中的Pt处于更为强烈的缺电子状态,XPS宽扫表征结果表明,催化剂表面分布的Pt纳米颗粒是平均值的10倍,形成了蛋壳型的结构。邻氯硝基苯催化加氢结果表明, Fe助剂的添加量为Pt含量的2倍时,达到了催化的最佳性能:在1 MPa、60 oC的条件下,转化率100%,活性(TOF)达到了78 S-1,邻氯苯胺的选择性高于99.5%,TTO大于625000。该催化剂对邻氯硝基苯液相加氢活性、选择性和稳定性达到了高度的统一,其中活性和稳定性是目前文献报道中的最佳值。通过研究发现,Fe助剂的引入有利于改善活性组分的电子状态和分布结构,导致了其对邻氯硝基苯加氢性能的提高。此外,基于该催化剂对反应选择性的特点,我们详细讨论了不同宏观因素对脱卤的影响,总结并发现了在高活性条件下,这些宏观因素(如温度、压力)的影响本质上是通过TOF决定了脱卤率的规律。并从碰撞动力学角度加以阐明。而且通过表征发现活性下降的主要原因是载体结构的坍塌以及纳米颗粒的迁移导致了团聚失活。而活性组分流失量仅为7%,表明了Pt的负载程度相当牢固。
     2.研究吸附型催化剂对邻氯硝基苯的加氢机理。并通过对其动力学研究,我们发现了一条新的反应路径,即从硝基基团直接加氢制的相应羟胺的路径。并且结合文献详细的论证了这条新补充路径,结合动力学研究数据,研究了吸附型催化剂对邻氯硝基苯及爱情那个具有高选择性的原因。进一步的动力学研究表明:对反应物浓度为零级反应,对氢压为一级反应,活化能为58.8 kJ/mol,催化剂对氢气的吸附为反应的速率控制步骤。
     3. Pd/C催化剂表征结果表明,载体直接吸附可溶性纳米颗粒制得的Pd/C催化剂Pd金属颗粒以零价态均匀地负载在载体表面,且分散度好,粒径在3-6 nm之间。Suzuki反应结果表明,吸附法制得的Pd/C由于其结构上的优势,能很好地催化溴代苯与苯硼酸的Suzuki反应。在80 oC下,0.5 h后偶联产物收率可达98%以上。其中对位吸电子基可加快反应速率,而对位供电子基可减慢反应速率。以邻氯硝基苯为底物时,在110 oC下1 h后偶联产物收率可达64%;延长反应时间,产物收率可达90%以上。
     总之,用吸附法制备得到负载型金属催化剂,制备过程简单绿色化,影响因素少,且催化剂的结构可控、重复性好。将Fe助剂改性过的Pt/C催化剂用于邻氯硝基苯催化加氢反应,取得非常好的效果,具有工业化应用前景。将吸附型Pd/C催化剂用于Suzuki反应的研究也获得了很好的催化效果。同时,这种制备方法也具有一定的普适性,可进一步研究推广至其他负载型金属催化剂的制备
Supported noble metal catalysts were usually prepared by impregnation, ion-exchange process, coprecipitation, Sol-gel method and have been widely applied in the field of petrochemicals, fine chemicals and environmental catalysis for their high activity, easy separation and recyclable, etc.However, these methods often have the drawbacks of complicated procedures, non-green to environment and many influencing factors. It is well known these problems not only affect the overall performance of the catalyst, but also might caused the environmental pollution.
     In this thesis, a new method was proposed that the carrier was utilized to adsorb metal nanoparticles directly, which were obtained from the decomposition of Pt2(dba)3 (dba = dibenzalacetone) for the preparation of catalysts. This adsorption type method is able to prepare uniform particle size, narrow distribution range and structure controlable of high-performance catalysts.
     The adsorption Pt/C catalysts were characterized by transmission electron microscopy (TEM), inductive coupled plasma emission spectrometer (ICP) and X-ray photoelectron spectroscopy (XPS). The liquid phase hydrogenation of o-chloronitrobenzene (o-CNB) was used to test the catalytic properties of the catalysts and the corresponding hydrogenation dynamics was also first carried out. The adsorption Pd/C catalyst was also characterized by TEM、XRD and XPS, and showed extraordinary properties in Suzuki coupling reaction. The results are listed as follows:
     1、The characterization results showed that active constituent Pt on the Pt/C catalyst additives was in more electron-deficient state after the AC modified by Fe, and Pt nanoparticles distributed on the surface of the catalyst (10 times higher than average levels), forming an egg-shell structure. The results of catalytic hydrogenation of o-chloronitrobenzene showed that the best performance could be obtained when the dosage of Fe additive was doubles that of Pt. The conversion of o-CNB reached to 100% with the activity defined by TOF of 78 S-1 combined with the selectivity of 99.5% to corresponding aniline. Moreover, the selectivity can increased to 99.9% by adjusting the reaction conditions. In addition, macroeconomic factors (such as temperature, pressure,stirring rate) which could affect the dehalogenation were studied in detail. On the basis of low dehalogenation over the certain catalyst, a broad rule is proposed that the TOF whatever factors caused by decide dehalogenation rate essentially. In stability, the TTO of the catalyst can reach to 625,000 and the the main reason for the decreased activity was the aggregation of Pt nanoparticles. Meanwhile, the loss of active Pt was only 7%, which indicate the internal bonding strength between Pt nanoparticles and support is strong.
     2、A new reaction path was found that the hydroxylamine could be obtained directly from the hydrogenation of nitro-compound. Further kinetic studies demonstrated that the reaction rate is zero-order in o-chloronitrobenzene concentration and first-order with respect to hydrogen pressure,and the activation energy is 58.8 kJ/mol. The rate limiting step was adsorption of H2.
     3、The characterization results of Pd/C showed that the Pd with zero valent state loadad evenly in the carrier surface, of which particle size was in the range of 3-6 nm. This adsorption Pd/C catalyst showed extraordinary properties in Suzuki reaction. Under the conditions of 80 oC, and 0.5 h, the catalyst can catalyze Suzuki reactions of aryl bromide with coupling product yield of 98%. The coupling reactions of aryl bromides containing electron-withdrawing groups proceeded more efficiently than that of bromobenzene, while aryl bromides containing electron-donating groups needed a longer reaction time for completion. It can also catalyze o-chloronitrobenzene with yield of 64% in 1 h when the reaction temperature was 110 oC, and the yield can be higher than 90% with extending the reaction time.
     In conclusion, the adsorption method for preparing supported catalyst is simple and green, and tractable. Especially, the addition of Fe for the the Pt/C catalyst could significantly improve its catalytic performance for the selective hydrogenation of o-chloronitrobenzene which have showed the prospect of industrial application. Meanwhile,the Pd/C catalyst also exhibited very excellent catalytic effect for the Suzuki reaction of bromobenzene. It is believed this preparation method could be further extended to other supported metal catalysts preparation and corresponding reaction system.
引文
[1]唐培堃主编.精细有机合成化学及工艺学[M].天津:天津大学出版社, 1993.
    [2]姚蒙正,程侣柏,王家儒.精细化工产品合成原理[M].北京:中国石化出版社, 1992.
    [3]蒋登高.精细有机合成反应及工艺[M].北京:化学工业出版社, 2002.
    [4]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社, 1987.
    [5]严新焕,孙军庆,徐颖华,杨建峰.催化学报(Yan X H, Sun J Q, Xu Y H, Yang J F. Chin J Catal), 2006, 27(2): 119
    [6]熊峻,陈吉祥,张继炎.催化学报(Xiong J, Chen J X,Zhang J Y. Chin J Catal), 2006, 27(7): 579
    [7]房永彬,严新焕,孙军庆,徐振元,王文静.催化学报(Fang Y B, Yan X H, Sun J Q, Xu Zh Y, Wang W J.Chin J Catal), 2005, 26(3): 233
    [8]房永彬.工业催化(Fang Y B. Ind Catal), 2006, 14(10):59
    [9]孙军庆;严新焕;李波;杨建锋;徐振元.非晶态Ni-M-P催化剂用于间氯硝基苯加氢的研究.高校化学工程学报,2006(06)
    [10]房永彬.负载Pt-B非晶态催化剂的氯代硝基苯加氢性能.工业催化,2007(11)
    [11] Junling Z,Yuan W,Hua J,Yongge W,Nianzu W,Bojun Z,Qilong W. J Mol Catal, 2005, 229:144
    [12] Xiao-Xiang Han, Ren-Xian Zhou, Guo-hua Lai, and Xiao-Ming Zheng.catal Lett. 2004, 83(1);55
    [13]郑华均,刘化章.纳米催化剂的制备及应用的研究进展.浙江化工. 2003, 34(2): 5-9
    [14]李敏,崔屾.纳米催化剂研究进展.材料导报. 2006, 20(VI): 8-12
    [15]李风生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社, 2002.
    [16]高红,赵勇.纳米材料及纳米催化剂的制备.天津化工. 2003, 17(5): 14-17
    [17]张立德.纳米材料学[M].辽宁:辽宁科学出版社, 1994
    [18]朱曾惠.纳米技术发展动向[J].化工新型材料, 1999, 27 (2): 40-41
    [19]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂[J].石油化工,1991, 20(9): 633-639
    [20]张富捐.纳米催化剂研究进展.许昌学院学报,2004, (235): 38-43
    [21]刘冰,任亭兰. 21世纪材料发展的方向—纳米材料.青岛大学学报, 2000 , 13 (3) :91-94
    [22] He YJ, Yang B. J Nat Gas Chem, 2004, 13(3): 167-171
    [23]张梅,陈焕春.导弹与航天运载技术, 2000, 3: 11-16
    [24]张莺.纳米催化剂的制备和最新应用研究进展.山西大同大学学报, 2008.24(4):30-32
    [25] Perez-Benito J F,Saiz N, Amat E Catalysis by zinc ion in the reactions of carcinogenic chromium(Ⅵ)with thioks[J]. Journal of Molecular Caratyis A: Chemieal, 1998, 135: 1
    [26]袁颂东,袁静玲.纳米催化剂的制备及其在环保领域的应用.湖北工学院学报, 2001, 16(4): 72-75
    [27] Schmid G, Large clusters and colloids metals in the einbryonic state [J]. Chem. Rev, 1992, 92(8): 1709-1727
    [28]张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展[J].化工新型材料, 1999, 27(5): 3-51
    [29]陈德文,王素华.纳米级CdS粒子尺寸量子化的化学效应研究[J].中国科学(B辑), 1996, 26(3): 262-2681
    [30]李常艳,胡瑞生.白雅琴;沈岳年.微乳技术在纳米催化剂制备中的应用.化学通报, 2004 , 67 (2) :143-145
    [31] Winans RE, Vajda S. Thermal Stability of Supported Platinum Clusters Studied by in Situ GISAXS. J Phys Chem, 2004, 108 (47): 18105-18107
    [32] Hatori H, Kobayashi T. Preparation and characterization of carbonized polyimide containing palladium compounds .Synth Met , 2002 , 125 (2) : 183-186
    [33]陕绍云,贾庆明,王亚明.溶胶-凝胶法制备负载型纳米催化剂.化工纵横. 2003, 17(2): 21-23.
    [34] Zhao JP, Fan WH, Wu D, Synthesis of highly stabilized zirconia sols from zirconium n- propoxide- diglycol system. Journal of Non-Crystalline Solids, 2000, 261: 15-20.
    [35]戴健,温廷琏,吕之奕.醇盐水解法制备的纳米级稳定氧化锆细粉[J].无机材料学报, 1993, 8(1): 51- 56.
    [36]刘渝,杨芸.负载型催化剂Pt-γ-Al2O3-CeO2的合成和活性研究,北京师范大学学报, 2002, 38(6): 786-789
    [37]邓彤彤,彭振山.沉淀法制备氧化物超细粉体的研究进展,湘潭师范学院学报(自然科学版),2003, 25(3)
    [38]刘晓红,徐贤伦.以纳米二氧化锆为载体的Pd催化剂制备及还原缩合性能研究.精细化工, 2003 , 20 (12) :724-727
    [39]翁瑞,丁红梅,吴晓东. LaMnO3稀土纳米材料及催化性能[J].物理化学报, 2001, 17(3):248-251.
    [40]纪红兵,王乐夫.高等化学工程学报, 2002 , 16 (2) :149-151
    [41]汤皎宁,龚晓钟,马晓琴.微乳液法制备ZrO2超细粉及其表征[J].深圳大学学报(理工版), 2001, 18(1): 50- 55.
    [42]郭林,吴波.钴氧化物纳米催化剂的制备及对N2O的分解.环境科学学报, 1998 , 18 (5) :140-146
    [43]郑启光.激光先进制造技术[M].武汉:华中科技出版社, 2001.
    [44] Rousset J L, Cadrot A M, Cadete Santos Aires F J. et al. Study of bimetallic Pd-Pt clusters in both free and supported phases[J]. Journal of Chemical Physics, 1995, 102(21): 8574.
    [45] Brenner J R, Marshall, C L, Nieman, G C, Parks, E K, et al. Structural Characterization of Rhodium-Containing Hydrodesulfurization(HDS) Catalysts Derived from a Laser Vaporization Cluster Source[J]. Journal of Catalysis, 1997, 166: 294–305.
    [46]许兴中,杨建锋,严新焕等.激光溅射法制备Pt/CNTs催化剂用于邻氯硝基苯的液相加氢反应[J].物理化学学报, 2008, 24(1): 121-126.
    [47]储伟.催化剂反应工程[M].四川大学出版社, 2006
    [48] Yin S F, Xu B Q. Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decompositionAppl Catal B, 2004, 48 (4): 237-241
    [49]崔屾,裴海芹.石油化工,催化裂解甲烷制备一维纳米网状碳材料2004 , 33 (增刊) :257-260
    [50]崔屾,裴海芹.中国化学会第24届学术年会.催化化学分会,长沙, 2004. 16
    [51]李敏,崔屾.全国第四届纳米材料和技术应用会议论文集[C].中国材料研究学会编.北京:冶金工业出版社,2005
    [52] Khoudiakov M, Gupta M C. Au/Fe2O3 nanocatalysts for CO oxidation by a deposition–precipitation technique .Nanotechnology, 2004, 15(8): 987-991
    [53] Ma X C , Lun N. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method. Diamond Relat Mater, 2005, 14 (1): 68-79
    [54]王桂茹.催化剂与催化作用[M] .第二版.大连:大连理工大学出版社, 2004. 121
    [55] Yabe Y, Ohtake Y. Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diamond Relat Mater, 2004, 13 (428):1292-1295
    [56] Zhang W D, Wen Y. Carbon, 2002, 40 (11): 1981-1983
    [57] Yoon YJ, Baik H K. Synthesis of carbon nanotubes by chemical vapor deposition for field emitters. J Vac Sci Techn B, 2001, 19 (1): 27-32
    [58] Teo K B K, Lee S B. Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow Nanotechnology, 2003 , 14 (2) : 204-211
    [59] Zhang W D, Wen Y, J Li, GQ Xu, LM Gan. Synthesis of vertically aligned carbon nanotubes films on silicon wafers by pyrolysis of ethylenediamine. Thin Solid Film, 2002, 422 (122):120-125
    [60]崔屾,董向红.催化裂解低碳烷烃制备碳纳米管薄膜.化学研究与应用, 2003 , 15 (4) :513-514
    [61]哈曜,何宝林,刘汉范.高分子稳定的水溶性铂氧化物纳米颗粒的制备.中南民族大学学报(自然科学版)2005.24(4):22-27
    [62]王克明,何宝林,刘汉范.微波辐射法制备高分子稳定的水溶性铂氧化物纳米颗粒.化学与生物工程. 2006.23(12):7-11
    [63]刘漫红,刘汉范,李斌.高分子稳定的钌纳米金属簇选择性催化氢化巴豆醛.合成化学. 2006.14(5):442-445.
    [64] Winans RE, Vajda S. Thermal Stability of Supported Platinum Clusters Studied by in Situ GISAXS. J Phys Chem, 2004, 108 (47): 18105-18107
    [65]李晓伟,赵惠忠,汪厚植,罗浪里,殷嗣杰. MnOx/ZrO2纳米催化剂的制备及对CO-SCR-NO性能研究.真空电子技术, 2005 , 2 :16-19
    [66]贾庆明,郑茂盛.王亚明.磁性纳米催化剂SO2-4/TiO2-Fe3O4的制备及表征.西安交通大学学报, 2005 , 39 (7) :779-782
    [67]李酽.纳米分子筛的合成与应用进展.材料导报, 2004 , 18 (2) :12-15
    [68]王岚,孟霜鹤.纳米分子筛ZSM-5的热稳定性研究催化学报, 2001,22 (5) :491-493
    [69] Hatori H, Kobayashi T. Preparation and characterization of carbonized polyimide containing palladium compounds .Synth Met , 2002 , 125 (2) : 183-186
    [70]阎子峰.纳米催化技术[M] .北京:化学工业出版社, 2003.28-30
    [71]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998:3
    [72]吕恩雄.有机电解合成研究动向[J].精细石油化工, 1992, (5): 41~44.
    [73]姚蒙正,张若蘅.芳香族硝基化合物还原反应的若干进展[J].化工进展, 1984, (4):19~25.
    [74]蒋志斌,侯琳娜.利用醇镁还原体系一步法制取对氯苯胺的研究.石油化工进展, 2002, 3(11): 50-51
    [75]陈诵英,陈平,李永旺王建国.催化反应动力学[M].化学工业出版社, 2007.
    [76] Ertl G.; Knotzinger H.; Weitkamp J., Handbook of Heterogeneous Catalysis [M], Wiley-VCH, Weinheim 1997, Vol. V.
    [77]韩晓祥周仁贤郑小明.负载Pt催化剂在卤代硝基苯氢化反应中的催化性能研究[J].复旦学报(自然科学版) 2003 42(3) 428–430.
    [78] Yan Xiaoping Liu Manhong Liu Hanfan et al. Metal complex effect on the hydrogenation of o–chloronitrobenzene over polymer–stabilized colloidal ruthenium clusters[J]. J. Mol. Catal. A Chem. 2001,170:203~ 208.
    [79] Tu Weixia, Liu Hanfan, Tang Yao. The metal complex effect on the selective hydrogenation of m– and p–chloronitrobenzene over PVP–stabilized platinum colloidal catalysts[J]. J. Mol. Catal. A Chem., 2000, 159: 115~120.
    [80] Chen Yangying, Qiu Jieshan, Wang Xinkui,et al. Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds[J]. J. Catal. 2006, 242: 227~230.
    [81] Mozingo R. Palladium catalysts [J]. Org. Synth., 1946, 26(1): 77~82.
    [82]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社, 1987
    [83]
    [84] Molga E J, Westerterp K R. Kinetics of hydrogenation of 2,4-dinitrotobluene over a palladium on alumina catalyst [J]. Chem. Eng. Sci., 1992, 47(7): 1733~1749.
    [85]文民锦.高分子钯催化剂在不同pH介质中的催化加氢行为[J].精细石油化工, 1995, (3): 18~20.
    [86] Wrzyszcz J, Zawadzki M, Trzeciak A M, et al. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity [J]. J. Mol. Catal. A, 2002, 189(2): 203~210.
    [87]尾崎萃等编,《催化剂手册》翻译小组译.催化剂手册[M].北京:化学工业出版社, 1982.
    [88] Jozsief P, Tibor M. Process for the preparation of metal oxide catalysts and metal oxide supported catalysts [P]. US Patent 4,021,371. 1977.
    [89] Raney M. Hydrogenation: catalysts from alloys Nickel catalysts [J]. Ind.Eng. Chem.1940. 32:1199~1203
    [90]江志东,吴平东. Raney-Ni浸取方法对木糖加氢活性的影响[J].化学反应工程与工艺, 1996, 12(1): 34~39
    [91] Kokes R J, Emmett P. H. The role of hydrogen in Raney Nickel catalysts[J]. J. Am. Chem. Soc., 1959, 81: 5032~5037.
    [92]左东华,张志琨,崔作林.纳米镍在硝基苯加氢中催化性能的研究[J].分子催化, 1995, 9 (4): 298~302
    [93] Zhang Z K, Cui Z L, Chen K Z, et al. Thin-shell structure of nanometer particles [J]. Mater Characterization, 2000, 44(2): 371~374.
    [94]叶惠仁.加氢合成对苯二胺的研究[J].辽宁化工, 1993, (5): 45~46.
    [95] Aller BV. Raney cobalt hydrogenation catalysts III. Applications and promoter effects [J]. J. Appl. Chem., 1958, (8): 492~495.
    [96] Spiegler L, Woodbury NJ. Process for catalytically reducing halogen-substituted aromatic nitro compounds to the corresponding amines [P]. US Patent 3,073,865. 1963.
    [97] Kossak J R. Catalytic reduction of halonitro-aromatic compounds [P]. US Patent 4, 201, 107. 1977.
    [98] Yutaka H, Katsuharu M. Method for the preparation of a halogenated aromatic amine [P]. US Patent 4,070,401. 1978.
    [99] Clayton Aniline Co. Ltd. Catalytic hydrogenation process for the manufacture of chlorinated aromatic amines [P]. European Patent 0,000,805. 1979.
    [100] Kossak J R, Catalysis in Organic Syntheses [M] (Jones W H ed.). Academic Press, New York, 1980.
    [101] Bailliard R, Cordier G., Grosselin J M, et al. Process for hydrogenation of halogennitro-aromatic compounds in the presence of a sulfur-containing compound [P]. US Patent 5,126,485. 1992.
    [103] Augustine RL. Heterogeneous Catalysis for the Synthetic Chemistry[M]. Marcel Dekker: New York, 1996.
    [104]蔡春,吕春绪.二氯苯胺柔性生产技术研究[J].南京理工大学学报, 2000, 24(3): 219~222 .
    [105]胡拖平,陈宏博.单氯代硝基苯加氢还原时脱氯规律的研究[J].染料工业, 2000, 37(6): 11~12.
    [106]陆跃进,单绍军,宋东明等.催化加氢制备3,3'-二甲基联苯胺[J].染料工业, 2002, 39(6): 26~28.
    [107] Coq B, Tijani A, Figueras F. Particle size effect on the kinetic of p-chloro- nitrobenzene hydrogenation over platinum/alumina catalysts [J]. J. Mol. Catal., 1991, 68(3): 331~345.
    [108] Tijani A, Coq B, Figueras F. Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts [J]. Appl. Catal., 1991, 76(1-2): 255~266.
    [109] Han X X, Zhou R X, Lai G H, et al. Effect of transition metal (Cr, Mn Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts [J]. J. Mol. Catal. A, 2004, 209(1-2): 83~87.
    [110] Coq B, Tijani A. Influence of support, metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts [J]. J. Mol. Catal., 1993, 79(3): 253~264.
    [111]赵松林,陈骏如,刘新梅等.金属离子对Ru-Pt/γ-Al2O3催化剂上对氯硝基苯选择加氢反应的影响[J].催化学报, 2004, 25(11): 850~854
    [112] Yu Z K, Liao S J, Xu Y, et al. A remarkable synergic effect of polymer anchored bimetallic Palladium Ruthenium catalysts in the selective hydrogenation of p-chloronitrobenzene [J]. Chem. Commun. 1995, (11): 1155~1156.
    [113]周娅芬,陈骏如,胡家元等.水溶性钌络合物催化卤代芳香硝基化合物选择性加氢的研究[J].四川大学学报(自然科学版), 2003, 40(3): 531-535
    [114] Han X X, Zhou R X, Zheng X M, et al. Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts [J]. J. Mol. Catal. A. 2003, 193(1-2): 103~108.
    [115]孙履厚.精细化工—新材料与技术[M].北京:中国石化出版社,1998.
    [116] Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995~1998,J Organoment Chem,1999, 576:147
    [117] Martin A R, Yang Y H. Palladium-Catalyzed Cross-Coupling Reactions of Organoboronic Acids with Organic Electrophiles[J]. Acta. Chem. Scand, 1993, 47: 221-230.
    [118] Miyaura N, Suzuki A. Palladium-Catalyzed Cross-Coupling Reactions of OrganoboronCompounds[J]. Chemical Reviews, 1995, 95(7): 2457-2483.
    [119] Anderson J C, Namli H, Roberts C A. Investigations into ambient temperature biaryl coupling reactions[J]. Tetrahedron, 1997, 53(44): 15123-15134.
    [120] Moreno-Manax M, Perez M, Pleixatas R. Palladium-Catalyzed Suzuki-Type Self-Coupling of Arylboronic Acids. A Mechanistic Study[J]. J. Org. Chem, 1996, 61(7): 2346-2351.
    [121] Aramendia M A, Lafont F. Electrospray Ionization Mass Spectrometry Detection of Intermediates in the Palladium-Catalyzed Oxidative Self-Coupling of Areneboronic Acids[J]. J. Org. Chem, 1999, 64(10): 3592-3594.
    [122] Badone D, Baroni M, Cardamone R, et al. Highly Efficient Palladium-Catalyzed Boronic Acid Coupling Reactions in Water: Scope and Limitations[J]. J. Org. Chem, 1997, 62(21): 7170-7173.
    [123] Zhou H, Zhuo G L, Jiang X Z. Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite[J]. Journal of Molecular Catalysis A: Chemical, 2006, 248(1-2): 26-31.
    [124] LeBlond C R, Andrews A T, Sowa J R J, et al. Activation of aryl chrorides for Suzuki cross2coupling by ligandless, heterogenous palladium[J]. Org. Lett, 2001, 3: 1555-1557.
    [125] Saito S, Sakai M, Miyaura N. A synthesis of biaryls via nickel(0) catalyzed cross coupling reaction of chloroarenes with phenylboronic acids[J]. Tetrahedron Letters, 1996, 37(17): 2993-2996.
    [126] Leadbeater N E, Resouly S M. Suzuki aryl couplings mediated by phosphine free nickel compounds[J]. Tetrahedron, 1999, 55: 11889-11894.
    [127] Lipshutz B H, Sclafani J A, Blomgren P A. Biaryls via Suzuki crosscouplings catalyzed by nickel on charcoal[J]. Tetrahedron, 2000, 56: 2139-2144.
    [1] Moseley K, Maitlis PM. Bis- and Tris-(dibenzy1ideneacetone) platinum and the Stabilization of Zerovalent Complexes by an Unsaturated Ketone. Chem.Commun. 1971; 982-983
    [2] Ramirez E, Erades L, Philippot K, Lecante P, Chaudret B, Dassenoy F, Lecante P, Casanove M.J, Mosset A, Resqand M, Broto J-M. Adv Funct Mater, 2007,17 (13): 2219-2223
    [1]毛建忠,严新焕,顾辉子,江玲超.组合纳米Pt/C催化剂的邻氯硝基苯加氢性能.催化学报, 2008, 30 (3): 1
    [2] X.X.Han, R.X.Zhou, X.M.Zheng, H. Jiang. Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts J. Mol. Catal. A Chem. 193 (2003) 103.
    [3] X.X. Han, R.X.Zhou, G.H.Lai, X.M. Zheng, Influence of alloying platinum on the hydrogenation of chloronitrobenzene over PtM/ZrO2 catalysts with M=Cr, Mn, Fe, Co, Ni, Cu React. Kinet. Catal. Lett. 83 (2004) 55.
    [4] B. Coq, A. Tijani, R. Dutartre, F. Figuéras, Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts J. Mol. Catal. 79 (1993) 253.
    [5] B.Coq, A. Tijani, Figueras, F. Figuéras, Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn, J. Mol. Catal. 71(1992) 317.
    [6] Coq. B, Figueras. F. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber. Coord Chem Rev. 178–180 (1998) 1753-1755
    [7] Martino.A, Sault.A.G, Kawola.J.S, Boespflug.E, Philips.M.F. A sintering study of novel sol-gel-based nanocluster catalysts J.Catal.1999.187 (1): 30
    [8]黄钟斌,严新焕,江玲超,蒋虹.高效组合型Pd/C催化剂用于Suzuki偶联反应.催化学报,2010,31:90~94
    [9] Chena B, Dingerdissenb U, Krauterc J G E, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals[J].Appl. Catal. A ,2005, 280: 17~46.
    [10] Yan Xiaoping, Liu Manhong, Liu Hanfan, et al. Metal complex effect on the hydrogenation of o–chloronitrobenzene over polymer–stabilized colloidal ruthenium clusters[J]. J. Mol. Catal. A.Chem,. 2001, 170:203~ 208.
    [11]刘新梅,周亚芬,陈骏如,李贤均. Sn4+对Pd/γ-Al2O3化氯代硝基苯加氢反应影响.广西工学院学报. 2007,18 (2) 85-89
    [12]刘新梅,樊光银,赵松林,陈骏如,李贤均. Sn4+离子修饰的Pd/γ-Al2O3催化卤代芳香硝基化合物选择性加氢.分子催化.2005,16 (6) 430-436
    [13] Xu SG, Xi XL, Shi J, Cao SK. A homogeneous catalyst made of poly{4-vinylpyridine-co-N-vinylpyrrolidone}-Pd(0) complex for hydrogenation of aromatic nitro compounds. J. Mol.Catal. A: Chem.160 (2000)287-292
    [14] Junling Zhang , Yuan Wang , Hua Ji , Yongge Wei, Nianzu Wu, Bojun Zuo Qilong Wang. Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, 2005, 114-118
    [15] Han XX, Chen Q, Zhou RX, study on the hydrogenation of p-chloronitrobenzene over carbon nanotubes supported platinum catalysts modified by Mn, Fe, Co, Ni and Cu. J.Mol.Catal. 2007, 277(3):210-214
    [1] Liu GZ, Mi ZT*, Wang L, Zhang XW. Kinetics of dicyclopentadiene hydrogenation over Pd/Al2O3Catalyst Ind. Eng. Chem. Res. 2005, 44, 3846-3851
    [2] Kratky V, Kralik M. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes Applied Catalysis A :General , 2002 , 235 :225-231.
    [3] Halligudi S B , Khaire S S. Kinetics of hydrogenation of 4-chloro-2-nitrophenol catalyzed by Pt/carbon catalyst. J Chem Technol Biotechnol , 2001 , 77: 25-28.
    [4] Ertl G.; Knotzinger H.; Weitkamp J., Handbook of Heterogeneous Catalysis [M], Wiley-VCH, Weinheim 1997, Vol. V.
    [5] F. Haber, Z. Elektrochem. 1898, 22, 506.
    [6] Corma A, Concepcion P, Serna P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed. 2007, 46, 7266-7269
    [7] Gelder E A, Jackson D,C. Martin Lok. The hydrogenation of nitrobenzene to aniline: a new mechanism. Chem. Commun., 2005, 522-524
    [8] I. A. Makaryan, V. I. Savchenko, N-arylhydroxylamines transformation in the presence of heterogeneous catalysts. Stud. Surf. Sci. Catal. 1993, 75,2439.
    [9] F. Visentin, G. Puxty, O. M. Kut, K. Hungerbuehler, Study of the hydrogenation of selected nitro compounds by simultaneous measurements of calorimetric, FT-IR, and gas-uptake signals Ind. Eng.Chem. Res. 2006, 45, 4544. N-arylhydroxylamines
    [1] Beletskaya I P,Cheprakov A V. The heck reaction as a sharpening stone of palladium catalysis Chem Rev,2000,100(8):3009
    [2] Biffis A, Zecca M, Basato M. Palladium metal catalysts in Heck C-C coupling reactions J Mol Catal A.,2001, 173 (1-2):249
    [3] Astruc D. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: A unifying view. Inorg Chem, 2007, 46 (6) :1884
    [4] Noora K, Tuula K, Youjun X, Robert F. Cent Eur J Chem,2008,6 (3) :390
    [5]Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998 J Organoment Chem,1999, 576:147
    [6] Ito T,Iwai T,Mizuno T,Ishino Y. Palladium-catalyzed cross-coupling reaction of potassium diaryldifluoroborates with aryl halides Synlett,2003,1435
    [7]Van der Boom M E,Milstein D. Cyclometalated phosphine-based pincer complexes: Mechanistic insight in catalysis, coordination, and bond activation Chem Rev, 2003,103(5):1759
    [8] Littke A F,Fu G C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J Am Chem Soc ,2001,123 (29):6989
    [9] Hanhan ME. Ligand effects in palladium-catalyzed Suzuki and Heck coupling reactions. Appl Organometal Chem, 2008 22:270
    [10]Morales-morales D,Redon R ,Yung C,Jensen CM. High yield olefination of a wide scope of aryl chlorides catalyzed by the phosphinito palladium PCP pincer complex: [PdCl{C6H3(OPPr2i)(2)-2,6}] Chem Commun,2 000:1619
    [11]FeuersteinM,LaurentiD,BougeantC,DoucetH,Santelli M.Palladium-tetraphosphine catalysed cross coupling of aryl bromides with arylboronic acids: remarkable influence of the nature of the ligand. Chem Commun,2001,42:325
    [12] Trilla M, Borja G, Pleixats R, Man M W C, Bied C, Moreau J J E. Recoverable Palladium Catalysts for Suzuki-Miyaura Cross-Coupling Reactions Based on Organic-Inorganic Hybrid Silica Materials Containing Imidazolium and Dihydroimidazolium Salts Adv Synth Catal,2008, 350:2566
    [13] Yin L X,Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts Chem. Rev,2007, 107:133
    [14] Zheng Y, Stevens P D, Gao Y. Magnetic nanoparticles as an orthogonal support of polymer resins: Applications to solid-phase Suzuki cross-coupling reactions J Org Chem,2006, 71:537
    [15] Zhou H, Zhou GL, Jiang X Z. Heck reaction catalyzed by palladium supported on LDH-F hydrotalciteJ Mol Catal A ,2006,248(1-2):26
    [16] Mao J Z, Yan X H, Gu H Z. Jiang L C. Chin J Catal,Hydrogenation of o-Chloronitrobenzene by Platinum Nanoparticles on Activated Carbon 2009,30 (3):182
    [17]Dicenzo S B, Wertheim G.K. Photoelectron spectroscopy of supported metal clusters. Solid State Phys,1985, 11:203
    [18]Marck G, Villiger A, Buchecker R, aryl couplings with heterogeneous palladium catalysts. Tetrahedron Lett,1994, 35:3277
    [19]Pickett TE, Roca FX, Richards CT. Synthesis of monodentate ferrocenylphosphines and their application to the palladium-catalyzed Suzuki reaction of aryl chlorides J Org Chem,2003, 20:2595
    [20] Miyazaki A, Balint I, Aika K, Nakano Y. Preparation of Ru nanoparticles supported on gamma-Al2O3 and its novel catalytic activity for ammonia synthesis. J Cata, 2001,204 (2):364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700