氩的高温高压布里渊散射研究及快速增压制备大块非晶硫
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压物理学是研究物质在高压作用下的力学、光学、电学、磁学特性,以及高压下物质的微观结构、状态方程、相变等等。由于高压研究可以发现一些物质在常压下不能表现出来的新现象、新规律、新性能或新相,所以它为新材料的制备、合成与改性提供了重要的理论依据和实验基础。本论文共分为两个部分,第一部分为高温高压下氩的布里渊散射研究,属于高压下的物性研究:第二部分为快速增压制备大块非晶硫,属于高压下新材料的制备。分别摘要如下:
     (一)高温高压下氩的布里渊散射研究。
     氩分子为简单的单原子分子,由于其外层电子具有满壳层结构,所以在理论计算研究和实验对比中已成为一个非常理想的研究体系。高温高压下氩精确的状态方程及其热力学性质在检验物理模型、分子间作用势特别是多体相关势中有非常重要的意义。本论文利用高温高压下原位布里渊散射系统,对液氩首次进行了高温高压布里渊散射研究:(1)结合激光加热技术、金刚石对顶砧高压技术、高温高压原位布里渊散射系统,利用磁控溅射镀膜技术和光刻技术,首次获得了氩在14.58GPa熔融状态下布里渊光谱和体声速;(2)结合外部电加热的金刚石对顶砧技术及高温高压原位布里渊散射系统,同时采用60°平板式和180°背散的散射几何配置,首次获得了液氩在388K、476K和503K下的布里渊散射光谱,并由此得到了液氩高温高压下的体声速、折射率、等温状态方程、绝热体弹模量等:(3)从我们所获得的液氩的状态方程出发,结合文献理论计算结果,从实验上证实了液氩分子间的多体影响对氩分子间两体势起到软化作用;发现在等温线上,多体关联对状态方程(密度)的影响随压力的增加而增加,随温度的增加而减小:(4)通过对氩的固液两相共存区布里渊光谱的分析,首次获得了氩的固液转变体积差和熔化潜热等重要数据。
     (二)快速增压方法制备大块非晶硫
     非晶态是指物质内部结构中原子呈短程有序、长程无序排列的一种状态,而非晶态材料做为新型的功能材料已获得越来越广泛的应用。对比于传统的非晶制备方法,考虑到压力和温度在热力学上的对等关系,我们认为对熔融液体因快速改变压力导致的凝固与快速改变温度一样可以获得亚稳态结构,同时因其分子的凝聚过程将不再受到热传导率的限制,由此可获得大块非晶材料。本部分论文利用本实验室的快速增压压机对熔融态硫进行了快速增压实验,增压速度和幅度分别为0.1GPa/ms和2GPa。做为对比实验,我们还设计了三种不同的熔融硫的凝固过程:常压下自然冷却、高压下淬火和快速增压。对四组实验所获得固态硫分别进行X射线衍射和差示扫描热分析后,发现快速增压方法能够有效地抑制晶态的生长,获得纯度较高的非晶态硫。虽然高压下淬火和慢速增压也可获得非晶态,但这两种方法均不能完全抑制晶体生长,所制备出的样品中晶态与非晶态共存。通过快速增压过程所获得的非晶硫块直径为20mm,厚度为3mm。这是我们第一次通过快速增压方法成功地制备出单质非晶材料。研究结果显示,快速增压方法是一种有效制备大块非晶材料的新途径。
High pressure physics is a subject that studies the mechanics, optics, electricity, magnetism, microstructure, equation of state and phase transformation of materials under high pressure. Because high pressure research can discover the new phenomena, new properties, new characters of materials or even new substances which do not appear at ambient condition, it provides a great of important experimental and theoretical evidence to synthesize and modify the new materials. Our work has two parts. One is the Brillouin study of argon at high pressures and high temperatures. It is about the physics properties measurement research at high pressure. Another part is the rapid compression induced solidification of bulk amorphous sulfur. It is about the synthesis of new materials. The summery is followed.
     First part is the Brillouin study of argon at high pressures and high temperatures. Because of the closed-shell electronic configuration, the single-atom argon molecular is an ideal system allowing fruitful comparisons between experiments and theoretical calculations. The accurate equation of state of argon is very important to determine the interatomic potentials, including possible effects of many-body forces. In present study, the Brillouin measurement of argon has been performed at high pressures and high temperatures. First, with the laser heating technology and diamond anvil cell (DAC), the Brillouin scattering system for in situ measurements under high pressure and high temperature has been applied in argon. With the help of film deposition technique and photolithographic shaping method, the Brillouin scattering spectra and the longitudinal sound velocities of liquid argon were determined at 0.85GPa and
     14.58GPa. Secondly, we applied the in-situ high pressure and high temperature Brillouin scattering system and external resistant heated diamond anvil cell to study the liquid argon at high pressures and high temperatures. The 60°platelet and 180°back -scattering Brillouin scatterings were performed. The velocities, refractive index, experimental equation of state, and adiabatic bulk modulus as a function of pressure of liquid argon at high P-T conditions were determined for the first time. Thirdly, based on the comparison between the equation of state of liquid argon obtained by present study and the result of previous calculation, we proved the softening consequence of possible many-body contribution to the interatomic potential. It indicated that the many-body contribution to the density of liquid argon gradually increases with increasing pressure and decreases with increasing temperature. Last, with the Brillouin spectra of co-existence of liquid and solid along argon equilibrium curve, the experimental solidifying parameters of argon at equilibrium at high pressures and high temperatures are obtained for the first time.
     Second part is the rapid compression induced solidification of bulk amorphous sulfur. Amorphous state is a state that the molecular structure is arranged orderly in short distance but disorderly in long distance. As special functional material, amorphous substances have been used more and more widely. Contrast to the traditional methods to produce amorphous solid and considering the equal effect of pressure and temperature in thermodynamic, we believe that changing the pressure rapidly has the same thermodynamic effect as changing the temperature abruptly in the process of producing metastable structure. Furthermore, in the rapid compressing process the whole sample, whether surface or interior, is held in a synchronously thermal environment, where the thermal conduction is not working. As a result, the size of the sample solidified as amorphous or metastable structure should not be limited by its thermal conductivity. In present study, we applied the rapid compression apparatus to investigate the solidification behavior of liquid sulfur, which a high pressure jump from ambient pressure to 2GPa with a speed of 0. 1GPa/ms were performed. The contrast experiments are designed as natural cooling at ambient pressure, quenching at high pressure and slow compression. All the solid sulfur samples thus obtained were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The results showed that rapid compression can effectively suppress the crystallization of liquid sulfur and induce the solidification of an amorphous phase from the melt in sulfur. Furthermore although the amorphous phase can also be obtained by quenching at high pressure and slow compression, these two processes are not so effective as to suppress the crystallization completely and the samples obtained are coexisted with crystals and amorphous. The sample obtained by rapid compression is a bulk amorphous solid 20mm in diameter and 3mm in thickness. It indicates that the rapid compression method is a promising alternative for making bulk amorphous solids for more substances.
引文
[1]A.Jaraman Merrill.Diamond anvil cell and high-pressure physical investigations.Rev.Mod.Phys.1983,55:65-108.
    [2]J.C.Jamieson,A.W.Lawson,and N.D.Nachtrieb,New Device for Obtaining X-Ray Diffraction Patterns from Substances Exposed to High Pressure Rev,Sci.Instrum.1959,30:1016-1019
    [3]高压物理讲义(参考资料),吉林大学超硬材料国家重点实验室.
    [4]A.W.Lawson,and T.Y.Tang,A Diamond Bomb for Obtaining Powder Pictures at High Pressures Rev.Sci.Instrum.1950,21:815.
    [5]经福谦等著,实验物态方程导引,科学出版社,1986年,p56
    [6]B.A.Weinstein,G.J.Piermarini,Raman scattering and phonon dispersion in Si and GaP at very high pressure,Phys.Rev.B,1975,12:1172-1186.
    [7]K.R.Hirsch,W.B.Holzapfel,Diamond anvil high-pressure cell for Raman spectroscopy,Rev.Sci.Instrum.1981,52:52-55.
    [8]K.Sassen,R.Sonnenschein,Microoptic double beam system for reflectance and absorption measurements at high pressure,Rev.Sci.Instrum.1982,53:644-650.
    [9]I.L.Spain,D.R.Black,Energy dispersive x-ray diffraction in the diamond anvil,high-pressure apparatus:Comparison of synchrotron and conventional x-ray sources,Rev.Sci.Instrum.1985,56:1461-1463.
    [10]H.K.Mao,P.M.Bell,High-pressure physics:sustained static generation to 1.36 to 1.72 megabars,Science,1978,200:1145-1147.
    [11]H.T.Hall,Ultra-High-Pressure,High-Temperature Apparatus:the "Belt",Rev.Sci.Instrum.1960,31:125-131.
    [12]H.T.Hall,Anvil Guide Device for Multiple-Anvil High Pressure Apparatus,Rev.Sci.Instrum.1962,33:1278-1280.
    [13]A.Ohtani,A.Onodera,and N.Kawai,Pressure apparatus of split-octahedron type for x-ray diffraction studies,Rev.Sci.lnstrum.1979,50:308-315.
    [14]E.A.Perez-Albuerne,K.F.Forsgren,and H.G.Drichamer,Apparatus for X-Ray Measurements at Very High Pressure,Rev.Sci.Instrum.1964,35:29-33.
    [15]D.W.Pipkorn,C.K.Edge,P.Debrunner,G.DePasquali,H.G.Drichamer,H.Frauenfelder.M(o|¨)ssbauer Effect in Iron under Very High Pressure,Phys.Rev.1964,135:A1604-1612.
    [16]H.G.Drichamer,Revised Calibration for High Pressure Optical Bomb,Rev.Sci.Instrum.1961:32,212-213.
    [17]R.M.Housley and J.G.Dash,R.H.Nussbaum,Mean-Square Displacement of Dilute Iron Impurity Atoms in High-Purity Beryllium and Copper,Phys.Rev.1964,136:A464-466.
    [18]A.Jayaraman,Ultrahigh pressures,Rev.Sci.Instrum.1986,57:1013-1031.
    [19]M.Ito,J.Hori,H.Kurisaki,H.Okada,A.J.Perez Kuroki,N.Ogita,M.Udagawa,H.Fujii,F.Nakamura,T.Fujita,and T.Suzuki,Pressure-Induced Superconductor-Insulator Transition in the Spinel Compound CuRh2S4,Phys.Rev.Lett.2003,91:077001.
    [20]Murase S,Yanagisawa M,Sasaki S,Development of low-temperature and high-pressure Brillouin scattering spectroscopy and its application to the solid I form of hydrogen sulphide.J.Phys.:Condens Matter,2002,14,11537-11541.
    [21]Chang-Sheng Zha,William A.Bassett,Internal resistive heating in diamond anvil cell for in situ x-ray diffraction and Raman scattering,Rev.Sci.Instrum.2003,74:1255-1262.
    [22]H.K.Mao and P.M.Bell,High-pressure physics:the 1-megabar mark on the ruby R1 static pressure scale,Science,1976,191:851-852.
    [23]G.J.Piermarini,S.Block,and J.S.Barnet,Hydrostatic limits in liquids and solids to 100 kbar,J.Appl.Phys.1973,44:5377-5382.
    [24]D.H.Liebenberg,A new hydrostatic medium for diamond anvil cells to 300kbar pressure,Phys.Lett.A.1979,73:74-76.
    [25]R.L.Mills,D.H.Liebenberg,J.C.Bronson,and L.C.Schmidt,Procedure for loading diamond cells with high-pressure gas,Rev.Sci.Instrum.1980,51:891-895.
    [26]G.J.Piermarini,S.Block,Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale,Rev.Sci.Instrum.1975,46:973-979.
    [27]W.A.Bassett,T.Takahashi,P.W.Stook,X-Ray Diffraction and Optical Observations on Crystalline Solids up to 300 kbar,Rev.Sci.Instrum.1967,38:37-42.
    [28]L.Merrill,W.A.Bassett,Miniature diamond anvil pressure cell for single crystal x-ray diffraction studies,Rev.Sci.Instrum.1974,45:290-294.
    [29]G.Huber,K.Syassen,W.B.Holzapfel,Pressure dependence of 4f levels in europium pentaphosphate up to 400 kbar,Phys.Rev.B,1977,15:5123-5128.
    [30]张葳葳,非线性光学材料的高压研究,吉林大学博士学位论文,2003年
    [31]Li Li,Donald J.Weidner,Jiuhua Chen et al.,X-ray strain analysis at high pressure:Effect of plastic deformation in MgO.J.Appl.Phys.,2004,95:8357-8365
    [32]R.M.Hazen and L.W.Finger,High-temperature diamond-anvil pressure cell for single-crystal studies,Rev.Sci.Instrum.1981,52:75-77
    [33]M.A.Baublitz,V.Arnold and A.L.Ruoff,Energy dispersive x-ray diffraction from high pressure polycrystalline specimens using synchrotron radiation,Rev.Sci.Instrum.1981,52:1616-1624.
    [34]J.W.Brasch,A.J.Melveger and E.R.Lippincott,Chem.Phys.Lett.1968,2:99-100.
    [35]D.M.Adams,S.J.Payne and K.M.Martin,Appl.Spectrosc.1973,27:377-381.
    [36]C.H.Whitfield,E.M.Brody and W.A.Bassett,Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell,Rev.Sci.Instrum.1976,47:942-947.
    [37]B.Welber,Micro-optic system for reflectance measurements at pressures to 70kilobar,Rev.Sci.Instrum.1977,48:395-398.
    [38]P.Y.Yu and B.Welber,High pressure photoluminescence and resonant Raman study of GaAs,Solid State Commun.1978,25:209-211
    [39]W.A.Bassett and T.Takahashi,Silver iodide polymorphs,Am.Mineral.1965,50:1576-1594
    [40]L.G.Liu and W.A.Bassett,The Melting of Iron up to 200 kbar,J.Geophys.Res.1975,80:3777-3782.
    [41]L.Ming and W.A.Bassett,Laser heating in the diamond anvil press up to 2000℃ sustained and 3000℃ pulsed at pressures up to 260 kilobars,Rev.Sci.Instrum.1974,45:1115-1118.
    [42]A.W.Webb,D.U.Gubser and L.C.Towle,Cryostat for generating pressures to 100 kilobar and temperatures to 0.03 K,Rev.Sci.Instrum 1976,47:59-62.
    [43]Raman C.V.,Krishnan K.S.,A New Type of Secondary Radiation,Nature,1928,121:501-502
    [44]G.Landsberg,L.Mandelstamm,Nature,1928,6:557
    [45]程光煦编著,拉曼 布里渊散射——原理及应用 科学出版社,2001
    [46]C.S.Zha,T.S.Duffy,R.T.Downs,H.K.Mao,R J.Hemley.Sound velocity and elasticity of single-crystal forsterite to 16 GPa.J.Geophys.Res.1996,101:17535-17545.
    [47] A. Polian M. Grimsditch, Brillouin scattering from H2O: liquid, ice VI, and ice VII. Phys. Rew. B 1983, 27: 6409-6412
    
    [48] Sinogeikin, S.V., and Bass, J.D. Single-crystal elastic properties of chondrodite:implications for water in the upper mantle. Phys. Chem. Minerals. 1999, 26: 297-303.
    
    [49] Jackson, J.M., Sinogeikin, S.V., and Bass, J.D. Elasticity of MgSiO3 orthoenstatite. Am. Mineral., 1999, 84: 677-680.
    
    [50] Duffy, T.S., Zha, C.-S., Downs, R.T., Mao, H.-K., and Hemley, R.J. Elasticity of forsterite to 16 GPa and the composition of the upper mantle. Nature, 1995, 378: 170
    
    [51] Sinogeikin, S.V., Bass, J.D., and Katsura, T. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: Implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter. 2003, 136: 41-66.
    
    [52] Schilling, F.R., Sinogeikin, S.V., and Bass, J.D. Single-crystal Elastic Properties of Lawsoniteand their Variation with Temperature. Phys. Earth Planet. Inter. 2003,136(1-2): 107-118.
    
    [53] Artem R. Oganov, John P. Brodholt & G. D, Avid Price, The elastic constants of MgSiO_3 perovskite at pressures and temperatures of the Earth's mantle, Nature, 2001,411:934-937
    
    [54] H. Shimizu, S. Sasaki, High-pressure Brillouin Studies and Elastic Properties of Single-crystal Hydrogen Sulfide Grown in a Diamond Cell, Science, 1992,257,514-516.
    
    [55] A. Polian and M. Grimsditch, Phys. Rev. Lett, New High-Pressure Phase of H2O:Ice X, 1984,52: 1312-1314
    
    [56] H.M. Strong, "Early diamond making at General Electric", Am.J. Phys., 1989,57: 794-802
    
    [57] F. P. Bundy, H. T. Hall, H. M. Strong and R.H. Wentorf, Jr.,"Man-made diamonds", Nature, 1955, 176: 51-52
    
    [58] H.P. Bovenkerk, F.P. Bundy, H.T. Hall, H.M. Strong, and R.H.Wentorf, Jr., "Preparation of diamond",Nature,1959,184:1094-1098
    [59]R.H.Wentorf Jr.,Synthesis of the cubic form of boron nitride.J.Chem.Phys.1961,34:809-812
    [60]F.R.Corrigan,F.P.Bundy,Direct transitions among the allotropicforms of boron nitride at high pressures and temperatures.J.Chem.Phys.1975,63:3812-3820.
    [61]Shoji Yamanaka and Akira Kubo,High Pressure Synthesis,Structures and Properties of Three Dimensional C_(60) Polymers,The Review of High Pressure Science and Technology,2006,16:229-235
    [62]D.M.Teter and R.J.Hemley,Low- compressibility carbon nitrides.Science,1996,271:53-55
    [63]K.Shimizu,K.Suhara,M.Ikumo,M.I.Eremets and K.Amaya,Superconductivity in oxygen,Nature 1998,393:767-769
    [64]Mikhail I.Eremets,Viktor V.Struzhkin,Ho-kwang Mao,Russell J.Hemley,Superconductivity in Boron,Science 2001,293:272-274
    [65]Katsuya Shimizu,Hiroto Ishikawa,Daigoroh Takao,Takehiko Yagi and Kiichi Amaya,Superconductivity in compressed lithium at 20 K,Nature.2002,419:597-599
    [66]H.K.Mao,P.M.Bell and R.J.Hemley,Ultrahigh pressures:Optical observations and Raman measurements of hydrogen and deuterium to 1.47 Mbar,Phys,Rev,Lett.1985,55:99-102
    [67]H.E.Lorenzana,I.F.Silvera and K.A.Goettel,Evidence for a structural phase transition in solid hydrogen at megabar pressures Phys,Rev.Lett.1989,63:2080-2083
    [68]M Takano et al,ACuO.sub.2(A:Alkaline Earth) Crystallizing In A Layered Structure,Physica C,1989,159:375-378.
    [69]M G Smith et al,Electron-doped superconductivity at 40 K in the infinite-layer compound Sr_(1-y)Nd_yCuO_2.Nature,1991,351:549-551
    [70]C Q Jin et at,Nature(London),1995,375:301-303
    [71]P.S.Dicarli and F.C.Jamieson,Formation of an Amorphous Form of Quartz under Shock Conditions,J.Chem.Phys.1959,31:1675-1676
    [72]O.Mishima et al.,'Melting ice' I at 77 K and 10 kbar:a new method of making amorphous solids,Nature 1984,310:393
    [73]Zou G.T.,Liu Z.X.,Wang L.Z.,Pressure-induced amorphization of crystalline Bi_4Ge_3O_(12),Phys.Lett.,A 1991,156:450-454
    [74]Angell C.A.,Formation of glasses from liquids and biopolymers,Science 1995,267:1924-1935
    [75]王文魁,高压物理学报,1989,第3卷,第4期,257
    [76]王文魁,许应凡,黄新明,中国科学A辑,1992,第12期,1305
    [77]Xu Y.F.,Huang X.,Wang W.K.,Preparation of bulk metallic glass Pd40Ni40P20 under high pressure,Appl.Phys.Lett.1990,56:1957-1958
    [78]C.Yang,R.P.Liu et al.,Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching,Appl.Phys.Lett.2005,87:051904
    [79]T.Seking,HongLiangHe,T.Kobayasni,etal.,Shock-induced of β-Si3N4to a high-Pressure cubie-spinel Phase,Applied Physies letters 2000,76:3706.
    [80]T.Irifune,N.Kubo,M.Isshiki and Y.Yamazaki,Geophys.Res.Lett.,1998,25:203.
    [81]P.Berastegui,S.Hull,F.J.Garcia and J.Grins,J.Solid State Chem.,2002,168:294-305.
    [82]P.Perlin,I.Gorczyca,N.E.Chritensen,Pressure studies of gallium nitride:Crystal growth and fundamental electronic properties Phy.Rev.B,1992,45:13307-13313
    [83]禹日成,许大鹏,苏文辉,高压截获十次准晶相关晶体相和纳米级超微粒.高压物理学报,1995,9:257-263
    [84]M.van Thiel and B.J.Alder,Shock compression of argon.J.Chem Phys.1966,44(3):1056-1065
    [85]Martin A.van der Hoef Paul A.Madden,Three-body dispersion contributions to the thermodynamic properties and effective pair interactions in liquid argon,J.Chem.Phys.,1999,111:1520-1526
    [86]Hiroyasu Shimizu,Hideyuki Tashiro,Tetsuji Kume,and Shigeo Sasaki,High-Pressure Elastic Properties of Solid Argon to 70 GPa,P.R.L.,2001,86:4568-4571
    [87]Andrew P.Jephcoat Rare-gas solids in the Earth's deep interior NATURE,1998,393:355-358
    [88]Hasso B.Niemann;Sushil K.Atreya;George R.et al.,The Galileo Probe Mass Spectrometer:Composition of Jupiter's Atmosphere Science,1996,272:846-849.
    [89]J.Xu,Pressure calibration with argon and the equation of state for ruby to 600kbar.High Temperature-High Pressure 1987,19:661-664
    [90]Bridgman,The Melting Parameters of Nitrogen and Argon under Pressure,and the Nature of the Melting Curve,Phys.Rev.1934,46:930-933,
    [91]S.L.Robertson,S.E.Babb,Jr.,and Gene J.Scott,Isotherms of Argon to 10 000bars and 400° C,J.Chem.Phys.1969,50:2160-2166
    [92]郑兆勃.非晶固态材料引论.科学出版社.1987.p1-8
    [93]章熙康.非晶态材料及其应用.北京科学技术出版社.1987.p3-39
    [94]刘秀茹,快速增压法制备大块金属玻璃及金属玻璃的高压相变研究,西南交通大学博士学位论文,2007年,p1-6
    [95]Turnbull D,On the Free-Volume Model of the Liquid-Glass Transition,J.Chem.Phys.1970,52:3038-3041
    [96]S.M.Hong,L.Y.Chen,X.R.Liu,X.H.Wu,and L.Su High pressure jump apparatus for measuring Gruneisen parameterof NaCl and studying metastable amorphous phase of poly.ethylene terephthalate.Rev.Sci.Instrum.2005,76:053905-053910
    [97]Hejny C,Lundegaard L F,Falconi S and McMahon M I,Incommensurate sulfur above 100 GPa, Phys. Rev. B 2005, 71: 020101
    
    [98] Stolz M, Winter R, Howells W S, Mcgreevy R L and Egelstaff P A. The structural properties of liquid and quenched sulphur II, J. Phys.: Condens. Matter.1994,6:3619-3628
    
    [99] T. Blachowicz, R. Bukowski, Z. Kleszczewsk, Fabry-Perot Interferometer in Brillouin Scattering Experiments, Rev. Sci. Instrum., 1996, 67, 4057-4060.
    
    [100] G. Shen, M. L. Rivers, Y. Wang. Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature. Rev. Sci. Instrum., 2001, 72: 1273-1282
    
    [101] Matusi M., Breathing shell model in molecular dynamics simulation: Application to MgO and CaO. J Chem Phys, 1998, 108:330423309
    
    [102] B. B. Karki and R. M. Wentzcovitch, High-pressure lattice dynamics and thermoelasticity of MgO, Phys. Rev. B. 2000, 61: 8793-8800.
    
    [103] Ganglin Chen; Robert C. Liebermann; Donald J. Weidner, Elasticity of Single-Crystal MgO to 8 Gigapascals and 1600 Kelvin, Science. 1998, 280:1913-1916
    
    [104] Chang-Sheng Zha, Ho-kwang Mao, and Russell J. Hemley, Elasticity of MgO and a primary pressure scale to 55 GPa, PNAS, 2000, 97: 13494-13499
    
    [105]J.F. Karnicky, H .H. Rcamer and C.J. Pings, Determination of the argon intermolecular pair potencial by X-ray diffraction from the dense gas. J. Chem. Phys.1976,64:4592-4600
    
    [106] O. K. Rice, The Solid-Liquid Equilibrium in Argon. J. Chem. Phys. 1938, 6:472-475.
    
    [107] W.Mcmillan, Approximate Compressibilities of Elements on the Statistical Model. Phys.Rev. 1958, 111:479.
    
    [108] M. Van Thiel and B. J. Alder, Shock Compression of Argon . J. Chem. Phys.1966,44: 1056-1065
    [109] W. J. Nellis and A. C. Mitchell, shock compression of liquid argon, nitrogen,and oxygen to 90GPa, J. Chem. Phys. 1980, 73: 6137-6145.
    
    [110]Marvin Ross, shock compression of argon and xenon.IV.Conversion of xenon to a metal-like state, Phys.Rev. 1968, 171: 777-784.
    
    [111]M. Ross and B. J. Alder, shock compression of argon. III. the Thomas-Fermi-Dirac theory, J. Chem. Phys. 1967, 47: 4129-4133.
    
    [112] Marvin Ross, shock compression and the melting curve for argon, Phys. Rev. A 1973,8: 1466-1474.
    
    [113] W. B. Streett and L. A. K. Staveley, Experimental study of the equation of state of liquid argon, J. Chem. Phys. 1969, 50: 2302-2307.
    
    [114] R. K. Crawford and W. B. Daniels, equation of state measurements in compressed argon, J. Chem. Phys. 1969, 50: 3171-3183.
    
    [115] D. G. Naugle, J. H. Lunsford, and J. R. Singer, volume viscosity in liquid argon at high pressures. J. Chem. Phys., 1966,45: 4669-4676.
    
    [116] Mahesh C. Aggarwal and George S. Springer, high temperature high pressure thermal conductivity of argon, J. Chem. Phys. 1979, 70: 3939-3947.
    
    [117] A. A. van Well and L. A. de Graaf, Density fluctuations in liquid argon. II.Cogerent dynamic structure factor at large wave vumbers, Phys. Rev. A, 1985, 32:2384-2395.
    
    [118]Edwin C. Morris and Russell G Wylie, Accurate method for high pressure PVT measurements and results for argon for T=-20 to +35 and p in the range 200-480 MPa,J. Chem. Phys. 1980, 73: 1359-1367.
    
    [119]Edwin C. Morris, improved and extended high pressure PVT measurements for argon, J. Chem. Phys. 1984, 81: 581-582.
    
    [120]E. Roland Dobbs and Leonard Finegold, Measurement of the velocity of sound in liquid argon and liquid nitrogen at high pressures, The journal of the acoustical society of America, 1960,32: 1215-1220.
    [121]A.S. El-Hakeem, velocity of sound in Nitrogen and Argon at high pressures, J.Chem. Phys., 1965, 42: 3132-3133.
    
    [122]D.G. Naugle, J.H. Lunsford and J. R. Singer, volume viscosity in liquid argon at high pressures, J. Chem. Phys., 1966, 45: 4669-4676.
    
    [123]D.H. Liebenberg, R.L. Mills and J.C. Bronson, High-pressure apparatus for simultaneous adiabatic and isothermal compressibility measurements: Data on argon to 13kbar, J. Appl. Phys., 1974, 45: 741-747.
    
    [124] L.W. Finger, R. M. Hazen, G. Zou, H. K. Mao, and P. M. Bell, Structural and compression of crystalline argon and neon at high pressure and room temperature,Appl. Phys. Lett. 1981, 39: 892-894.
    
    [125] Jian Xu, Ho-kwang Mao, Peter M Bell, Position-sensitive x-ray diffraction:hydrostatic compressibility of argon, tantalum, and copper to 769kbar, High Temperature-High Pressure, 1984, 16: 495-499
    
    [126] M. Ross, H. K. Mao, P. M. Bell, and J. A. Xu, The equation of state of dense argon: A comparison of shock and static studies, J. Chem. Phys. 1986, 85, 1028-1033.
    
    [127] G. H. Watson, Jr. and W. B. Daniels, Raman scattering from solid argon at high pressure, Phys. Rev. B, 1998, 37: 2669-2673.
    
    [128] D. Errandonea, R. Boehler, S. Japel, M. Mezouar, and L. R. Benedetti, Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa, Phys. Rev. B, 2006, 73: 092106
    
    [129] Ho-kwang Mao, James Badro, Jinfu Shu, Russell J Hemley and Anil Singh,Strength, anisotropy, and preferred orientation of solid argon at high pressures J.Phys.: Condens. Matter, 2006, 18: S963-S968.
    
    [130] C.S. Zha, R. Boehler, D.A. Young et al., the argon melting curve to very high pressures, J. Chem. Phys., 1986, 85(2): 1034-1036.
    
    [131] Fredenic Datchi and Paul Loubeyre, Extended and accurate determination of the melting curves of argon, helium, ice, and hydrogen, P.R.B, 2000, 61: 6535-6546.
    [132] Reinhard Boehler, Marvin Ross, Per Soderlind, and David B. Boercker,High-Pressure Melting Curves of Argon, Krypton, and Xenon: Deviation from Corresponding States Theory. Phys. Rev. Lett., 2001, 86: 5731-5734.
    
    [133]Paul A. Fleury and Jean Pierre Boon, Brillouin scattering in simple liquids:Argon and Neon, Physical Review, 1969, 186: 244-254.
    
    [134]M. Grimsditch, P. Loubeyre and A. Polian, Back-scattering Brillouin scattering (35GPa) together with X-ray measurements. Phys. Rev. B, 1986, 33: 7192-7200.
    
    [135] M. Grimsditch, R. Letoullec, A. Polian, and M. Gauthier, Refractive index determination in diamond anvil cells:results for argon, J. Appl. Phys., 1986,60:3479-3481.
    
    [136]Hans D. Hochheimer, Klaus Weishaupt and Masaki Takesada. High-pressure Brillouin scattering study of dense argon and nitrogen. J. Chem. Phys., 1996, 105 (2):374-378.
    
    [137] H. K. Mao, P. M. Bell, J. W. Shaner, D. J. Steinberg, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 1978, 49,3276-3283.
    
    [138] D. D. Ragan, R. Gustavsen, D. Schiferl, Calibration of the ruby Rl and R2 fluorescence shifts as a function of temperature from 0 to 600 K, J. Appl.Phys. 1992, 72, 5539-5544.
    
    [139] J. Yen, M. Nicol, Temperature dependence of the ruby luminescence method for measuring high pressures, J. Appl. Phys. 1992, 72, 5535-5538.
    
    [140] Stephanie L. Wunder and Paul E. Schoen, Pressure measurement at high temperatures in the diamond anvil cell, J. Appl. Phys. 1981, 52: 3772-3775.
    
    [141] H. Shimizu, E. M. Brody, H. K. Mao, and P. M. Bell, Brillouin Measurements of Solid n-H_2 and n-D_2 to 200 kbar at Room Temperature. Phys. Rev. Lett. 1981,47: 128-131.
    [142] J. Xu and M.H. Manghnani, Brillouin-scattering studies of a sodium silicate glass in solid and melt conditions at temperatures up to 1000 ℃. Phys. Rev. B, 1992,45: 640-645.
    
    [143] J. Xu, M.H. Manghnani and P. Richet, Brillouin-scattering studies of K_2Si_4O_9 glass and melt up to 1000 °C. Phys. Rev. B, 1992, 46: 9213-9215.
    
    [144] C.T. Tung, G.E. Duvall and W. Band, Modification of the Significant Structure Theory of Liquids for Argon at High Pressures and Temperatures, J. Chem. Phys.1970, 52: 5252-5260.
    
    [145] J. A. Barker, High pressure equation of state for solid argon from interatomic potentials, J. Chem. Phys. 1987, 86: 1509-1511.
    
    [146] Marvin Ross, Intermolecular potentials for liquid argon, J. Chem. Phys, 1989,90(2): 1209-1211.
    
    [147] Toshiaki Iitaka and Toshikazu Ebisuzaki, First-principles calculation of elastic properties of solid argon at high pressures, P. R. B, 2001, 65: 012103
    
    [148] Taku Tsuchiya and Katsuyuki Kawamura, First-principles study of systematics of high-pressure elasticity in rare gas solids, Ne, Ar, Kr, and Xe, J. Chem. Phys.,2002, 117:5859-5865.
    
    [149] Martin A. van der Hoef Paul A. Madden, Three-body dispersion contributions to the thermodynamic properties and effective pair interactions in liquid argon, J.Chem. Phys., 1999, 111: 1520-1526.
    
    [150] Herbert Stenschke, Effective Axilrod-Teller interaction in van der Waals gases and liquids, J. Chem. Phys. 1994, 100: 4704-4705
    
    [151] He D.W. et al., Quenching with rapid decompression—a new method for rapid solidification. Appl. Phys. Lett., 1997, 71: 3811-3813.
    
    [152] R Boehler, I.C.Getting and GCKennedy, Gruneisen parameter of NaCl at high compressions, J. Phys. Chem. Solids, 1976, 38: 233-236.
    
    [153] 王筑明,谢鸿森,郭捷,徐济安,高压物理学报, 1998, 12:54-59
    [154]Quednau J,Schneider G.M,A new high-pressure cell for differential pressure-jump experiments using optical detection.Rev.Sci.Intrum.1989,60:3685-3687.
    [155]Steinhart M,Kriechbaum M,Pressl Let al.,High-pressure instrument for small-and wide-angle x-ray scattering.Ⅱ.Time-resolved experiments.Rev.Sci.Intrum.1999,70:1540-1545.
    [156]Woenckhaus J,Kohling R,Winter R et al.,High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique,Rev.Sci.Intrum.2000,71:3895-3899.
    [157]Degtyareva O,Gregoryanz E,Somayazulu M,Dera P,Mao H-k and Hemley R J.Nature Mater.2005,4:152
    [158]《无机化学丛书》第五卷,科学出版社,1998,p153-166
    [159]Stolz M,Winter R,Howells W S,Mcgreevy R L and Egelstaff P A J.Phys.:Condens.Matter,1994,6:3619-3628.
    [160]Lundegaard L F,Falconi S and McMahon M I,Incommensurate sulfur above 100 GPa,Phys.Rev.B,2005,71:020101
    [161]C.Pastorino and Z.Gamba,Toward an anisotropic atom-atom model for the crystalline phases of the molecular S_8 compound,The Journal of Chemical Physics,2001,115:9421-9426.
    [162]Meyer B,Element sulfur,Chem.Rev.1976,76:367-388
    [163]Geller S,Pressure-Induced Phases of Sulfur,Science,1966,152:644-646.
    [164]Baak T,Sulfur:A New High-Pressure Form,Science,1965,148:1220-1221.
    [165]Vezzoli G C,Dachille F and Roy R,Sulfur Melting and Polymorphism under Pressure:Outlines of Fields for 12 Crystalline Phases,Science,1969,166:218-221.
    [166]Luo H and Ruoff A L,X-ray-diffraction study of sulfur to 32 GPa:Amorphization at 25 GPa,Phys.Rev.B,1993,48:569-572.
    [167]Olga Degtyareva,Novel chain structures in group Ⅵ elements,Nature:Mat. 2005,4:152-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700