磁流变阻尼器及其在轴向磁悬浮轴承中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对磁流变阻尼器及其在磁悬浮轴承系统中的应用进行了研究。针对磁悬浮轴承系统刚度阻尼较小,抑制振动的效果差的缺点,而磁流变液具有粘度受控于外界磁场且效应连续,可逆,迅速和易于控制等优点,将磁流变阻尼器引入到磁悬浮轴承的减振中。结合磁悬浮轴承的工作特点,设计制作了一种小位移大阻尼力挤压式磁流变阻尼器,并与轴向磁悬浮轴承试验台相连接抑制推力盘振动。首先应用有限元软件ANSYS分析验证了磁流变阻尼器结构的合理性,然后对阻尼器的减振与阻尼特性进行了试验研究,最后借助MATLAB对试验数据进行了处理。基于对磁流变阻尼器的相关理论和试验结论,对阻尼器控制策略进行了研究,并将模糊控制算法应用于磁流变阻尼器的减振控制中,将阻尼器与轴向磁悬浮轴承试验台相结合,检验阻尼器在不同电流下的减振作用,并利用频谱分析仪得出有阻尼器时对轴向磁悬浮轴承系统Bode图的影响。
     对磁流变阻尼器试验结果表明:电流越大,示功图面积越大,与频率无关;电流越大,频率越大,阻尼力越大,非线性滞回特性愈明显。应用模糊控制算法控制的磁流变阻尼器对轴向磁悬浮轴承进行减振试验,控制效果良好。通过对轴向磁悬浮轴承系统Bode图的研究表明,随着阻尼器线圈电流的逐渐增加有效增加了系统的刚度和阻尼。本文研究表明磁流变阻尼器可为磁悬浮轴承系统提供可控刚度和阻尼,为克服磁悬浮系统抑制振动效果差的问题提供了一种新的思路。
In this paper, MR damper and its application in magnetic bearing system was studied. Because of magnetic bearing has a disadvantage of small rigidity and damp together with the deficiency of restrain vibration, while the magnetorheological fluid controlled by external magnetic had advantage of the effect of continuous, reversible, rapid and easy to control, for what it was introduced in the magnetic bearing. Combined the characteristic of magnetic bearing, a small displacement and big damping force MR-damper was designed and manufactured to control the vibration in magnetic bearing. First of all, ANSYS was used to prove the correctness of the MR-damper structure, then some experimentations were carried and deal with the data with MATLAB. Based on the empirical results, the MR-damper’s control strategy was studied and fuzzy-control was adopted in MR-damper to restrain vibration in magnetic bearing. Effects of restrain vibration were tested in the magnetic bearing when assembled MR-damper. The Bode map was also researched by HP36670.
     Related conclusions were summarized: with increase of electric current the area of displacement—force became larger, the bigger with electric current and frequency the more dramatic and non-linear. When the MR–damper utilized fuzzy-control it had a good performance of restrain vibration to the magnetic bearing. Through the Bode map we knew that the MR-damper could supply effectively rigidity and damp with the increase of current. This research show that MR-damper designed in this paper is able to provide the rigidity and damp which can be controlled, and proposal a new way to sole the problem of the smallness of rigidity and damp in magnetic bearing.
引文
[1] Kordonsky V I, Shulman Z P, Gorodkin S R, etal. Physical properties of magnetizable structurereversible media. J. Magn. and Magn. Mat, 1990, 85: 114~120
    [2] R. Gilbert and M. Jackson. Magnetic Ride Control. GM Techlink, 2002, 4(1) :1~2
    [3] Carlson J D. Magnetorheological fluid actuators. Adaptronics and Structures. Berlin: Springer Verlag Berlin Heideberg, 1999: 180~195
    [4] Johnston G L, Krucke meyer W C, Longhouse R E. Passive magnetorheological clutch. U.S. Patent 5848678, 1998
    [5] Kordonski W I, Golini D. Progress update in magnetorheological finishing. Nakano M,Koyama K, Proc. of the 6th Int. Conf. on ER Fluids, MR Suspensions and Their Applications. Singapore: World Scientific, 1998: 837~844
    [6] Kordonsky W I. Magnetorheological effect as a base of new devices and technologies. J. Magn. and Magn. and Magn. Mat, 1993, 122: 395~398
    [7] Kordonsky W I, Gorodkin S R. Magnetorheological fluid based seal. Bullogh WA, Proc of the 5th Int. Conf. on ER fluids, MR Suspensions and Associated
    [8] Jason, E. Lindler, Glen A. Dimock and Norman M. Wereley. Design of A Magnetorheological Automotive Shock Absorber. SPIE, 2000, 3985: 426~437
    [9]司鹄,磁流变体力学机理研究,[博士学位论文],重庆,重庆大学,2003
    [10]贾启芬,许恒波,王影等,基于磁流变阻尼器的汽车悬架半主动控制,天津大学学报,2006,7:768~772
    [11]郭大蕾,胡海岩,基于磁流变阻尼器的车辆悬架半主动控制研究——间接自适应控制与试验,振动工程学报,2002,15(3):284~289
    [12]关新春,李金海,欧进萍,足尺磁流变液耗能器的性能与试验研究工程力学,2005,22(6):207~211
    [13]付伟庆,王玉铨,王焕定等,磁流变变阻尼半主动控制结构的仿真分析,地震工程与工程振动,2003,23(4):165~170
    [14]欧进萍,关新春,磁流变耗能器性能的试验研究,地震工程与工程振,1999,19(4):76~81
    [15]李以农,郑玲,车辆半主动悬架非线性控制方法的研究,农业机械学报,2005,36(5):9~15
    [16]廖昌荣,陈伟民,余淼等,基于混合模式的汽车磁流变减振器阻尼特性分析与测试,机械工程学报,2001,37(5):11~14
    [17]郑玲,邓兆祥,汽车半主动悬架的滑模控制与鲁棒特性,汽车工程,2004,26(6):678~682
    [18]吴炅,张秋禹,罗正平等,磁流变液制备的最新进展,材料导报,2002,16(1):42~44
    [19]曹民,喻凡,车用磁流变减振器的研制,机械工程学报,2004,40(3):186~190
    [20]张进秋,主动悬挂系统磁流变减振器的阻尼力试验与分析,地震工程与工程振动,2003,23(1):122~127
    [21]王立忠,李云瑞,王锋,磁流变体研究状况及进展,航空制造工程,1997,(7):9~11
    [22] Phule P P, Ginder J M. Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Nakano M, Koyama K, Proc. of the 6th Int. Conf. on ER Fluids, MR Suspensions and Their Applications. Singapore: World Scientific, 1998: 445~453
    [23] Ginder J M. Rheology controlled by magnetic fields. Trigg G L, Encyclopedia of Applied Physics, 1996, 16: 487~503
    [24] Weiss K D, Duclos T G, Carlson J D, etal. High strength magneto-and electro-rheological fluids. SAE Technical Paper Series 932451, 1993
    [25]欧进萍,关新春,磁流变耗能器的性能试验研究,地震工程与工程振动,1999,19(4):76~81
    [26] Jolly M R, Bender J W, Mathers R T. Indirect measurements of microstructure development inmagnetorheological fluids. Nakano M, Koyama K, Proc. of the 6th Int. Conf. on ER Fluids, MRSuspensions and Their Applications. Singapore: World Scientific, 1998: 470~477
    [27] Carlson J D, Catanzarite D M, Clair K A St. Commercial magnetorheological fluid devices. Bullogh W A, Proc. of the 5th Int. Conf. on ER fluids, MR Suspensions and Associated Technology.Singapore: World Scientific, 1996, 20~28
    [28] Stanway R, Sproston J L, Stevens N G. Non-linear modeling of an electriheological vibration danmper.J. electrostatics, 1987, 20
    [29] Wen Y. Method of random vibration of hysteretic systems. Journal of Engineering Mechanics Division, ASCE, 1029(EM2), 1976
    [30]翁建生,胡海岩,磁流变阻尼器的试验建模,振动工程学报
    [31] Bolter R, Janocha H. Design rules for MR Fluid actuators in different working modes. Davis L P,Proc. of SPIE-Int. Soc. Opt. Eng., 1997, 3045: 148~159
    [32]孙明礼,胡仁喜,崔海蓉,ANSYS10.0电磁学有限元分析实例指导教程,北京,机械工业出版社,2007:1~67
    [33]叶先磊,史亚杰,ANSYS工程分析软件应用实例,北京,清华大学出版社,2003:144~236
    [34]章卫国,杨向忠,模糊控制理论与应用,西北工业大学出版社,1999
    [35]郭大蕾,胡海岩,基于磁流变阻尼器的车辆悬架半主动控制研究,振动工程学报,2002(1)
    [36]翁建生,胡海岩,张庙康.基于磁流变阻尼器的车辆悬架系统模糊半主动控制,南京工业大学学报,2002(1)
    [37]诸静等,模糊控制原理与应用,北京,机械工业出版社,2003
    [38]立新,模糊系统与模糊控制教程(王迎军译),北京,清华大学出版社,2003
    [39]周海君,模糊控制算法在造纸过程中的应用研究,[硕士学位论文],陕西,陕西科技大学,2006
    [40]刘和平等,TMS320LF240X DSP结构、原理及应用,北京,北京航空航天大学出版社,2002
    [41]子闻译,TMS320C240/F240数字信号处理数据手册,武汉,P&S武汉力源电子股份有限公司,1998
    [42]徐子闻,刘朝晖,TMS320C2XX数字信号处理用户指南,武汉,P&S武汉力源电子股份有限公司,1998
    [43]曾励,朱熀秋,曾学明,单自由度混合磁悬浮轴承控制系统腜偷难芯浚暇┖娇蘸教?大学学报,1998,6:685~690
    [44]张士勇,磁悬浮技术的应用现状与展望,工业仪表与自动化装置,2003,3:63~64
    [45]曾学明,磁悬浮轴承电控系统研究,[博士学位论文],南京,南京航空航天大学,2002
    [46]杨锋力,单自由度磁悬浮系统的设计与控制研究,[硕士学位论文],长沙,中南大学,2005
    [47]谢振宇,徐龙祥,李迎等,磁悬浮转子轴向位置精度的试验研究,机械科学与技术,2004,4:464~467
    [48]汪希平,电磁轴承及其系统设计方法,机械工程学报,2002,5:1~6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700