哺乳动物细胞有丝分裂中期染色体上RNA成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RNA和染色质之间的联系越来越紧密,这两个领域的交叉点也逐渐被揭示。相比有丝分裂其他时期的染色体形态,中期染色体是迄今可以得到的较大的完整的生物结构,最重要的一点在于其可见的X生物结构。但是到现在还没有关于中期染色体上RNA组成的相关研究,中期染色体由于其结构紧密一般认为是不转录的,那么其上是否存在RNA组分以及它们的组成如何是一个非常有趣的问题,所以这项研究对于中期染色体结构的组成以及表观遗传学都具有重要的指导意义和参考价值。本论文主要是从哺乳动物细胞中分离出完整的中期染色体,提取其上的RNA组分,检测其组成。另外已知一些小RNA分子可以介导异染色质装配以及基因沉默,所以是否在其组分中有一些小的RNA分子存在,它们可能参与中期染色体结构的形成或跟基因表达调控有关。本论文的结果主要有:提取出来的中期染色体RNA主要由核糖体28S,18S和5S亚基组成,同时在用15%的尿素-丙烯酰胺变性胶检测时发现在20-30bp之间有一条比较小的RNA条带出现;建立了中期染色体的提取,中期染色体荧光原位杂交技术,中期染色体RNA提取技术,以及3pmol的少起始量的小分子RNA的克隆等一系列相关技术,从而为下一步分析鉴定中期染色体上小RNA的组成及序列创造了良好的实验基础。
In the universe of science, two worlds have recently collided-those of RNA and chromatin. The intersection of these two fields has been impending, but evidence for such a meaningful collision has only recently become apparent.Metaphase chromosome is perhaps the most accessible large scale structural biology project, in comparison to other chromosomal states. The significance is that this is the most visible biological structure (the famous X), yet we virtually have no idea how it is folded and how these can be changes. RNA interference-mediated heterochromation assembly and gene silencing, So far, there is no report on the identity of the RNAs involved. It is an interesting question whether small RNAs are present or required to form the compact structure. It is now shown that heterochromatin may require some transcription that is coupled to small RNA. So this research will provide very important direction and reference value for metaphase chromosome structure and epigenetics. In my paper, I purified metaphase chromosomes from human HT1080 cell line then isolate RNA components from them, see if there's small RNA fragments that have relationship with metaphase chromosome and transcription regulation exist, and set up a small amount microRNA cloning method, tried to analysis its sequences.Finally I discovered chromosomal RNAs mainly contain ribosomal 28S,18S and 5S subunits, and, I found there is a small band between 20-30bp exsits when detected on 15% polyacrylamide TBE-urea gel.This paper has set up a series of technologies, like metaphase chromosomal isolation method, chromosome in fluorescence situ hybridization, chromosomal RNA isolation method and 3 pmol small initial amount microRNA cloning method by a special molecular cloning procedure based on Weissman' science paper in 2009, so current results provide a good condition for the future analysis and identification of small RNAs sequences from metaphase chromosome.
引文
[1]Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J.1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251-260.
    [2]Strahl, B.D. and Allis, C.D.2000. The language of covalent histone modifications. Nature 403: 41-45.
    [3]Zhang, Y. and Reinberg, D.2001. Transcription regulation by histone methylation:Interplay between different covalent modifications of the core histone tails. Genes & Dev.15:2343-2360.
    [4]Cosgrove, M.S., Boeke, J.D., and Wolberger, C.2004. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol.Biol.11:1037-1043.
    [5]Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P., Bannister, A.J., et al.2004. Histone deimination antagonizes arginine methylation. Cell 118:545-553.
    [6]Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y.2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941-953.
    [7]Wang, Y., Wysocka, J., Sayegh, J., Lee, Y.H., Perlin, J.R., Leonelli, L., Sonbuchner, L.S., McDonald, C.H., Cook, R.G., Dou, Y., et al.2004. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279-283.
    [8]Jenuwein, T. and Allis, C.D.2001. Translating the histone code. Science 293:1074-1080.
    [9]Fischle, W., Wang, J., and Allis, C.D.2003a. Binary switches and modification cassettes-Novel concepts in histone biology and beyond. Nature 425:475-479.
    [10]Kamakaka, R.T. and Biggins, S.2005. Histone variants:Deviants Genes & Dev.19: 295-310.
    [11]Turner, B.M.1993. Decoding the nucleosome. Cell.75:5-8.-.2000. Histone acetylation and an epigenetic code. Bioessays 22:836-845.
    [12]Muller, H.J.1930. Types of visible variations induced by X-rays in Drosophila. J. Genet.22: 299-334.
    [13]Wallrath, L.L. and Elgin, S.C.R.1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes & Dev.9:1263-1277.
    [14]Schotta, G., Ebert, A., Dorn, R., and Reuter, G.2003. Position effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol.14; 67-75.
    [15]McClintock, B.1951. Chromosome organization and genic expression. Cold Spring Harb. Symp. Quant. Biol.16:13-47.
    [16]Elgin, S.C. and Grewal, S.I. 2003. Heterochromatin:Silence is golden. Curr. Biol.13: R895-R898.
    [17]Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P., and Cranston, G.1995. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes & Dev.9:218-233.
    [18]Kellum, R. and Alberts, B.M.1995. Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos.J. Cell Sci.108:1419-1431.
    [19]Grunstein, M.1997a. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol.9:383-387.
    [20]Karpen, G.H. and Allshire, R.C.1997. The case for epigenetic effects on centromere identity and function. Trends Genet.13:489-496.
    [21]Ekwall, K., Cranston, G., and Allshire, R.C.1999. Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153:1153-1169.
    [22]Mochizuki, K. and Gorovsky, M.A.2004. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev.14:1-7.
    [23]Morey, C. and Avner, P.2004. Employment opportunities for non-coding RNAs. FEBS Lett. 567:27-34.
    [24]O'Neill, M.J.2005. The influence of non-coding RNAs on allelespecific gene expression in mammals. Hum. Mol. Genet.14:R113-R120.
    [25]Hannon, G.2002. RNA interference. Nature 418:244-251.
    [26]Grewal, S.I. and Moazed, D.2003. Heterochromatin and epigenetic control of gene expression. Science 301:798-802.
    [27]Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl T.2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15: 185-197.
    [28]Sontheimer, E.J.2005. Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell Biol.6:127-138.
    [29]Tomari, Y. and Zamore, P.D.2005. Perspective:Machines for RNAi. Genes & Dev.19: 517-529.
    [30]Wassenegger, M., Heimes, S., Riedel, L., and Sanger, H.L.1994. RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567-576.
    [31]Pelissier, T. and Wassenegger, M.2000. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA 6:55-65.
    [32]Jones, L., Ratcliff, F., and Baulcombe, D.C.2001. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Metl for maintenance. Curr. Biol.11:747-757.
    [33]Hall, I.M., Shankaranarayana, G.D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S.I.2002. Establishment and maintenance of a heterochromatin domain. Science 297:2232-2237.
    [34]Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A.2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833-1837.
    [35]Gendrel, A.V. and Colot, V.2005. Arabidopsis epigenetics:When RNA meets chromatin. Curr. Opin. Plant Biol.8:142-147.
    [36]Gilfillan, G.D., Dahlsveen, I.K., and Becker, P.B.2004. Lifting a chromosome:Dosage compensation in Drosophila melanogaster. FEBS Lett.567:8-14.
    [37]Kayne, P.S., Kim, U.J., Han, M., Mullen, J.R., Yoshizaki, F., and Grunstein, M.1988. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55:27-39.
    [38]Carmen, A.A., Milne, L., and Grunstein, M.2002. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem.277:4778-4781.
    [39]Gu, W., Szauter, P., and Lucchesi, J.C.1998. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet.22:56-64.
    [40]Meller, V.H. and Rattner, B.P.2002. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J.21:1084-1091.
    [41]Richter, L., Bone, J.R., and Kuroda, M.I.1996. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325-336.
    [42]Akhtar, A., Zink, D., and Becker, P.B.2000. Chromodomains are protein-RNA interaction modules. Nature 407:405-409.
    [43]Heard, E.2004. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol.16: 247-255.
    [44]Avner, P. and Heard, E.2001. X-chromosome inactivation:Counting, choice and initiation. Nat. Rev. Genet.2:59-67.
    [45]Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N.1996. Requirement for Xist in X chromosome inactivation Nature 379:131-137.
    [46]Marahrens, Y., Panning, B., Dausman, J., Strauss, W., and Jaenisch, R.1997. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes & Dev.11:156-166.
    [47]Wutz, A., Rasmussen, T.P., and Jaenisch, R.2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet.30:167-174.
    [48]Plath, K., Fang, J., Mlynarczyk-Evans, S.K., Cao, R., Worringer, K.A., Wang, H., de la Cruz, C.C., Otte, A.P., Panning, B., and Zhang, Y.2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131-135.
    [49]Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T.B., Webster, Z., Peters, A.H., Jenuwein, T., Otte, A.P., and Brockdorff, N.2003. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481-495.
    [50]Ringrose, L. and Paro, R.2004. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38:413-443..
    [51]Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., and Reinberg, D.2002. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes & Dev.16:2893-2905.
    [52]Rougeulle, C., Chaumeil, J., Sarma, K., Allis, C.D., Reinberg, D., Avner, P., and Heard, E. 2004. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol 24:5475-5484.
    [53]Ohhata, T., Tachibana, M., Tada, M., Tada, T., Sasaki, H., Shinkai, Y., and Sado, T.2004. X-Inactivation is stably maintained in mouse embryos deficient for histone methyltransferase G9a. Genesis 40:151-156.
    [54]Plath, K., Talbot, D., Hamer, K.M., Otte, A.P., Yang, T.P., Jaenisch, R., and Panning, B. 2004. Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J. Cell Biol.167:1025-1035.
    [55]Hernandez-Munoz, I., Lund, A.H., van der Stoop, P., Boutsma, E., Muijrers, I., Verhoeven, E., Nusinow, D.A., Panning, B., Marahrens, Y., and van Lohuizen, M.2005. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl. Acad. Sci.102: 7635-7640.
    [56]Goto, Y., Gomez, M., Brockdorff, N., and Feil, R.2002. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet. Genome Res.99:66-74.
    [57]Goodfellow, P.J., Mondello, C., Darling, S.M., Pym, B., Little, P., and Goodfellow, P.N. 1988. Absence of methylation of a CpG-rich region at the 5_ end of the MIC2 gene on the active X, the inactive X, and the Y chromosome. Proc. Natl. Acad. Sci.85:5605-5609.
    [58]Boggs, B.A., Cheung, P., Heard, E., Spector, D.L., Chinault, A.C., and Allis, C.D.2002. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet.30:73-76.
    [59]Filippova, G.N., Cheng, M.K., Moore, J.M., Truong, J.P., Hu, Y.J., Nguyen, D.K., Tsuchiya, K.D., and Disteche, C.M.2005. Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev. Cell 8:31-42.
    [60]Guo, S. and Kemphues, K.J.1995. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611-620.
    [61]Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C.1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.
    [62]Liu, J., Carmell M.A., Rivas, F.V., Marsden C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J.2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437-1441.
    [63]Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl T.2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15: 185-197.
    [64]Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L.2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434-1437.
    [65]Carmell, M.A. and Hannon, G.J.2004. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol.11:214-218.
    [66]Cullen, B.R.2004. Transcription and processing of human microRNA precursors. Mol. Cell 16:861-865.
    [67]He, L. and Hannon, G.J.2004. MicroRNAs:Small RNAs with a big role in gene regulation. Nat. Rev. Genet.5:522-531.
    [68]Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., et al.2004. Identification of virus-encoded microRNAs. Science 304: 734-736.
    [69]Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M.2003. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25-36.
    [70]Johnston, R.J. and Hobert, O.2003. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845-849.
    [71]Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R.,Carrington, J.C., and Weigel, D. 2003. Control of leaf morphogenesis by microRNAs. Nature 425:257-263.
    [72]Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C.2004. microRNA-mediated repression of rolled leafl specifies maize leaf polarity. Nature 428:84-88.
    [73]Kidner, C.A. and Martienssen, R.A.2004. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1.Nature 428:81-84.
    [74]Poy, M.N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P.E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., et al.2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226-230.
    [75]Matzke, M.A., Mette, M.F., and Matzke, A.J.2000. Transgene silencing by the host genome defense:Implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol.43:401-415.
    [76]Sijen, T. and Plasterk, R.H.2003. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310-314.
    [77]Ketting, R.F., Haverkamp, T.H., van Leuven, H.G., and Plasterk, R.H.1999. Mut7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNase D. Cell 99:133-141.
    [78]Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and Mello, C.C.1999. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123-132.
    [79]Jensen, S., Gassama, M.P., and Heidmann, T.1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet.21:209-212.
    [80]Svoboda, P., Stein, P., Anger, M., Bernstein, E., Hannon, G.J., and Schultz, R.M.2004a. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol.269:276-285.
    [81]Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D.2002. Two classes of short interfering RNA in RNA silencing. EMBO J.21:4671-4679.
    [82]Llave, C., Kasschau, K.D., Rector, M.A., and Carrington, J.C.2002. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605-1619.
    [83]Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl,T.2003. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5:337-350.
    [84]Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., et al.2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471-476.
    [85]Martens, J.H., O' Sullivan, R.J., Braunschweig, U., Opravil, S., Radolf, M., Steinlein, P., and Jenuwein, T.2005. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J.24:800-812.
    [86]Csink, A.K. and Henikoff, S.1998. Something from nothing:The evolution and utility of satellite repeats. Trends Genet.14:200-204.
    [87]Ekwall, K., Nimmo, E.R., Javerzat, J.P., Borgstrom, B., Egel, R., Cranston, G., and Allshire, R.1996. Mutations in the fission yeast silencing factors clr4 and rikl disrupt the localization of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci.109:2637-2648. 111/35
    [88]Ekwall, K., Javerzat, J.P., Lorentz, A., Schmidt, H., Cranston, G., and Allshire, R.1995. The chromodomain protein Swi6:A key component at fission yeast centromeres. Science 269: 1429-1431.
    [89]Partridge, J.F., Scott, K.S., Bannister, A.J., Kouzarides, T., and Allshire, R.C.2002. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12:1652-1660.
    [90]Provost, P., Silverstein, R.A., Dishart, D., Walfridsson, J., Djupedal, I., Kniola, B., Wright, A., Samuelsson, B., Radmark, O., and Ekwall, K.2002. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc. Natl. Acad. Sci.99:16648-16653.
    [91]Reinhart, B.J. and Bartel, D.P.2002. Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831.
    [92]Noma, K., Sugiyama, T., Cam, H., Verdel, A., Zofall, M., Jia, S., Moazed, D., and Grewal, S.I.2004. RITS acts in cis to promote RNA interference-mediated transcriptional and posttranscriptional silencing. Nat. Genet.36:1174-1180.
    [93]Motamedi, M.R., Verdel, A., Colmenares, S.U., Gerber, S.A., Gygi, S.P., and Moazed, D. 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789-802.121/120
    [94]Zilberman, D., Cao, X., and Jacobsen, S.E.2003. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716-719.
    [95]Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M., and Rajewsky, K.2005. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Dev.19:489-501.
    [96]Saurin, A.J., Shiels, C., Williamson, J., Satijn, D.P., Otte, A.P., Sheer, D., and Freemont, P.S. 1998. The human Polycombgroup complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol.142:887-898.
    [97]Maison, C., Bailly, D., Peters, A.H.F.M., Quivy, J.P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T., and Almouzni, G.2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet.30: 329-334.
    [98]Pehrson, J.R. and Fried, V.A.1992. MacroH2A, a core histone containing a large nonhistone region. Science 257:1398-1400.
    [99]Csankovszki, G., Panning, B., Bates, B., Pehrson, J.R., and Jaenisch, R.1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet.22:323-324.
    [100]Allen, M.D., Buckle, A.M., Cordell, S.C., Lowe, J., and Bycroft, M.2003. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol.330:503-511.
    [101]Ladurner, A.G.2003. Inactivating chromosomes:A macro domain that minimizes transcription. Mol. Cell 12:1-4.
    [102]Karras, G.I., Kustatscher, G., Buhecha, H.R., Allen, M.D., Pugieux, C., Sait, F., Bycroft, M., and Ladurner, A.G.2005. The macro domain is an ADP-ribose binding module. EMBO J.24: 1911-1920.
    [103]Lewis, B.P., Burge, C.B., and Bartel, D.P.2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20.
    [104]Grosshans, H., Johnson, T., Reinert, K.L., Gerstein, M., and Slack, F.J.2005. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans.Dev. Cell 8:321-330.
    [105]Bao, N., Lye, K.W., and Barton, M.K.2004. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7: 653-662.
    [106]Sone T, Iwano M, Kobayashi S, Ishihara T, Hori N, Takata H, Ushiki T, Uchiyama S, Fukui K.2002. Changes on chromosomal surface by different isolation conditions. Archives of Histology and Cytology.V.65(no.5)
    [107]Kiichi Fukui, Susumu Chiyama.2007. Chromosome Protein Framework from Proteome Analysis of Isolated Human Metaphase Chromosomes. The Chemical Record, Vol.7,230-237
    [108]Nicholas T. Ingolia,Sina Ghaemmaghami,John R.S.Newman,Jonathan S.Weissman.2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324,218
    [109]Donev RM, Djondjurov LP.1999. Macromolecular and ultrastructural organization of the mitotic chromosome scaffold. DNA AND CELL BIOLOGY.Volume 18.Number 2.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700