磁流变液夹层梁的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能材料结构是为适应现代航空、航天、电子、机械等高技术领域提出的高要求而发展起来的一类新型结构。磁流变液是一种智能材料,利用磁流变效应开发出来的产品具有无级调控、噪音低、响应速度快、结构简单可靠、能耗低,在航空、航天、土木、机械、汽车等领域有着巨大的应用潜力。
     磁流变液在外加磁场作用下,其物理性能——粘度、剪切模量、阻尼会发生快速、可控、可逆变化,将磁流变液与其他弹性材料进行复合,形成磁流变液夹层梁、板结构,通过改变磁场强度来控制夹层结构的刚度、阻尼等特性从而实现对结构振动特性的控制,这对于控制飞行器、汽车以及机械结构的工作性能有着重要的应用价值。为此,本文对磁流变液夹层梁结构的动力学问题进行了理论与试验研究,主要工作包括:
     1.将夹层梁结构中的磁流变液处理为线性粘弹性材料,应力——应变关系用复模量表示,建立了磁流变液夹层梁结构的弯曲振动模型,分析了磁流变液夹层梁结构在简支和悬臂两种边界条件下的振动特性。
     2.提出了磁流变液非连续分布的夹层梁的结构形式和设计方法,得到了该种梁结构的固有频率、损耗因子、振型函数、动力响应与外激励频率及磁场强度间的关系。
     3.建立了磁流变液夹层简支梁有限元模型,分别形成了上下弹性层和中间磁流变液层的单元矩阵,推导了磁流变液夹层简支梁的动力学方程,分析了上下面板为铝材的磁流变液夹层简支梁的振动特性以及简谐激励下磁流变液夹层梁的动力响应,分析了不同磁场强度和磁流变层厚度对动力响应的影响。
     4.进行了磁流变液夹层悬臂梁、简支梁结构在不同磁场作用下的动力学实验研究,分析了磁流变液对夹层悬臂梁、简支梁结构振动抑制的效果及影响。
     本文的理论分析与试验结果吻合较好。随着外加磁场强度的增加,磁流变液夹层梁的固有频率和损耗因子均增大,振动响应明显减小,说明在外加磁场作用下磁流变液对夹层梁有显著的振动抑制作用。
Smart material structure is a new structure developed to meet the high requirement in the fields of modern aeronautics, astronautics, electronics and mechanics. Magnetorheological fluid (MRF) is a kind of inteligent material. The devices made by using magnetorheological effect have a lot of advantages such as continuous controll ability, less noise, fast response, simplicity of structure, low power consumption and so on. Therefore MRF has a great potential application in engineering.
     The properties of MRF, such as viscosity, shear modulus and damping can be changed quickly, controllably and reversibly under the varying magnetic field. The MRF can be compounded with other elastic materials to form the MRF sandwich beams and plates. The stiffness and damping properties of such structures can be controlled through the different levels of applied magnetic field, which is great worthy to control the working performance of aerospacecraft, vehicle and mechanical structures. The dynamics of MRF sandwich beam structures has been investigated theoretically and experimentally in this thesis. The main research includes as follows.
     1. The MRF was supposed to be the linear viscoelastic materials. The stress–strain relationship of MRF was expressed by using the complex shear modulus. The flexural vibration model of the MRF sandwich beam structures has been developed. The vibration characteristics of beam structures with the simply supported and cantilevered conditions were analyzed.
     2. A kind of beam structure with non-continously distributed MRF and its design method have been presented. The relationships of the natural frequencies, loss factors, mode shapes, and transverse vibration response with the excitation frequencies and applied magnetic field levels have been obtained.
     3. A finite element model of a simply supported MRF sandwich beam has been developed. The element matrices of up and down elastic material layers and internal MRF layer were formed to derive the dynamic equations of the MRF sandwich beam. The vibration properties and the responses under the harmonic excitation of the simply supported MRF sandwich beam with up and down Aluminium layers were analyzed. The effects of the magnetic field level and height of MRF on the dynamic response were also analyzed.
     4. The experimental investigation of dynamics of the MRF sandwich beam structures with the simply supported and cantilevered boundary conditions was conducted, under the different magnetic field levels. The effects of MRF on the vibration suppression of the beam structures were analyzed.
     The theoretical results agreed with the experimental results. The natural frequencies and loss factors of the MRF sandwich beam structures increased with the increment of the applied magnetic field levels, and the vibration response of the beam structures decreased obviously, which indicated that MRF had an effective vibration suppression of the sandwich beam structures under the applied magnetic field.
引文
[1]陶宝祺.智能材料结构. [M]北京:国防工业出版社,1997
    [2]杨大智.智能材料与智能系统. [M]天津:天津大学出版社,2000
    [3] Spencer Jr B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological damper. [J] Journal of Engineering Mechanics , 1997 ,123(3): 230-238
    [4] Carlson J D. Magnetorheological fluid actuators. Adaptronics and Smart Structures. [M] edited by Jendritza D J and Janocha H, Springer Verlag, 1997
    [5]李卫华.有关电流变液,磁流变液若干应用基础问题的研究. [博士学位论文]合肥:中国科学技术大学,1999
    [6]汪建晓,孟光.磁流变液研究进展. [J]航空学报, 2002,23(1):6-12
    [7]魏铁华,杨晓红.电流变技术与磁流变技术. [J]水利电力机械, 2002,24(2):57-60
    [8] Kim S H, Park Y. Constrained rotary MR damper design and its application. [C] Proceedings of 4th International Conference on Motion and Vibration Control, ETH Zurich, Switzerland, 1998
    [9] Carlson J D, Catanzarite D M, Clair K A St. Commercial magnetorheological fluid devices. In:Bullogh W A, [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1996: 20-28
    [10] Qing Sun, Jin-Xong Zhou, Ling Zhang.An adaptive and dynamic characteristics of magnetorheological materials. [J] Journal of Sound and Vibration. 2003,261:465-481
    [11] Yalcintas M, Heming Dal.Vibration suppression capabilities of magnetorheological materials based adaptive structures. [J] Smart Materials and Structures.2004,13 (1):1-11
    [12] Hu Bai-xiang, Zhen Guo-liang, Xia Pin-qi. Study on the vibration of a sandwich beam with smart composites—MRF. [J] Material Science Forum , 2007,546-549 : 1649-1654
    [13]胡白香,王冬兵,夏品奇.磁流变液在悬臂夹层梁振动抑制中的实验研究. [J]实验力学,2005,4:549-553
    [14] Gast A P, Furst E. Micromechanics and Dynamics in Magnetorheological Suspensions. [C] Proceedings of 5th Microgravity Fluid Physics and Transport Phenomena Conference, NASA Glenn Research Center, Cleveland, 2000
    [15] Liu J , Hagenbuchle M. Chain Dynamics in a Dilute Magnetorheological Fluid [C].Proceedings of 3th Microgravity Fluid Physics Conference, Cleveland, 1996
    [16] Ashour O, Kinder D, Giurgiutin V. Manufacturing and Characterization of Magnetorheological Fluids. SPIE, 1997, 3040: 174-184
    [17] Carlson J D, Weiss K D. A Growing Attraction to Magnetic Fluids. [J] Machine Design, 1994,8: 61-64
    [18] Carlson J D, Spencer Jr B F. Magneto-Rheological Fluid Dampers for Semi-Active Seismic Control. [C] Proceedings of 3rd International Conference on Motion and Vibration Control, Chiba, Japan, 1996, 8: 35-40
    [19] Kordansky W, Gorodkin S D. Magnetorheologicl Fluid Based Seal. [J] Journal of Intelligent Material Systems and Structure,1996,7:569-572
    [20] Felt D W. Rheology of a Magnetorheological Fluid. [J] Journal of Intelligent Material Systems and Structure, 1996, 7: 589-593
    [21]王琪民,徐国梁.磁流变液性能及其工程应用. [J]中国机械工程,2002,13(3):267-270
    [22]关新春,李金海,欧进萍.足尺磁流变液耗能器的性能与试验研究. [J]工程力学,2005,22(6):207-281
    [23] Marcelin J L, Trompette Ph,Smati A. Optimal Constrained Layer Damping with Partial Coverage. [J] Finite Elements in Analysis and Design. 1992,12(3-4):273-280
    [24] Rao V S, Sankar B V, Sun C T. Constrained layer damping of initially stressed compossite beams using finite elements. [J] Composite Structures, 1992 ,26 :1752– 1766
    [25] Rikards R. Finite element analysis of vibration and damping of laminated composites. [J] Composite Structures, 1993 ,24 :193-204
    [26] Johnson C D, Kienholz D A. Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers, AIAA J . 1982 ,20 :1284-1290
    [27] Sainsbury M G, Zhang Q J. Galerkin element method applied to the vibration ofdamped sandwich beams. [J] Computers and Structures, 1999,71(3):239– 256
    [28] Pikards P, Chate A, Barkanov E. Finite element analysis of damping the vibrations of laminated composites. [J] Computers and Structures, 47 (6) , 1993:1005-1015
    [29] Baber T T, Maddox R A, Orozco C E. Finite Element Model for Harmonically Excited Viscoelastic Sandwich Beams. [J] Computers and Structures,66,1998 :105-113
    [30]陈前,朱德懋.粘弹结构动力学分析.[J]振动工程学报,1989, 2 (3):42-51
    [31]任志刚,楼梦麟,田志敏.复合夹层梁动力响应的谱有限元解. [J]同济大学学报(自然科学版),2004,32(10):1382-1385
    [32]江绛.磁流变液智能材料夹层梁的设计、理论与实验研究. [硕士学位论文],南京:南京航空航天大学,2006
    [33]王唯,夏品奇,刘朝勇.基于Bouc- Wen方程的磁流变阻尼器实验建模. [J]振动工程学报,2006,19(3):296-301
    [34] Kormann C, Laun H M. Richter H J. MR Suspensions and Associated Technology. [J] World Scientific,1996:362-367
    [35]彭金松,萧蕴诗,苏永清等.磁流变液的流变特性及其应用前景. [J]液压与气动, 2003,8:27-29
    [36] Kordonsky W. Magnetorheological effect as a base of new devices and technologies. [J] Journal of Magnetism and Magnetic Materials, 1993,122:395-398
    [37] Kordonsky W. Elements and devices based on Magnetorheological effect. [J] Systems and Structures. 1993,4 (1):65-69
    [38] Mark R J, Jonathan W B, Carlson J D. Properties and Applications of Commercial Magnetorheological Fluids, SPIE,1998, 3327:262-275
    [39] Bossis G, Lemaire E. Yield Stresses in Magnetic Suspensions. [J] Journal of Rheology, 1991,35:1345-1354
    [40] Ginder, J M, Davis L C. Shear Stress in Magnetorheological Fluids. [J] Applied Physics Letters, 1994,65 (1):3410-3412
    [41]金昀,张培强,汪小华等.磁流变液剪切屈服应力的数值计算. [J]中国科学技术大学学报,2001,4:168-173
    [42] Kordonsky W, Gorodkin D. Magnetorheological fluid based seal. [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1996:704-709
    [43] Shulman Z P, Kordonsky W , Zaltsgendler E A. Structure, physical properties anddynamics of magnetorheological suspensions. [J]International Journal of Multiphase flow, 1986, 12(6): 935-955
    [44]胡林,张朝平,罗玉萍等.铁/蛋白质复合微粒的结构及其磁流变性能. [J]复合材料学报,2001, 18(3):14-17
    [45] www.mrfluid.com
    [46] Weiss K D , High Strength Magneto- and Electro-rheogical Fluids, Society of Automotive Engineers, SAE paper, No:932541, 1993
    [47] Dang A, Ooi L, Fales J. Yield Stress Measurements of Magnetorheological Fluids in Tubes. [J]Industrial and engineering chemistry research., 2000,39:2269-2274
    [48] Kordonsky W, Static yield stress in magnetorheological fluid. [J] International Journal of Modern Physics B, 2001,15:1082-1085
    [49] Navarrete R C, Scriven L E, Macosko C W. Rheology and Structure of Flocculated Iron Oxide Suspensions. [J] Journal of Colloid and Interface Science, 1996, 180:200-211
    [50]唐新鲁.有关电流变液、磁流变液机理若干问题的研究.[博士学位论文],合肥:中国科学技术大学, 1996
    [51] Weiss K D, Carlson J D, Nixon D A. Viscoelastic properties of magneto- and electro-rheological fluid. [J] Journal of Intelligent Materials Systems and Structures, 1994(5 ):772-775
    [52] Li W H, Chen G, Yeo S H. Viscoelastic Properties of MR fluids. [J] Smart Materials and Structures, 1999, 8:460-468
    [53] Chin B D. Rheological Properties and Dispersion Stability of Magnetorheological Suspensions. [J] Reologica Acta, 2001,40:211-219
    [54] Lemaire E. Influence of the Particle Size on the Rheology of Magnetorheological Fluids. [J] Journal of Rheology, 1995, 39:1011-1020
    [55] Simon T M. The Effective Magnetic Properties of Magnetorheological Fluids. [J] Mathematical and Computer Modelling ,2001,33:273-284
    [56] Ginder J M, Davis L C, Elie L D. Rheology of Magnetorheology Fluids: Models and Measurements. [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1995:504-515
    [57] Jolly M R, Carlson J D, Munoz B C. A Model of the Behavior of MagnetorheologicalMaterials. [J]Smart Materials and Structures , 1996,3(5):607-614
    [58]司鹄.磁流变体的力学机理研究. [博士学位论文] ,重庆:重庆大学,2003
    [59] Shtarkman E M. Fluid respans to magnetic field. U.S.Patent 5167850, 1992
    [60] Pinkos A, Shtarkman E, Fitzgerald T. An actively damped passenger car suspension system with low voltage electrorheological magnetic fluid. SAE Technical Paper Series 930268, 1993
    [61] DykE S J, Spencer Jr B F, Sain M K, et al. Modeling and control of magneto -rheological dampers for seismic response reduction. [J] Smart Materials and Structures, 1996, 5(5):565-575
    [62] Zhu Y, Haddadian E, Mou T, et al. Role of nucleation in the structure evolution of a magnetorheological fluid. [J] Physical Review E, 1996, 53(2):1753-1759
    [63] Liu J, Mou T, Flores G A, et al. The evolution of field-induced structure of confined ferrofluid emulsions. [C] Proceeding of the 5th International Conference on ER and MR Fluids,1994:190-201
    [64] Liu J, Lawrence E M, Wu A, et al. Field-induced structures in ferrofluid emulsions. [J] Physical Review Letters, 1995, 74(14):2828-2831
    [65] Kordonsky W, Shulman Z, Gorodkin S, et al. Physical properties of magnetizable structure reversible media. [J] Journal of Magnetism and Magnetic Materials, 1990, 85:114-120
    [66] Kormann C, Laun H M, Richter H J. MR fluids with nano-sized magnetic particles. [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1996: 362-367
    [67] Bolter R, Janocha H. Performance of long-stroke and low-stroke MR fluid dampers. SPIE, 1998,3327: 303-313
    [68] Takimoto J, Taketa H, Masubuchi Y, et al. Stress rectification in MR fluids under tilted magnetic field In: Nakano M, Koyarna K, [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1998:454-461
    [69] Nakano M, Yamamoto H, Jolly M R. Dynamic viscoelasticity of a magnetorheological fluid in oscillatory slit flow. [C] Proceeding of the 5th International Conference on ER and MR Fluids, 1998: 551-559
    [70]朱应顺,龚兴龙,张培强等.磁流变液剪切屈服应力的数值分析. [J]中国矿业大学学报,2006,35(4):498-503
    [71]汪小华,张培强.磁流变液阻尼器的模糊逻辑非参数建模. [J]中国科学技术大学学报,2000,30(2):218-222
    [72]金昀,唐新鲁,王晓杰等.磁流变液屈服应力的管道流测试方法. [J]实验力学,1998,13(2):168-173
    [73]江万权,张复殿,陈祖耀等.羰基铁粉表面纳米钴修饰及其对磁流变液性能的影响. [J]功能材料,2006,7:1163-1165
    [74]程彬,朱玉瑞,陈祖耀,周刚毅等.超细金属铁颗粒的高分子修饰及其悬浮液的磁流变性能. [J]化学物理学报, 2000, 13(2) : 215-219
    [75]潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应. [J]功能材料,1997, 28(2): 264-266
    [76]范健,孙清,王学明等.磁流变阻尼器抗震应用的试验研究. [J]长安大学学报(建筑与环境科学版),2003,20(3):9-11
    [77]杨仕清,彭斌,蒋洪川等.复合智能磁流变液的制备及流变性质研究. [J]材料工程,2000(9):21-24
    [78]余心宏,王立忠.磁流变流体稳定性机理分析.[J]航空工程与维修,1998,6:7-8
    [79]王代华,黄尚廉.斜拉桥横向振动的半主动筋腱控制. [J]应用力学学报, 2000, 17(2):12-18
    [80]汪建晓,孟光.磁流变液阻尼器用于振动控制的理论及实验研究. [J]振动与冲击, 2001,20(2):1-8
    [81]张峰,张学军,余景池等.磁流变抛光数学模型的建立.[J]光学技术, 2000, 26 (2):190-192
    [82] Raj K, Moskowitz R. Commercial Applications of Ferrofluids. [J] Journal of Magnetism and Magnetic Materials, 1990, 85:233-245
    [83] Pradeep D, Phule P. Magnetorheological (MR) fluids: Principles and applications. [J] Smart Materials Bulletin, 2001,12:7-10
    [84] Linder J E, Dimock G A, Werely N W. Design of A Magnetorheological Automotive Shock Absorber, SPIE, 2000, 3985: 426-437
    [85] Zipser L, Richter L, Lange U. Magnetorheological fluids for actuators. [J] Sensors and Actuators A, 2001,92:318-321
    [86] Gorodkin S. A Method and Device for Measurement of a Sedimentation on stant of Magnetorheological Fluids . [J] Review of Scientific Instruments, 2000,71:2476-2480.
    [87] Guangqiang Yang. Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation:Modeling ,Testing and Control.[PhD] Indiana ,Universaty of Notre Dame, 2001
    [88] Ni Y Q, Ko J M, Chen Z Q,Spencer Jr B F. Lessons Learned from Application of Semi-Active MR Dampers to Bridge Cables for Wind-Rain-Induced Vibration Control.[C]Proceedings of China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai, China,2002.
    [89]李惠,刘敏,欧进萍等.斜拉索磁流变智能阻尼控制系统分析与设计. [J]中国公路学报, 2005,18(4):37-41
    [90] Berg C D, Evans L F , Kermode P R . Composite structure analysis of a hollow cantilever beam filled with electro-rheological fluid. [J] Journal of Intelligent Material Systems and Structure, 1996,7 :494-502
    [91] Leng J S, Asundi A. Active vibration control system of smart structures based on FOS and ER actuator. [J] Smart Materials and Structures, 1999,8(2):252-256
    [92] Yeh J Y, Chen L W, Wang C C. Dynamic stability of a sandwich beam with a constrained layer and electrorheological fluid core. [J] Composite Structures , 2004,64(1):47-54
    [93]戴德沛.阻尼技术的工程应用.[M]北京:清华大学出版社,1991
    [94]刘棣华.粘弹阻尼减振降噪应用技术. [M]北京:宇航出版社,1990
    [95] Park C H , Baz A. Vibration Control of Bending Modes of Plates Using Active Constrained Layer Damping. [J] Journal of Sound and Vibration,1999,227(4):711-734
    [96] Baz A, Ro J. Vibration Control of Plate with Active Constrained Layer Damping. [J] Smart Materials and Structures, 1996,5:572-580
    [97]石银明.主动约束层阻尼结构的主动控制研究. [博士学位论文],上海:上海交通大学,2001
    [98] Rongong J A, Wright J R. Modeling of a Hybrid Constrained layer/Piezoceramic Approach to Active Damping. Transaction of the ASME, 119:120-130
    [99] Shen I Y. Bending-Vibration Control of Composite and Isotropic Plate through Intelligent Constrained-layer Treatments. [J] Smart Materials and Structures, 1994,3(1):59-70
    [100] Baz A. Boundary Control of Beams Using Active Constrained Layer Damping. [J] Journal of Vibration and Acoustic,1997,119:166-172
    [101] Kerwin E M. Damping of flexurai waves by a constrained viscoelastic layer. [J] The Journal of the Acoustical Society of America 1959, 31: 952-962
    [102] Ross D, Ungar E E, Kerwin E M. Damping of plate flexural vibrations by means of viscoelastic laminate. Structural damping. Edited by Ruzika J E, ASME, New York. 1959
    [103] Lifshitz J M, Leibowitz M. Optimal sandwich beam design for maximum viscoelastic damping. [J] International Journal of Solids and Structures, 1987,23:1027-1034
    [104] Johnson C D, Kieholz D A, Rogers L C. Finite element prediction of dampering in beams with constrained viscoelastic layers. [J]The Shock and Vibration Bulletion,1981,51:71-81
    [105] Mead D J, Markus S. The forced vibration of a three-layer damped sandwich beam with arbitary boundary conditions. [J] Journal of Sound and Vibration, 1968, 10(2):163-175
    [106] Yalcintas M, Coulter J P. Electrheological material based adaptive beams subjected to various boundary conditions. [J] Journal of Intelligent Material Systems and Structure, 1995, 6:700-717
    [107] Gandhi M V, Thompson B S. Dynamically-tunable smart composites featuring featuring electro-rheological fluids, SPIE, 1170, 1989:294-304
    [108] Choi Y, Sprecher A F, Conrad H. Response of electrheological fluid-fidded laminate composites to forced vbration. [J]Journal of Intelligent Materials Systems and Structres , 1992,3:17-29
    [109]任建亭,闫云聚,姜节胜.电流变液夹层梁的动力学分析. [J]复合材料学报, 2002,19(3):114-119
    [110]鲁宏权,孟光.电流变液夹层板结构的动态特性分析. [J]西北工业大学学报,2000,18(3):452-456
    [111] Christensen R M. Theory of viscoelasticity. [M] New York: Academic Press,1982
    [112]杨挺青.粘弹性力学. [M]武汉:华中理工大学出版社,1990
    [113] Golden J M, Graham G A C. Boundary value problems in linear viscoelasticity. Berlin:Springer-Verlag, 1998
    [114] Drozdow A D. Mechanics of viscoelastic solids. Chichester, UK: John Wiley & Sons,1998
    [115] Li W H, Du H, Chen G. Experimental investigation of creep and recovery behaviors of magnetorheological fluids. [J] Materials Science and Engineering A, 2002,333: 368-376
    [116]桂洪斌,赵德有,郑云龙.粘弹性阻尼层结构动力问题有限元分析综述. [J]振动与冲击,2001,20(1):44-47
    [117] Ravi S S A, Kundra T K, Nakra B C. Response reanalysis of damped beams using eigenparameter perturbation. [J] Journal of Sound and Vibration, 179 :399-412
    [118] Ravi S S A, Kundra T K, Nakra B C. Reanalysis of plates Modified by Free Damping Layer Treatment. [J] Computers and Structures 1996 ,58 :535-541
    [119] Roy P K, Ganesan N. Vibration and Damping Analysis of CircularPlates with Constrained Damping Layer Treatment. [J] Computers and Structures, 1993 ,49 :269-274
    [120] Cao Xisheng, Mlejnek H P. Computational prediction and redesign for viscoelastically damped structures.[J] Computer Methods in Applied Mechanics and Engineering, 1995 ,125 :1 -16
    [121] Lu Y P, Everstine G C. More on Finite Element Modeling of Damped Composite Systems. [J] Journal of Sound and Vibration, 1980 ,69 :199-205
    [122] Lu Y P, Killian J W, Everstine G C. Vibrations of Three Layered Damped Sandwich Plate Composites. [J] Journal of Sound and Vibration, 1979 ,64 :63-71
    [123] Ramesh T C, Ganesan N. Finite element analysis of conical shellswith a constrained viscoelastic layer. [J] Journal of Sound and Vibration, 1994 ,171 :577- 601
    [124] Ramasamy R, Ganesan N. Vibration and Damping Analysis of Fluid Filled Orthotropic Cylindrical Shells with Constrained Viscoelas2tic Damping. [J] Computers and Structures, 1999 ,70 :363-376
    [125] Ma B A, He J F. A Finite Element Analysis of Viscoelastically Damped Sandwith Plates. [J] Journal of Sound and Vibration, 1992 ,152 :107-123
    [126] Bagley R L, Torvik P J. Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures. AIAA J .1985 ,23 :918– 925
    [127]邓年春,邹振作,杜华军.约束阻尼板的有限元动力分析. [J]振动工程学报,2003,4: 489-493
    [128]王聪,牟全臣,姜兴谓等.一类约束阻尼结构动力学建模及其应用. [J]强度与环境, 2001(1):20-25
    [129]王勖成.有限单元法. [M]北京:清华大学出版社,2003
    [130] Chen Q, Chan Y W. Integral finite element method for dynamic analysis of elastic-viscoelastic composite structures. [J] Computers and Structures, 2004,74:51-64
    [131]张准,汪凤泉.振动分析. [M]南京:东南大学出版社,1991
    [132]刘曙远.大型粘弹性复合结构的模态分析. [J]机械科学与技术2002,21:129-130
    [133] Leng J S, Liu Y J. Active Vibration Control of Smart Composites Featuring Electrorheological Fluids. [J] Applied Composite Materials, 1995, 2(l):59-65
    [134] Yalcintas M and Coulter J P. Analytical Modeling of Electrorheological Material Based Adaptive Beams. [J] Journal of Intelligent Material Systems and Structures, 1995, 6(3): 488-497
    [135] Ewins D J. Model testing: Theory and practice. [M] RSP. LTD, 1984
    [136]付素芳,张秋菊,陈海卫.结构动力学模型修正方法比较研究. [J]机械研究与应用,2007, 2:38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700