液体磁性磨具的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体磁性磨具是以载液、铁磁性颗粒、添加剂、磨料组成的悬浮体系,是一种新型的精密加工磨具。液体磁性磨具在无外磁场作用时,表现出良好的流体特性;在强磁场的作用下,它的粘度会在毫秒级的时间增加两个数量级以上,表现出类似固体的特性,其强度由剪切屈服应力表征,并且在一定范围内,随着外加磁场强度的增加而增加。而且液体磁性磨具粘度变化是连续的,也就是一旦去掉磁场又立刻恢复流体的特性。一般选用的铁磁性颗粒具有较大的比表面积和密度,在使用和放置过程中极易发生团聚和和沉淀,从而影响到液体磁性磨具的流变性能,直接制约这种新型磨具的应用和产品化。本论文采用加入表面活性剂和纳米颗粒的方法,以期解决液体磁性磨具的分散稳定性差、抗沉淀稳定等问题。
     本文立足于液体磁性磨具稳定性的基础研究。首先,在对液体磁性磨具分散机理的分析基础上,系统研究了表面活性剂对体系稳定性的作用。以测量悬浮液的沉降时间、粘度、再分散性的变化间接反映体系的分散稳定性。从理论上分析了表面活性剂可以增强液体磁性磨具中磁性颗粒表面电势,从而增加颗粒团聚的空间阻力。实验表明:在碱性环境中,聚丙烯酸(PAA)可以显著提高液体磁性磨具的分散稳定性,六偏磷酸钠在较宽的酸碱环境中都能提高液体磁性磨具的分散稳定性。其次,纳米二氧化硅因其特有的性质,对液体磁性磨具的分散性、抗沉降性都能起到改良和加强的作用。
     综合上述研究的基础上,制备了加入表面活性剂、纳米二氧化硅的液体磁性磨具。并对所制备的样品的分散性、再分散性、抗沉降稳定性、加工效果进行了研究分析。结果表明:用聚丙烯酸(PAA)和六偏磷酸钠作为改性剂,纳米二氧化硅作为分散助剂,所制备的液体磁性磨具均具有良好的分散性能和抗沉降性能,且使用寿命也较以前大大增强。
Fluid-magnetic abrasive tool is a kind of new technology on precise abrasive tool, it is suspension system composed with carrier, ferromagnetic particles, surfactant and abrasive particle. It has typical fluid characteristics when there is no external magnetic field around it. But when a strong magnetic field is applied, the viscosity of it will increase more than 100 times within a few milliseconds, and it will show the characteristics those are resemble to solid. Its strength is described by shear stress, and with the increase of magnetic flux density, the strength increases. It should be noted that the Fluid-magnetic abrasive tool would show the fluid's behavior back rapidly as soon as the external magnetic field is removed. The reason why the particles tend to reunite is the specific surface area is large of the magnetic-responsive particles; one of the reasons why the particles tend to settle is the large difference in density between the water and the metal magnetorheological activity of the material due to non-uniform particle distribution. It requires a relatively high shear force to re-suspend the particles after reunited and settled. This general character problem need urgently. This expectation of present paper is to solve the contradiction of disperser stability by the time, settling stability with the viscosity of system, by adding the surface active agent (dispersing agent), the nano- particles etc.
     This article bases in the Fluid-magnetic abrasive tool’s basic research. The first, research function of the surface active agent (dispersing agent) to the system's stability after analyzed the disperse mechanism of the Fluid-magnetic abrasive tool. In the research, surveyed the difference of sedimentation time, viscosity, re-dispersion of the suspension to indirect check the dispersible stability of system. theoretically analyzed the surface active agent (dispersing agent) can be increase the surface electric potential of pellets in the Fluid-magnetic abrasive tool, At the same time, the steric repulsion increase between the pellets, the hindrance of reunite increase. The experiment indicated the polyacrylic acid in the aqueous alkaline medium, but sodium hexametaphosphate in relatively wide aqueous alkaline medium can obviously enhance the dispersible stability of the Liquid-magnetic abrasive tool. The second, nanometer silicon dioxide have many unique characteristics, it can enhance the anti- reunite ability, the anti-settling ability and the mechanics capability of the Fluid-magnetic abrasive tool.
     Finally in the experimental foundation former, prepared the Fluid-magnetic abrasive tool with adding the surface active agent, the nano-particles. And the disperser ability, the anti-settling ability, machining effect of the sample has investigated. The result indicated,prepares the Fluid-magnetic abrasive tool in this way can obtain the good dispersible ability performance, the anti-settling performance, the more service life.
引文
[1]杨世春,汪鸣铮,张银喜.表面质量与光整技术[M].北京:机械工业出版社,2000.2.
    [2]张辽远.现代加工技术[M].北京:机械工业出版社,2002.9.
    [3]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.6.
    [4]赵学堂,张永俊.模具光整加工技术新进展[J].中国机械工程,第13卷第22期,2002.11.
    [5] W.I. KORDONSKI,D. GOLINI. Fundamentals of Magnetorheological Fluid Utilization in High Precision Finishing [J].Journal of Intelligent Material Systems and Structures, Vol(10),2001,683-689.
    [6] N. Umehara.Magnetic fluid grinding-a new technique for finishing advanced ceramics [C].Annals CIRP 43 (1) (1994) 185–188.
    [7] N. Umehara,T.Kobayashi, T. Kato. Internal polishing of tube with magnetic fluid grinding [J].Journal of magnetism and magnetic materials 149(1995)188-191.
    [8] Sunil Jha,V.K. Jain. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process [J]. International Journal of Machine Tools & Manufacture 44 (2004) 1019–1029.
    [9] Umehara N,Kato K.A study on magnetic fluid grinding [J].Trans JSME,Ser C 1988,61(584),1709–1714.
    [10]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,2005.
    [11]周锦进,方建成,徐文冀.光整加工技术的研究与发展[J].制造技术与机床,2004:3.
    [12]李邦中,周锦进.提高电化学机械光整加工效率的实验研究[J].新技术新工艺,2004年7月.
    [13]李铁祥.国内去毛刺及表面光整加工技术状况[J].组合机床与自动化加工技术,大连组合机床研究所,1996年4月.
    [14]牛宏才.光整技术及其在内燃机行业的应用[J].内燃机,2003年3月.
    [15]孙桓五.液体磁性磨具光整加工技术研究[D].太原理工大学博士学位论文,2008年9月.
    [16] R.Bannerot and G.Song ,Development of an Interactive MR Fluid Experiment for SmartMaterials Curricula[J].International Journal of Modern Physicx B Vol.19,(2005)1478-1484.
    [17] James C. Poynor, Innovative Designs for Magneto-Rheological Dampers Thesis submitted to the faculty of Virginia [D].Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science In Mechanical Engineering August 7, 2001 Blacksburg, Virginia.
    [18] John C.Ulicny,Andrew M.Mance, Evaluation of elcetroless nickel surface treatment for iron powder used in MR fluids [J].Materials Science and Engineering,A369(2004)309-313.
    [19] J.K. Viota,J. de Vicente,J.D.G. Durán,A.V Delgado,Delgado.Stabilization of magnetorheological suspensions by polyacrylic acid polymers [J]. Journal of Colloid and Interface Science,284(2005)527-541.
    [20] Calson,J.David,Aqueous magnetorheological material [P].U.S.Patent,6132633,July 1,1999.
    [21]李发胜,唐龙,刘奇,等.聚丙烯酸对水基磁流变液稳定性的改良[J].功能材料,2007:5,717~720.
    [22]李立春,关建国,程海斌,等.聚乙二醇包裹羰基铁核壳粒子的制备及水基磁流变液的性能[J].物理化学学报,2005,21:817~821.
    [23]尤伟伟,彭小强,戴一帆..磁流变抛光液的研究[J].光学精密工程,2004.12(3).
    [24]唐新,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料及器件,2004:3:5~8.
    [25]张峰,潘守甫,等.磁流变液抛光液的研制[J].功能材料,2002,33(5):490-491.
    [26]陈伟俊,马平.磁流变液的抗沉淀分析[J].机床与液压2007,35(10):98~100.
    [27]张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,13(1).
    [28]张峰.磁流变抛光技术的研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2000年9月.
    [29]张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,13(1).
    [30]江万权,张复殿,等.羰基铁粉表面纳米钴修饰及其对磁流变液性能的影响[J].功能材料,2006,37(7),1163~1165.
    [31]江万权,朱春玲,陈祖耀,等.微米级弄悬浮体系中粒子的沉降稳定性及其表征方法[J].中国科学技术大学学报,2001,31(6):663~667.
    [32]彭小强.确定性磁流变抛光的关键技术研究[D].国防科学技术大学博士论文, 2004年4月.
    [33]张峰.磁流变抛光技术的研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2000年9月.
    [34]张清岑,黄苏萍.水性体系分散剂应用新进展[J].中国粉体技术,2000.8:32~35.
    [35]吴其胜,张少明,马振华.聚分子电解质对α-Al 2 O3料浆分散性能的影响[J].中国粉体技术1999,5(3):33~35.
    [36]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2004.8.
    [37]夏启斌,李忠,邱显扬,等.六偏磷酸钠对蛇纹石的分散机理研究[J].矿业工程,2002,22(2):51~54.
    [38]陈庆春.几种表面活性剂分散效果的比较研究和应用[J].IM&P化工矿物与加工,2003,(1):18~20.
    [39]钱建刚,吴锦屏.非离子表面活性剂的吸附机理和表面胶团化对二氧化硅悬浮液稳定性的影响[J].高等学校化学学报, 1996,17(6):933~938.
    [40]张清岑,黄苏萍.非离子型超分散剂对二氧化硅分散稳定性的影响[J].矿产综合利用,2001,(4):15~18.
    [41]王正东,胡黎明.超分散剂的使用方法[J].涂料工业,1996,(3):36~38.
    [42]冯军,官建国,程海斌,等.用CoFe2O4纳米粒子改性羰基铁粉磁流变液[J].功能材料,2006.5.
    [43] J.K. Viota,F. González-Caballero,J.D.G. Durán,A.V Delgado.Study of the colloidal stability of concentrated bimodal magnetic fluids [J].Journal of Colloid and Interface Science 309(2007)135-139.
    [44] B.J Park,I.B Jang,H.J Choi,etc. Magnetorheological characteristics of nanoparticle-add carbonyl iron system [J].Journal of Magnetism and Magnetic Materials,2006,(303):290-293.
    [45]李维东.面向光整加工的液体磁性磨具的研究与开发[D].太原理工大学硕士论文,2005年5月.
    [46]张峰,潘守甫,等.磁流变液抛光液的研制[J].功能材料,2002,33(5):490-491.
    [47] Kordonski W I,Gorodkin S R, Novikova Z A, Singapore:World Scientific,1998,35(5):35-542.
    [48]张清辉.超细氧化铁红颜料粉体的表面改性研究[D].北京工业大学硕士论文,2002年5月.
    [49]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2006年.
    [50]任俊,沈键,卢寿慈著.颗粒分散科学与技术[M].北京:化学工业出版社,2005年.
    [51]任俊.微细颗粒在液相及空气中的分散行为与分散新途径研究[D].北京科技大学博士学位论文,1999年.
    [52]张清岑,黄苏萍.水性体系分散剂应用新进展[J].中国粉体技术,2000.8:32~35.
    [53]张卫红,龙复.水性涂料用聚合物分散剂新进展[J].涂料工业,1997,(2): 37~39.
    [54] J.L. Viota,J. de Vicente,J.D.G. Durán,A.V. Delgado.Stabilization of magnetorheological suspensions by polyacrylic acid polymers [J].Journal of Colloid and Interface Science , 2005,(284): 527–541.
    [55]茹秋生.液体磁性磨具光整加工机理和物理性质的研究[D].太原理工大学硕士论文.2006.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700