基于“游离态”的液固两相软性磨粒流的加工理论研究与数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液固两相湍流广泛应用于矿山、冶金、电力等工业上,对其研究也越来越紧密,在模具制造中大量涉及沟、槽、孔、棱柱、棱锥、窄缝等无法用工具进行加工的异型面,此类异型面统称为结构化表面。基于此,提出了液固两相“软性”磨粒流的加工方法,通过对两相磨粒流的湍流流动模型的建立,达到对工件的光整加工。对工件表面的镜面加工主要通过以下宏观和微观条件来实现:
     首先在宏观上,在模具结构化表面构造约束流道,构成特定形状的磨料流道,利用软性磨粒流弱黏或无黏特点,使高速流动的磨粒流在特定的流道截面形状约束下,形成湍流流动,对作为约束流道内壁面一部分的结构化表面进行冲蚀微切削,实现精密光整加工。本文是针对一定形态的模具结构化表面,设计出相应形状的约束模块,形成特定截面形状的约束流道。
     其次在微观上,主要是通过两相流速度及压力对颗粒相压力影响而形成的湍流模型,利用颗粒相频繁交替的磨损切削,从而改变磨粒对工件滑擦、耕犁和切削的机械作用。本文研究的内容主要包括以下几个部分:
     1.介绍了通过软性磨粒流对工件进行精密光整加工的一些理论方法及研究意义,结合国内外两相流的研究现状,提出了基于液固两相软性磨粒流的加工方法,并分析了其原理。结合原理及理论现实意义,设计了新的实验平台及约束模块。
     2.在各种两相流理论模型的基础上,分析了多相流模型及数值计算方法及液固两相软性磨粒流的基本理论。同时提出了颗粒对壁面的微量切削加工模型,并结合CFD (FLUENT和GAMBIT)软件对流道内的速度场及压力场等进行了系统的数值模拟研究。
     3.通过理论分析,明确了在游离态液固两相软性磨粒流加工过程中所涉及到的压力、速度以及颗粒相等的影响因素。通过液固两相流湍流的数值模拟,得出了速度、压力及颗粒相体积浓度对壁面加工的影响。
Liquid-solid two-phase turbulent flow is widely used in mining, metallurgy, electric power and coal industries, the research are also more and more closely. Mould manufacturing involves a large number of groove, slot, hole, prism, pyramid and narrow special-shaped surface called structural surface. Based on these characteristics, we put forward the liquid-solid two-phase "soft" abrasive flow processing methods. By the establishment of the model about the two phase abrasive flow turbulent, the work-piece can realize precise machining. Mirror surface machining of the work-piece is realized mainly through the following macro-conditions and micro-conditions:
     Firstly in the macro, constructing constrained flow channel in the structural surface of the work-piece can form special abrasive flow channel. Using the soft abrasive flow characteristic of weak or non-sticky features and the restrict to the flow channel, the high-speed abrasive flow can easily form turbulent. So that the flow channel wall surface as a binding part of the structural surface is subjected to erosion, micro-cutting in order to make the work-piece achieve precision finishing. This article is aimed at certain mould shapes of structural surface, designing corresponding constraints modules, forming a certain flow channel with particular channel section shape.
     Secondly in the micro level, mainly through the turbulence influenced by the particle-phase pressure the two-phase flow velocity, using particle cutting wear and tear of frequent alternation, finally the mechanical action is changed by the sliding rubbing, plowing and cutting of the solid-phase.
     This paper mainly includes the following sections:
     1.This paper describes some theoretical approaches and research significance according to the adoption of liquid-solid two phase soft abrasive flow on the work-piece precision finishing. Combing domestic and abroad two-phase study, the paper proposed the machining mechanism based on liquid-solid two-phase soft abrasive flow and analyzed the machining principles. Combining the theory and the practical significance, we design a new experimental platform and binding modules.
     2.Aiming to the establishment of all kinds of two-phase flow theoretical model, the paper analyzed multiphase flow model and numerical methods. At the same time, it also analyzed the basic theory of two-phase soft abrasive. Besides, the paper put forward the micro-particles cutting process models making use of CFD (FLUENT and GAMBIT) software to simulate the speed field and pressure field numerical simulation of the flow channel.
     3.Through theoretical analysis, we clearly state that during the machining process of the free liquid-solid two-phase soft abrasive flow, the pressure, velocity, and particle effects are the key factors to the machining effective; Through numerical simulation, the paper studied and analyzed the visual graphic images. In other words, the paper systematically and fully analyzed the effects on the wall of speed, pressure, and particle volume concentration during processing effects.
引文
[1] Ji Shiming, Zhang Xian. Spinning-inflated-ballonet polishing tool and its application in curved surface polishing[J]. Key Engineering Materials, 2007, 339(5): 21-25
    [2] Ji Shiming, Zhang Li. A novel ballonet polishing tool and its robot control system for polishing the curved surface of mould [J], The International Journal of Materials and Product Technology, 2006, 22(1):212-215
    [3] Tzeng Hsinn-Jyh, Yan Biing-Hwa. Self-modulating abrasive medium and its application to abrasive flow machining for finishing micro channel surfaces [J]. International Journal of Advanced Manufacturing Technology, 2007, 32(11-12): 1163-1169
    [4] Tzeng Hsinn-Jyh, Yan Biing-Hwa. Finishing effect of abrasive flow machining on micro slit fabricated by wire-EDM, International Journal of Advanced Manufacturing Technology[J], 2007, 34(7-8): 649-656 V.K. Jain, Adsul S.G. Experimental investigations into abrasive flow machining (AFM) [J].International Journal of Machine Tools & Manufacture, 2000, 40(13): 1003-1021
    [5] Loveless T.k, Williams k.E, kajurker K.P. A study of the effects of abrasive flow machining on various machined surfaces [J], Journal of Materials Processing Technology. 1994, 47(8): 133-151
    [6]方慧,郭培基等.液体喷射抛光材料去除机理的研究[J].光学技术, 2004, 30(45):72-75
    [7] Geiss Andreas, Schinhaerl Markus. Sedimentations on high precision surfaces of advanced materials by magnetorheological finishing [J]. Proceedings of SPIE-Current Developments in Lens Design and Optical Engineering VII, 2006, 62 (88): 629
    [8] Sun Xi-Wei, Zhang Fei-Hu, Dong, Shin. Two-stage interpolated algorithm for magnetorheological finishing optical curved face [J]. Opto-Electronic Engineering, 2006, 33(2): 61-64
    [9] Kordonski W I, Jacobs S D. Magnetorheological finishing [J]. International Journal of Modem Physics B, 1995, 10(9): 2837-2848
    [10] Ji Shiming, Zhang Libin, Yuan Julong. Method of monitoring wearing and breakage states of cutting tools based on Mahalanobis distance features. Journal of Materials processing technology[J]. 2002, 129(30):114-117
    [11] Ji Shiming, Zhuang Hongyu, Zhang Li, Zhang Libin, Wan Yuehua, Yuan Julong. Monitoring tool-wear during metal cutting operations. 2nd International Symposium on Instrumentation Science and Technology (ISIST 2002), 2002, 39(3): 910-915
    [12]潘艳,基于“软性”液-固两相磨粒流的模具结构化表面光整加工的工艺研究[D], 2009
    [13] Tom Kohut, Surface finishing with abrasive fl哦w machining [J], SME technical paper. 2006, 1989(1): 53-70
    [14] H.E. Williams, K.P. Hajurkar. Stochastic modeling and analysis of abrasive flow machining [J]. Trans. ASME Eng. Ind. 1992, 114(13): 74-81
    [15] T.k. Loveless, k.E.Williams, K.P. kajurker. A study of the effects of abrasive flow machining on various machined surfaces [J], Journal of Materials Processing Technology. 1994, 47(15): 133-151
    [16] V.K. Jain, S.G. Adsul. Experimental investigations into abrasive flow machining(AFM)[J]. International Journal of Machine Tools & Manufacture, 2000, 40(21): 1003-1021
    [18] Wm I Kordonski. Adaptive Structures Based on Magnetorheological Fluids [C], San Diego, Proc 3rd Int. Conf. Press, 1992,3(9):13-27
    [19] Prokhorov I V, Kordonski W I. New high-precision magnetorheological instruments-based method of polishing optics [J]. QSA OF&T Workshop Digest, 1992, 24(1): 134-135
    [20] Kordonski W I, Jacobs S D. Magnetorheological finishing[J]. International Journal of Modem Physics B, 1995, 10(45): 2837-2848
    [21]张学成,戴一帆,李圣怡.磁射流抛光中磁场的分析与设计[J].航空精密制造技术, 2006, 42(1): 12-15.
    [22] T. Ku riyagawa, M. Saeki, K. Syoji. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, 26(35): 370-380
    [23]张雷,袁楚明,陈幼平等.模具曲面机器人抛光工艺过程的建模与仿真[J].华中科技大学学报, 2001, 29(3):50-52
    [24] Ji Shiming, Yuan Qiaoling, Zhang Li et al. Study of the removing depth of the polishing surface based on a novel spinning-inflated-ballonet polishing tool [J]. Materials Science Forum, 2006, 312(532): 452-455
    [25] Ji Shiming, Jin Mingsheng, Li Zhang et al. Design of spinning-inflated-gasbag polishing tool and its automated system for free-form mould [J]. WSEAS Transactions on Systems, 2006, 5(23): 277-283
    [26]陈锡栋.模具精饰加工及表面强化处理技术[M].北京:机械工业出版社, 2002
    [27] Brinksmeier E. Polishing of structured molds [J]. CIRP Annals-Manufacturing Technology, 2004, 53(1): 247-250
    [28] Fletcher A J, Hull J B, Metckie J,et al. Computer modeling of the abrasive flow machining process [G]. Proceedings of the International Conference on Surface Engineering, Current Trent Trends and Future Prospects. Toronto, 1990(1):592-601
    [29] Brinksmeier E. Finishing of structured surfaces by abrasive polishing [J]. Precision Engineering, 2006, 30(3): 325-336
    [30]聂先桥,杨建明.磨料流加工磨焖流动边界条件的确定[J].机械制造, 2001, 39(10): 9-11
    [31]方慧,郭培基.液体喷射抛光时各工艺参数对材料去除量的影响[J].光学技术,2004,30(7): 440-442
    [32]李长河,修世超,李琦等.磨料喷射光整加工机理及在机械领域中的应用[J].机械制造, 2004, 42(8): 18-21
    [33] Kurobe T, Yarnada Y, Yarnarnoto K., Miura T. High Speed Slurry Flow Finishing of Inner Wall of Stainless Steel Capillary. Effects of Slurry Injection Pressure on Polishing Performance [J]. Int. J. Japan Soc. Prec. Eng., 1999, 33 (4): 333-334
    [34] T. Kurobe, Y. Yamada, K. Yamamoto. Development of high speed slurry flow finishing of the inner wall of stainless steel capillary[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2001, 25(45): 100-106
    [35]刘小兵,程良骏.固液两相湍流和颗粒磨损的数值模拟[J].水利学报, 1996, 11(1): 20-27
    [36]刘小兵,梁柱,程良骏.高浓度固液混合流的湍流模型[J].水利水运科学研究, 1996, 1(12): 15-23
    [37]刘小兵,程良骏.湍流边界层中固体颗粒运动的数值模拟[J].上海力学, 1996, 17(4): 54-60
    [38]刘小兵,程良骏.湍流边界层中固体小颗粒湍流运动的Lagrangian模型[J].应用数学和力学, 1997, 18(3): 277-284
    [39]袁巨龙,王志伟,文东辉等.超精密加工现状综述[J].机械工程学报, 2007, 43(1): 39-48
    [40]宁方飞,徐力萍. Spalart-Allmaras湍流模型在内流场数值模拟中的应用[J].工程热物理学报, 2001, 22(3): 52-57
    [41]唐学林,余欣,任松长等.固-液两相流体动力学及其在水力机械中的应用[M].河南:黄河水利出版社, 2006
    [42]赵军英.高压磨料水射流光整加工技术的理论分析与数值模拟研究[D]. 2008
    [43]王春林,马庆勇,李婷婷,彭娜.搅拌浆液池固-液两相流搅拌的数值模拟[J].排灌机械, 2007, 25(6): 38-41
    [44]曾卓雄,袁宁,陈为国,周力行.二阶矩两相湍流模型中的改进算法[J].应用力学学报. 2006,23(4):609-612
    [45]吴晶华,汤文成等.微磨粒冲蚀磨损的数值分析方法[J].润滑与密封, 2008, 33(9): 16-20
    [46]连峰.游离磨粒超精加工机理和应用[J].现代制造工程, 2009, 9(1): 146-151
    [47] TSUWA H, IKAWA N, Moil Y, et a1.Numerically controlled elastic emission machine [J].Anna of CIRP. 1979, 28(1):12-23
    [48]计时鸣,唐波,谭大鹏,宫斌等.结构化表面软性磨粒流精密光整加工方法及其磨粒流动力学数值分析[J].机械工程学报, 2009,12(4):23-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700