磁流变液制动器的分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变液(MR fluids)是一种在外加磁场作用下流变特性发生急剧变化的材料,其流变特性可由外加磁场连续控制。无外加磁场作用时,它表现为牛顿流体特性;在外加磁场作用下,其流体结构和性能会在毫秒级短时间内迅速变化,表观黏度系数增加几个数量级以上,其流动表现出Bingham塑性体行为,具有黏性和塑性特性。改变外加磁场强度,可控制其屈服应力。基于这一特性设计的磁流变液制动器具有制动平稳、结构简单、容易控制、响应快、能耗低等优点,在工程领域具有广泛的应用前景。
     本论文设计的磁流变液制动器是一种利用磁流变液剪切应力来进行制动的装置,它的制动力矩随外加磁场的变化而变化。为建立磁流变液制动器的设计方法,本论文分析了国内外对磁流变液材料及其应用的研究现状,把磁流变液的屈服应力可由外加磁场控制的特长与机械设计方法相结合,分析了磁流变液在圆盘式磁流变液制动器和圆筒式磁流变液制动器中的黏塑性流动,分别建立了制动力矩方程,发展了磁流变液制动器的设计方法,为磁流变液制动器的设计提供了理论基础。论文的主要研究工作如下:
     (1)介绍了磁流变液材料的组成、磁流变效应、磁流变液材料的主要性能及磁流变器件的研究现状。
     (2)基于Bingham模型,结合磁流变液制动器的工作原理,分别分析了磁流变液在圆盘式磁流变液制动器和圆筒式磁流变液制动器中的流动,建立了相对应的流动方程,并以此得出了圆盘式磁流变液制动器和圆筒式磁流变液制动器制动力矩的计算公式。
     (3)分析了磁流变液制动器的两个基本设计准则,进行了圆盘式磁流变液制动器和圆筒式磁流变液制动器的结构设计、磁路设计以及励磁线圈的外部控制电路设计。在一定程度上拓展了磁流变液制动器的设计方法。
     (4)利用ANSYS软件对圆盘式磁流变液制动器和圆筒式磁流变液制动器进行了磁回路仿真分析,并利用仿真结果指导圆盘式磁流变液制动器和圆筒式磁流变液制动器的结构设计和各零部件的选材设计。
     (5)建立了磁流变液制动器的特性实验方案。
Magnetorheological (MR) fluids is a dramatic change in rheological properties of the material with application of a magnetic field, which are regarded as the intelligent materials that respond to an applied magnetic field with a change in their rheological properties. In the absence of an applied magnetic field, MR fluids exhibit Newtonian-fluid-like behavior. With application of a magnetic field, its structure and properties changing rapidly within a few milliseconds, the apparent viscosity coefficient increased more than several orders of magnitude. These fluids exhibit a Bingham plastic behavior with the yield stress dependent upon strength of applied magnetic field. Thus MR fluids are viscoplastic fluids because they have the properties of both viscosity and plasticity. Based on this characteristic,Magnetorheological fluid brake is designed to have smooth braking, simple structure, easy to control, fast response, low energy consumption and other advantages. It has widespread application prospect in engineering.
     Magnetorheological fluid brake device achieves braking by shear force of the MR fluids. Magnetorheological fluid brake has the property that its braking torque changes quickly in response to an external magnetic field.
     In order to establish the design method of the Magnetorheological fluid brake, in this paper, the MR fluids materials and their applications have been analyzed. Based on the properties that the yield stress of MR fluids can be controlled by applied magnetic field, the viscoplastic flow of MR fluids in the Disk type Magnetorheological fluid brake and Cylindrical Magnetorheological fluid brake are investigated. The equations for the braking torque in the Magnetorheological fluid brake have been established. They provide the theoretical foundation for the design of the Magnetorheological fluid brake. The main work and conclusions in this paper are as follows:
     (1)The composition of MR fluids, MR effect, and the main performance of MR fluids are presented and introduced.
     (2)Based on the Bingham model, combined with the working principle of Magnetorheological fluid brake, the viscoplastic flow of MR fluids in the Disk type Magnetorheological fluid brake and Cylindrical Magnetorheological fluid brake are analyzed. The equations for the viscoplastic flow of the MR fluids in Magnetorheological fluid brake are established. The equations for the braking torque in the Magnetorheological fluid brake have been derived.
     (3)The two basic design principles of Magnetorheological fluid brake are analyzed. The magnetic back track and the control circuits of excitation coil of Disk type Magnetorheological fluid brake and Cylindrical Magnetorheological fluid brake are designed.
     (4)Utilize ANSYS software to carry out the imitation analysis of magnetic back track, and use the results to guide the design of Disk type Magnetorheological fluid brake and Cylindrical Magnetorheological fluid brake.
     (5)The experiment scheme of Magnetorheological fluid brake is established.。
引文
[1] Rabinow J. Magnetic fluid torque and forcetransmitting device. U.S. Patent Number 2575360, 1951
    [2] Kordonsky W, Jacobs S. Model of Magneto- rheological finishing [J]. Journal of Intelligent Material Systems and Structures, 1996,(1): 131-137
    [3] Rabinow J. The magnetic fluid clutch. AIEE Trans. 1948,67:1308-1315
    [4] Phule P P. Magnetorheological (MR) fluids: Principles and applications. Smart Materials Bulletin, 2001, 2: 7-10
    [5] Papell S S. Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent, 1965:3215572
    [6]程海斌,李立春,官建国等.纳米Fe3O4/Fe复合磁流变液流变性.中国粉体技术,2003, 9(4): 22-25
    [7]杨仕清,彭斌,王豪才等.超细C0-Ni合金复合磁流变液的制备及流变性质研究.功能材料,2001,32(2):142-146
    [8] Bica I. The obtaining of magneto-rheological suspensions based on silicon oil and iron particles. Materials Science and Engineering: B. Vol: 98, Issue: 2, March 15, 2003, 98(2): 89 - 93
    [9] Lita M, Nicoara M.The use of amorphous and quasi-amorphous Fe–Cr–P powders for fabrication of magneto-rheological suspensions.Journal of Magnetism and Magnetic Materials, 1999, 201(1-3): 49-52
    [10] Ulicny J C, Mance A M. Evaluation of electroless nickel surface treatment for iron powder used in MR fluids. Materials Science and Engineering: A. 2004, 369(1-2): 309-313
    [11] Ashour M, Craig A, Kordonsky W I. Magnetorheological Fluids: Materials, Characterization, and Devices, Journal of Intelligent Material Systems and Structures, 1996, 7: 123~130
    [12] Park J H, Chin B D, Park O O. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion. Journal of Colloid and Interface Science, 2001, 240(1): 349-354
    [13] Lord Corporation. http://www.rheonetic.com, 2001
    [14] Kormann C, Laun H. M, Richter H J. MR suspensions and associated technology. W.A. Bullough, Ed., Proceedings of 5th International Conference on ER Fluids, MR Fluids and Associated Technologies, World Scientific, Singapore, 1996: 362-367
    [15] Kormann C, Laun H. M, Richter H J. MR Fluids with Nano-Sized Magnetic Particles Technology. International Journal of Modern Physics B, 1996, 10(23-24): 3167-3172
    [16] El Wahed A K, Sproston J L, Schleyer G K. A comparison between electrorheological and magnetorheological fluids subjected to impulsive loads. Proceedings of the Seventh International Conference on Electrorheological (ER) Fluids and Magneto-Rheological (MR) Suspensions. Honolulu, Hawaii, 1998:401-410
    [17] El Wahed A K, Sproston, John L., Schleyer, Graham K. Electrorheological and magnetorheological fluids in blast resistant design applications. Material and Design. 2002, 23(4): 391-404
    [18] El Wahed A K, Sproston, J.L.; Stanway, R., "The performance of electrorheological fluid in dynamic squeeze flow: the influence of solid phase size" J Colloid Interface Sci 1999 pp. 264-280
    [19] Cutillas S, Bossis G, Cebers A. Rheological properties of MR fluids. Phys. Rev E, 1998, 57(1):804-811
    [20] Bossis G, Lacis S, Meunier A, et al. Magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2002, 252: 224-228
    [21] Bossis G, Khuzir P, Lacis S etal. Yield behavior of magnetorheological suspensions. Journal of Magnetism and Magnetic Materials. Vol: 258-259, March, 2003, 258-259: 456-458
    [22] Bossis G, Cebers A. Effects of the magnetodipolar interactions in the alternating magnetic fields. Journal of Magnetism and Magnetic Materials, 1999, 201: 218-221
    [23] Kordonsky W I, Magnetorheological effect as a base of new devices and technologies, Journal of Magnetism and Magnetic Materials, 1993, 122(1-3): 395-398
    [24] Kordonsky W I, Additional magnetic dispersed phase improves the MR-fluid properties, Journal of Intelligent Material Systems and Structures, 1996, 7(5): 522-525
    [25] Rosensweig R E. Ferrohydrodynamics. London: Cambridge University Press, 1985
    [26] Rosensweig R E. On magnetorheology and electrorheology as states of unsymmetric stress. Rheol. 1995,39(1): 179-192
    [27] Rosensweig R E, Popplewell J, Siller J K. Magnetorheology of ferrofluid composites. Journal of Magnetism and Magnetic Materials. 1995, 194(1-2): 53-56
    [28] Laun H, Kormann C M, Willenbacher N. Rheometry on magnetorheological (MR) fluids. I. Steady shear flow in stationary magnetic fields,Rheologica Acta, 1996, 35(5): 417-423
    [29] Jin K, Wen W. The evolution of bending chains in magnetorheological fluid at external field. Physics Letters A. 2001, 286(5): 347-352
    [30] Chen K C, Yeh C S. Description of magnetorheological behavior with internal variables. International Journal of Engineering Science, February, 2002,40(4): 461-482
    [31]常建,杨运民,彭向和等.一种磁流变液流变特性测试装置的研究,仪器仪表学报,2001,22(4):354-368
    [32]司鹄,彭向和,磁流变材料的流变性能研究,材料科学与工程,2002,20(1):61-63
    [33] Li H, Peng X, and Chen W. A Micro-to-macroscopic Analysis for the Yield Stress of Magne-torheological Fluids, Proc. Int. Conf. Heterogeneoud Materials Mechanics, edited by Fan j, McDowell D and Huang K, Chongqing University Press, Chongqing:, 2004: 276-280
    [34]周刚毅,金昀,向勇等.磁场作用下磁流变液结构演化的实验研究[实验力学,2000,15(2):233-239
    [35]金昀,周刚毅,汪小华等.磁流变液剪切屈服应力的数值计算.中国科技大学学报,2001,31(2):168-173
    [36]张先舟,张培强.基于磁流变液相变技术的柔性夹具.实验力学,2003,18(2):185-192
    [37]潘胜,磁流变液的屈服应力与温度效应.功能材料,1997, 28(2);264-266
    [38]翁建生,胡海岩,磁流变液的流变力学特性试验和建模.应用力学学报,2000,17(3):1-5
    [39] Bolter R, Janocha H. Design rules for MR fluid actuators in different working modes. Proceeding of SPIE, 1998, 3045:148-159
    [40] Wereley N M, Li P. Nondimensional analysis of semi-active electrorheological and magnetorrheological dampers using approximate parallel plate models. Smart Materials and Structures. 1998, 7: 732-743
    [41] Bica I. Damper with magnetorheological suspension. Journal of Magnetism and Magnetic Materials. 2002, 241(2-3): 196-200
    [42]廖昌荣,余淼,陈伟民.汽车磁流变减振器设计准则探讨,中国机械工程.2002,13(9):723-726
    [43]廖昌荣,余淼,陈伟民等.汽车磁流变减振器设计原理及实验测试,中国机械工程.2002,13(16):1391-1394
    [44]何亚东,黄金枝.智能磁流变阻尼器的半主动控制研究.振动工程学报,2003,16(2):198-202
    [45]倪建华、张智谦、张可等.一种新型的磁流变阻尼器及其在半主动控制车辆悬架中的应用研究机械科学与技术,2004,23(1):7-10
    [46]黄金,杨岩,魏玉卿等.圆筒式磁流变液制动原理及转矩分析,固体力学学报, 2002,23: 25-29
    [47] Huang J, Zhang J Q, Yang Y, et al. Analysis and design of a cylindrical magneto-rheological fluid brake, Journal of Materials Processing Technology, 2002, 129(1-3): 559-562
    [48] Huang J, Zhang J Q, Liu J N, et al. Principle of a cylindrical magnetorheological clutch, Proceedings of the International Conference on Agile Manufacturing (ICAM 2003), December 4-6,2003, BeiHang University, BUAA, Beijing, China, China Machine Press, Beijing, 2003, p135-137
    [49] Li W H, Du H. Design and experimental evaluation of a magnetorheological brake. International Journal of Advanced Manufacturing Technology, 2003, 21(7): 508-515
    [50] Yalcintas M. Magnetorheological fluid based torque transmission clutches, Proceedings of the International Offshore and Polar Engineering Conference, 1999, 4: 563-569
    [51] Bica I. Magnetorheological suspension electromagnetic brake. Journal of Magnetism and Magnetic Materials. 2004, 270(3): 321-326
    [52] Carlson J D, John C. Controllable Brake. US Patent No. 5842547, 1998
    [53] Carlson J D, Matthis W, Toscano J R. Smart prosthetics based on magnetorheological fluids. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4332: 308-316
    [54] Jacobs S D, Arrasmith S D, Kozhinova I A, MRF: Computer-controlled optics manufacturing, American Ceramic Society Bulletin, 1999, 78(12): 42-48
    [55] Arrasmith S R, Kozhinova I A, Greqq L L, Details of the polishing spot in magnetorheological finishing (MRF), Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3782: 92-100
    [56] Lambropoulos J C, Arrasmith S, Jacobs S D, Manufacturing-induced residual stresses in optical glasses and crystals: Example of residual stress relief by magnetorheological finishing (MRF) in commercial silicon wafers, Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4451: 181-190
    [57] Yang F, Golini D, Raquin D H, Planarization of gratings using magnetorheological finishing, Materials Research Society Symposium - Proceedings, Science and Technology of Semiconductor Surface Preparation, 1997, 477: 131-136
    [58] Shimada K, Akagami Y, Fujita T, et al. Characteristics of magnetic compound fluid (MCF) in a rotating rheometer. Journal of Magnetism and Magnetic Materials. Vol: 252, November, 2002, 252: 235-237
    [59] Jha S, Jain V K. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Machine Tools and Manufacture, 2004, 44(10): 1019-1029
    [60] Kuzhir P, Bossis G, Bashtovoi V, et al. Flow of magnetorheological fluid through porous media. European Journal of Mechanics - B/Fluids. 2003, 22(4): 331-343
    [61] Huang J, He J M, Zhang J Q. Viscoplastic Flow of the MR Fluid in a Cylindrical Valve,Key Engineering materials, 2004, 274-276: 969-974
    [62] Jolly M R, Bryan S R. Magnetorheological grip. US Patent,No. 6158910, 2000
    [63] Kordonski W I, Gorodkin S R, Magnetorheological fluid-based seal, Journal of Intelligent Material Systems and Structures, 1996, 7(5): 569-572
    [64] Liu J, Flores G A, Sheng R. In-vitro investigation of blood embolization in cancer treatment using magnetorheological fluids. Journal of Magnetism and Magnetic Materials. 2001, 225(1-2): 209-217
    [65] Sheng R, Flores G A, Liu J. In vitro investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids. Journal of Magnetism and Magnetic Materials. 1999,194(1-3): 167-175
    [66] Phule P P. Magnetorheological (MR) fluids: Principles and applications. Smart Materials Bulletin, 2001, 2: 7-10
    [67] Carlson J D, Jolly M R. MR fluid, foam and elastomer devices. Mechatronics, 2000, 10(4-5): 555-569
    [68] Li W H, Du H, Guo N Q. Dynamic behavior of MR suspensions at moderate flux densities. Materials Science and Engineering: A. 2004, 371(1-2): 9-15
    [69] Lee D Y, Wereley N M, Analysis of electro- and magneto-rheological flow mode dampers using Herschel-Bulkley model. Proceedings of SPIE Smart Structure and Material Conferece. 2000. 3989: 244-252
    [70] Lord Corporation. http://www.lord.com, 2009
    [71]黄金.磁流变液与磁流变液器件的分析与设计[D].重庆:重庆大学, 2006.
    [72]艾武,李承.电路与磁路.武汉:华中科技大学出版社.2002
    [73]蔡元宇,陈永祥,杨其允.电路与磁路.北京:高等教育出版社.2000
    [74]机械设计手册编委会.机械设计手册第1卷,第2版.北京.机械工业出版社.2004.8
    [75]孙鸿.磁流变减振器设计及控制系统仿真.长春:吉林大学.2005
    [76]阎照文. ANSYS 10.0工程电磁分析技术与实例详解.第1版.北京:中国水利水电出版社. 2006.11
    [77]胡国良,任继文. ANSYS11.0有限元分析入门与提高.北京:国防工业出版社. 2009.1
    [78]孙明礼等. ANSYS 10.0电磁学有限元分析实例指导教程.北京:机械工业出版社. 2007.4
    [79]张洪信,赵清海等. ANSYS有限元分析完全自学手册.北京:机械工业出版社. 2008.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700