密点麻蜥成年性比对后代性别和表型特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爬行动物的性别决定方式既具有传统的遗传性别决定方式,又具有环境依赖的性别决定方式。在环境依赖的性别决定方式中,温度依赖的性别决定方式是爬行动物中最常见的一种。温度依赖性别决定方式的种群性别比例也可能因此而受到影响,进一步影响种群的活力。性别分配理论认为动物能够根据周围环境中雌性比例的变化而将能量更多的分配到在这个群体中占比例较少的那个性别的个体更容易被自然选择保留下来。Operational sex ratio (OSR)是指在一个种群中可以交配的雄性个体的数量除以能够受孕的雌性个体的数量,OSR是否会影响母体对后代个体中雌性个体和雄性个体分配的能力的多少,以蜥蜴为研究对象的研究得到了自相矛盾的结果。在这个实验中我们选择温度影响后代性别的密点麻蜥为研究对象,来研究怀孕的雌性蜥蜴是否会根据周围环境的OSR而改变后代个体的性别比例。我们的实验结果表明,母体不会根据周围环境的OSR的不同而改变后代个体的性别和除了尾长以外的形态特征,但是OSR对后代个体的生长速率具有一定的影响。一直在实验室中饲养的蜥蜴产生的后代体重和体长的增加都受OSR的影响,而在野外饲养的蜥蜴产生的后代只有体重受OSR的影响。因此我们认为判断OSR对后代个体的影响不应该只看后代出生时的形态特征,有可能OSR对后代个体还具有潜在的影响。
Reptiles exhibit both environment-dependent sex determinations (ESD) and gene dependent sex determination (GSD). Temperature-dependent sex determination (TSD) is the most common mechanism in reptile. The sex ratio of reptile with TSD could be influenced by climate temperature. Sex allocation theory predicts that maternal sex specific investment in the rare sex should be favored by natural selection. Operational sex ratio (OSR) is defined as the number of potentially mating males divided by the number of fertilizable females. It is unclear whether or not OSR influence sex allocation, and recent studies on lizards have reached conflicting conclusions. Here we selected a viviparous lizard Eremias multiocellata to test whether pregnant females could adjust the sex ratio of their offspring in response to OSR. Our results showed that mothers did not adjust sex ratios or any other phenotypes of neonates in the laboratory and field-based experiments. However, the OSRs did affect subsequent growth in both mass and SVLs of the offspring in laboratory experiments, while in the semi-nature experiments only the mass was affected. Therefore, proposed that the total effects of OSRs on offspring of this lizard should not be assessed or assumed based solely on the phenotype of neonates at birth.
引文
[1]Bull J J. Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA,1983.
    [2]Valenzuela N, Adams DC, Janzen FJ. Pattern does not equal process:exactly when is sex environmentally determined? Am Nat.2003,161(4):676-83.
    [3]Fisher RA. The Genetical Theory of Natural Selection. Oxford University Press, Oxford,1930.
    [4]Korpelainen H. Sex ratios and conditions required for environmental sex determination in animals. Biol Rev Camb Philos Soc,1990,65(2):147-84.
    [5]Korpelainen H. Labile sex expression in plants. Biol Rev Camb Philos Soc, 1998,73:157-180.
    [6]McCabe J, Dunn A M. Adaptive significance of environmental sex determination in an amphipod. J Evol Biol,1997,10:515-527.
    [7]Janzen F J, Paukstis G L. Environmental sex determination in reptiles:ecology, evolution, and experimental design. Q Rev Biol.1991,66(2):149-79.
    [8]Valenzuela N, Lance V A. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian Books, Washington, DC,2004.
    [9]Janzen F J, Krenz J G Phylogenetics:Which was first, TSD or GSD? In: Temperature-Dependent Sex Determination in Vertebrates (N. Valenzuela & V. A. Lance, eds), Smithsonian Books, Washington, DC.2004,121-130.
    [10]Janzen, F.J. Climate change and temperature-dependent sex determination in reptiles. Proc Natl Acad Sci USA,1994,91:7487-7490.
    [11]Dodd K L, Wibbels T. Estrogen inhibits caudal progression but stimulates proliferation of developing mullerian ducts in a turtle with temperature-dependent sex determination. Comp Biochem Physiol A Mol Integr Physiol.2008, 150(3):315-9.
    [12]Ramsey M, Crews D. Steroid signaling and temperature2 dependent sex determination2reviewing the evidence for early action of estrogen during ovarian determination in turtles. Semin Cell Dev Biol.2009,20(3):283-92.
    [13]Pieau C. Temperature sensitive of sexual differentiation of gonads in the European pond turtle:hormonal involvement. J Exp Zool,1995,270:86-94.
    [14]Pieau C, Dorrizzi M, Richard M N. Temperature-dependent sex determination and gonadal differentiation in reptile. Cellular and Molecular Life Sciences,1999, 55:887-900.
    [15]Willingham E, Baldwin R, Skipper JK, Crews D. Aromatase activity during embryogenesis in the brain and adrenal-kidney-gonad of the red-eared slider turtle, a species with temperature-dependent sex determination. Gen Comp Endocrinol.2000,119(2):202-7.
    [16]Jeyasula P. Embryonic brain-gonadal axis in temperature-dependent sex determination of reptile:a role for P450 aromatase (CYP19). J Exp Zool,1998,
    281:428-449.
    [17]Etchberger C R, Ewert M A, Phillips J B. Carbon dioxide influences environmental sex determination in two species of turtles. Amphibia-Reptilia, 2002,23:169-175.
    [18]Christina M S, Crews D. Analyzing the coordinated gene network underlying temperature2dependent sex determination in reptiles. Semin Cell Dev Biol.2009, 20(3):293-303.
    [19]Fleming A, Crews D. Estradiol and incubation temperature modulate regulation of steroidogenic factor 1 in the developing gonad of the red-eared slider turtle. Endocrinology,2001,142:1403-1411.
    [20]Ramsey M, Shoemaker C, Crews D. Gonadal expression of Sfl and aromatase during sex determination in the red-eared slider turtle (Trachemys scripta), a reptile with temperature-dependent sex determination. Differentiation,2007,75: 978-991.
    [21]Parker K L, Rice D A, Lala D S. Steroidogenic factor 1:an essential mediator of endocrine development. Recent Prog Horm Res.2002,57:19-36.
    [22]Takada S, DiNapoli L, Capel B, Koopman P. Sox8 is expressed at similar levels in gonads of both sexes during the sex determining period in turtles. Dev Dyn. 2004,231(2):387-95.
    [23]Murdock C, Wibbels T. Expression of Dmrt1 in a turtle with temperature-dependent sex determination. Cytogenet Genome Res.2003, 101(3-4):302-8.
    [24]M(?)ller A P. Protandry, sexual selection and climate change. Global Change Biology,2004,10:2028-2035.
    [25]Blainckenhorn W U, Stillwell R C, Young K A, Fox C W, Ashton K G When Rensch meets Bergmann:does sexual size dimorphism change systematically with latitude? Evolution,2006,60:2004-2011.
    [26]Pulido F, Berthold P. Microevolutionary response to climatic change. Adv Ecol Res,2004,35:151-183.
    [27]Visser M E, Both C, Lambrechts M M. Global climate change leads to mistimed avian reproduction. Adv Ecol Res,2004,35:89-110.
    [28]Both C, Bouwhuis S, Lessells C M, Visser M E. Climate change and population declines in long-distance migratory bird. Nature,2006,441:81-83.
    [29]Charmantier A, McCleery R H, Cole L R, Perrins C, Kruuk L E B, Sheldon B C. Adaptive phenotypic plasticity in response to climate change in wild bird population. Science,2008,320:800-803.
    [30]Dunn P. Breeding dates and reproductive performance. Advances in Ecological Research,2004,35:69-87.
    [31]Chamaille-Jammes S, Massot M, Aragon P, Clobert J. Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Ch Biol,2006,12:392-402.
    [32]Lourdais O, Shine R, Bonnet X, Guillon M, Naulleau G. Climate affects
    embryonic development in viviparous snake, Vipera aspis. Oikos,2004,104: 551-560.
    [33]Janzen F J, Morjan C L. Repeatability of microenvironment-specific nesting behaviour in turtle with environmental sex determination. Animal Behavior,2001, 62:73-82.
    [34]Shine R. Why is sex determined by nest temperatures in many reptiles. Trends Ecol Evol.1999,14(5):186-189.
    [35]Robert K A, Thompson M B. Viviparous lizard selects sex of embryos. Nature, 2001,412:698-699.
    [36]Wapstra E, Olsson M, Shine R, Edwards A, Swain R, Joss J M P. Maternal basking behaviour determines offspring sex in viviparous reptile. Proc Biol Sci. 2004,271 Suppl 4:S230-232.
    [37]Morjan C L. How rapidly can maternal behavior affecting primary sex ratio evolve in reptile with environmental sex determination? Am Nat.2003 162(2):205-219.
    [38]Janzen F J, Phillips P C. Exploring the evolution of environmental sex determination, especially in reptiles. J Evol Biol,2006.19:1775-1784.
    [39]Doody J S, Guarino E, Georges A, Corey B, Murray G, Ewert M. Nest site choice compensates for climate effects on sex ratios in lizard with environmental sex determination. Evol Ecol.2006,20:307-330.
    [40]Crawford D L, Pierce V A, Segal J A. Evolutionary physiology of closely related taxa:analyses of enzyme expression. Am Zool.1999,39:389-399.
    [41]Piersma T, Drent J. Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol.2003,18:228-233
    [42]Wilson R S, Franklin C E. Testing the beneficial acclimation hypothesis. Trends Ecol Evol.2002,17:66-70
    [43]Bowler K. Acclimation, heat shock and hardening. J Therm Biol.2005, 30:125-130.
    [44]Bouchard P, Guderley H. Time course of the response of mitochondria from oxidative muscle during thermal acclimation of rainbow trout, Onchorhynchus mykiss. J Exp Biol.2003,206:3455-3465.
    [45]Rogers K D, Seebacher F, Thompson M B. Biochemical aclcimation of metabolic enzymes in tadpoles of Limnodynastes peroni. Comp Biochem Physiol A.2004,137:731-738.
    [46]Hicks J M T, Farrell A P. The cardiovascular responses of the red-eared slider (Trachemys scripta) acclimated to either 22 or 5 degrees C. Ⅱ. Effects of anoxia on adrenergic and cholinergic control. J Exp Biol.2000,203:3765-3744.
    [47]Guiderley H, St-Pierre J. Going with the flow or life in the fast lane:contrasting mitochondrial responses to thermal change. J Exp Biol 2002,205:2237-2249.
    [48]Johnston I A, Temple G K. Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol. 2002,205:2305-2322.
    [49]Guderley H. Metabolic responses to low temperature in fish muscle. Biol Rev. 2004,79:409-427.
    [50]Via S, Gomulkiewicz R, De Jong G, Scheiner S M, Schlichting C D, Van Tienderen PH. Adaptive phenotypic plasticity:consensus and controversy. Trends Ecol Evol.1995,10:212-217.
    [51]Woods H A, Harrison J F. Interpreting rejections of the beneficial acclimation hypothesis:when is physiological plasticity adaptive? Evolution.2002, 56:1863-1866.
    [52]Harlow P S. Temperature-dependent sex determination in lizards. N. Valenzuela and V. A. Lance, eds. Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC.2004,42-53.
    [53]Place A R, Lance V A. The temperature-dependent sex determination drama: same cast, different stars. N. Valenzuela and V. A. Lance, eds. Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington,DC.2004,99-111.
    [54]Viets B E, Ewert M A, Talent L G, Nelson C E. Sex-determining mechanisms in squamate reptiles. J Exp Zool.1994,270:45-56.
    [55]Ewert M A, Etchberger C R, Nelson C E. Turtle sexdetermining modes and TSD patterns, and some TSD pattern correlates. N. Valenzuela and V. A. Lance, eds. Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC.2004,21-23.
    [56]Beuchat C A, Ellner S. A quantitative test of life history theory: thermoregulation by a viviparous lizard. Ecol Monogr.1987,57:45-60.
    [57]Charland M B, Gregory P T. The influence of female reproductive status on thermoregulation in a viviparous snake, Crotalus viridis. Copeia.1990 4:1089-1098.
    [58]Rock J, Andrews R M, Cree A. Effects of reproductive condition, season, and site on selected temperatures of a viviparous gecko. Physiol Biochem Zool.2000, 73:344-355.
    [59]Roosenburg W M. Maternal condition and nest site choice:an alternative for the maintenance of environmental sex determination? Am Zool.1996,36:157-168.
    [60]Freedberg S, Stumpf A L, Ewert M A, Nelson C E. Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination. Evol Ecol Res.2004,6:739-747.
    [61]Shine R, Harlow P. Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia.1993,96:122-127.
    [62]Wapstra, E. Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Funct Ecol.2000,14:345-352.
    [63]Lourdais O, Shine R, Bonnet X, Guillon M, Naulleau G. Climate affects offspring phenotypes in a viviparous snake, Vipera aspis. Oikos.2004 104:551-560.
    [64]Langkilde T, Shine R. Different optimal offspring sizes for sons versus
    daughters may favor the evolution of temperature-dependent sex determination in viviparous lizards. Evolution.2005,59(10):2275-80.
    [65]Lovejoy T E, Hannah L. Climate Change and Biodiversity (Yale Univ Press, New Haven, CT).2006.
    [66]Parmesan C. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Syst.2006,37:637-669.
    [67]Thomas C D, Cameron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B F, De Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T, Phillips O L, Williams S E. Extinction risk from climate change. Nature.2004,427:145-148.
    [68]Schwartz M W, Iverson L R, Prasad A M, Matthews S N, O'Connor R J. Predicting extinctions as a result of climate change. Ecology.2006, 87:1611-1615.
    [69]Araujo M B, Thuiller W, Pearson R G Climate warming and the decline of amphibians and reptiles in Europe. J Biog.2006,33:1712-1728.
    [70]Davis A J, Jenkinson L S, Lawton J H, Shorrocks B, Wood S. Making mistakes when predicting shifts in species range in response to global warming. Nature.1998,391:783-786.
    [71]Kearney M, Porter W P. Mapping the fundamental niche:Physiology, climate, and the distribution of a nocturnal lizard. Ecology.2004,85:3119-3131.
    [72]Pearson R G, Dawson T P. Predicting the impacts of climate change on the distribution of species:Are bioclimate envelope models useful? Glob Ecol Biog. 2003,12:361-371.
    [73]Bogert C M. Thermoregulation in reptiles, a factor in evolution. Evolution.1949, 3:195-211.
    [74]Bartholomew G A. The roles of physiology and behaviour in the maintenance of homeostasis in the desert environment. Symp Soc Exp Biol.1964,18:7-29.
    [75]Bale JS, et al. Herbivory in global climate change research:Direct effects of rising temperature on insect herbivores. Glob Ch Biol.2002,8:1-16.
    [76]Dunham A E. Biotic Interactions and Global Change, eds. Kareiva P M, Kingsolver J G, Huey R B (Sinauer Associates, Inc., Sunderland, MA),1993, 95-119.
    [77]Helmuth B, Kingsolver J G, Carrington E. Biophysics, physiological ecology, and climate change:Does mechanism matter? Annu Rev Physiol.2005, 67:177-201.
    [78]Portner H O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science.2007,315:95-97.
    [79]Deutsch C A, Tewksbury J J, Huey R B, Sheldon K S, Ghalambor C K, Haak D C, Martin P R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA.2008,105:6668-6672.
    [80]Porter W P, Budaraju S, Stewart W E, Ramankutty N. Calculating climate
    effects on birds and mammals:Impacts on biodiversity, conservation, population parameters, and global community structure. Am Zool.200,40:597-630.
    [81]Buckley L. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat.2008,171:E1-E19.
    [82]Kearney M, Porter W P. Mechanistic niche modelling:Combining physiological and spatial data to predict species'ranges. Ecol Lett, in press.
    [83]Gates D M. Biophysical Ecology (Springer, New York).1980.
    [84]Porter W P, Munger J C, Stewart W E, Budaraju S, Jaeger J. Endotherm energetics:From a scalable individual-based model to ecological applications. Aust J Zool.1994,42:125-162.
    [85]Gilman S E, Wethey D S, Helmuth B. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc Natl Acad Sci USA.2006,103:9560-9565.
    [86]Bradshaw W E, Holzapfel C M. Evolutionary response to rapid climate change. Science.2006,312:1477-1478.
    [87]Huey R B, Slatkin M. Costs and benefits of lizard thermoregulation. Q Rev Biol. 1976,51:363-384.
    [88]Shine R. Costs of reproduction in reptiles. Oecologia.1980,46:92-100.
    [89]Downes S. Trading heat and food for safety:costs of predator avoidance in lizard. Ecology.2001,82:2870-2881.
    [90]Spencer R J, Thompson M B. The significance of predation in nest site selection of turtles:an experimental consideration of macro-and microhabitat preferences. Oikos.2003,102,592-600.
    [91]Shine R, Downes S J. Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia.1999,119,1-8.
    [92]Robert K A, Thompson M B, Seebacher F. Thermal biology of a viviparous lizard with temperature-dependent sex determination. J Th Biol.2006, 31:292-301.
    [93]Price T. Maternal and paternal effects in birds:effects on offspring fitness. In: Maternal Effects as Adaptations (Ed. by T. A. Mousseau & C. W. Fox), Oxford: Oxford University Press.1998,202-226.
    [94]Forester D C. The adaptiveness of parental care in Desmognathus ochrophaeus (Urodela:Plethodontidae). Copeia.1979,332-341.
    [95]Sommia L A, Fawcett J D. Brooding behaviour of the prairie skink, Eumeces septentrionalis, and its relationship to the hydric environment of the nest. Zool J Linn Soc.1989,95:245-256.
    [96]Aubret F, Bonnet X, Shine R, Maumelat S. Why do female ball pythons (Python regius) coil so tightly around their eggs? Evol Ecol Res.2005, 7:743-758.
    [97]Huang W S. Parental care in the long-tailed skink, Mabuya longicaudata, on a tropical Asian island. Anim Behav.2006,72:791-795.
    [98]Shine R, Madsen T, Elphick M J, Harlow P S. The influence of nest
    temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology.1997,78:1713-1721.
    [99]Resetarits W J Jr. Oviposition site choice and life history evolution. Am Zool. 1996,36:205-215.
    [100]Burger J, Zappalorti R T. Nest site selection by pine snakes, Pituophis melanoleucus, in the New Jersey Pine Barrens. Copeia.1986,116-121.
    [101]Resetarits W J Jr, Wilbur H M. Choice of oviposition site in Hyla chrysoscelis:role of predators and competitors. Ecology.1989,70:220-228.
    [102]Holway D A. Nest-site selection and the importance of nest concealment in the black-throated blue warbler. Condor.1991,93:575-581.
    [103]Holomuzki J R. Oviposition sites and fish-deterrent mechanisms of two stream anurans. Copeia.1995,607-613.
    [104]Plummer M V, Snell H L. Nest site selection and water relations of eggs in the snake, Opheodrys aestivus. Copeia,1988,58-64.
    [105]Warner D A, Andrews R M. Nest-site selection in relation to temperature and moisture by the lizard Sceloporus undulatus. Herpetologica.2002, 58:399-407.
    [106]Kats L B, Sih A. Oviposition site selection and avoidance of fish by streamside salamanders (Ambystoma barbouri). Copeia.1992,468-473.
    [107]Wilson D S. Nest-site selection:microhabitat variation and its effects on the survival of turtle embryos. Ecology.1998,79:1884-1892.
    [108]Shine R, Harlow P S. Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology.1996,77:1808-1817.
    [109]Downes S J, Shine R. Do incubation-induced changes in a lizard's phenotype influence its vulnerability to predators? Oecologia.1999,120:9-18.
    [110]Andrews R M, Mathies T, Warner D A. Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol Monogr.200,14:420-431.
    [111]Reinhold K. Nest-site philopatry and selection for environmental sex determination. Evol Ecol.1998,12:245-250.
    [112]Freedberg S, Wade M J. Cultural inheritance as a mechanism for population sex-ratio bias in reptiles. Evolution.2001,55:1049-1055.
    [113]Freedberg S, Ewert M A, Nelson C E. Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination. Evol Ecol Res.2001,3:953-967.
    [114]Valenzuela N, Janzen F J. Nest-site philopatry and the evolution of temperature-dependent sex determination. Evol Ecol Res.2001,3:779-794.
    [115]Bull J J, Gutzke W H N, Bulmer M G Nest choice in a captive lizard with temperature-dependent sex determination. J Evol Biol.1988,2:177-184.
    [116]Simger M C, Ng D, Thomas C D. Heritability of oviposition preference and its relationship to offspring performance within a single insect population. Evolution.1988,42:977-985.
    [117]Tracy C R. Water relations of parchment-shelled lizard (Sceloporus undulatus) eggs. Copeia,1980,478-482.
    [118]Packard G C, Packard M J. The physiological ecology of reptilian eggs and embryos. In:Biology of the Reptilia, Vol.16 (Ed. by C. Gans & R. B. Huey), New York:A. R. Liss.1988,523-605.
    [119]Angilletta M J Jr, Winters R S, Dunham A E. Thermal effects on the energetics of lizard embryos:implications for hatchling phenotypes. Ecology. 2000,81:2957-2968.
    [120]Palmer-Allen M, Beynon F, Georges A. Hatchling sex ratios are independent of temperature in field nests of the longnecked turtle, Chelodina longicollis (Testudinata:Chelidae). Wildl Res.1991,18:225-231.
    [121]Janzen F J. Vegetational cover predicts the sex ratio of hatchling turtles in natural nests. Ecology.1994,75:1593-1599.
    [122]IPCC Climate Change 2007:the physical basis. Contribution of Working Group I to the fourth assessment. Report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.2007.
    [123]Bell G, Collins S. Adaptation, extinction and global change. Evol Appl.2008, 1:3-16.
    [124]Jump A S, Penuelas J. Running to stand still:adaptation and the response of plants to rapid climate change. Ecol Lett.2005,8:1010-1020.
    [125]Pertoldi C, Bach L A. Evolutionary aspects of climate-induced changes and the need for multidisciplinarity. J Therm Biol.2007,32:118-124.
    [126]Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J, Fromentin J M, Hoegh-Guldberg O, Bairlein F. Ecological responses to recent climate change. Nature.2002,416:389-395.
    [127]Bull J J. Sex ratio evolution when fitness varies. Heredity.1981,46:9-26.
    [128]Bull J J, Charnov E L. How fundamental are Fisherian sex ratios? In: Oxford Surveys in Evolutionary Biology (P. H. Harvey & L. Partridge, eds). Oxford University Press, Oxford.1988,96-135.
    [129]Hamilton W D. Extraordinary sex ratios. Science.1967,156:477-488.
    [130]Trivers R L, Willard D E. Natural selection of parental ability to vary the sex ratio of offspring. Science.1973,179:90-92.
    [131]Charnov E L. The Theory of Sex Allocation. Princeton University Press, Princeton.1982.
    [132]West S A, Reece S E, Sheldon B C. Sex ratios. Heredity.2002,88:17-124.
    [133]West S A, Sheldon B C. Constraints in the evolution of sex ratio adjustment. Science.2002,295:1685-1688.
    [134]Emlen S T, Oring L W. Ecology, sexual selection, and the evolution of mating systems. Science.1977,197:215-223.
    [135]Kvarnemo C, Ahnesjo I. The dynamics of operational sex ratios and competition for mates. Trends Ecol Evol.1996,11:404-408.
    [136]Kvarnemo C, Ahnesjo I. Operational sex ratios and mating competition. In:
    University Press, Cambridge.2002.366-382.
    [137]Le Galliard J-F, Fitze P S, Cote J, Massot M, Clobert J. Female common lizards (Lacerta vivipara) do not adjust their sex-biased investment in relation to the adult sex ratio. J Evol Biol.2005,18:1455-1463.
    [138]Fitze P S, Le Galliard J F. Operational sex ratio, sexual conflict and the intensity of sexual selection. Ecology Letters.2008,11:432-439.
    [139]Clarke A L, Saether B E, Roskaft E. Sex biases in aviandispersal:a reappraisal. Oikos.1997,79:429-438.
    [140]Clutton-Brock T. Sexual selection in males and females. Science.2007,318: 1882-1885.
    [141]Donald P F. Adult sex ratios in wild bird populations. Ibis.2007,149: 671-692.
    [142]Olsson M, Shine R. Facultative sex allocation in snow skink lizards (Niveoscincus microlepidotus). J Evol Biol.2001,14:120-128.
    [143]Robert K, Thompson M B. Reconstructing Thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herpetol Rev.2003,34:130-132.
    [144]Allsop D J, Warner D A, Langkilde T, Du W, Shine R. Do operational sex ratios influence sex allocation in viviparous lizards with temperature-dependent sex determination? J Evol Biol.2006,19:1175-1182.
    [145]Warner D A, Shine R. Reproducing lizards modify sex allocation in response to operational sex ratios. Biol Lett.2007,3:47-50.
    [146]Thomopson J. A study of the sources of nutrients for embryonic development in a viviparous lizard, Sphenomorphus quoyii. Comp Biochem Physiol A:Comp.1981,70:509-518.
    [147]Zhao E M, Adler K. Herpetology of China. SSAR. Oxford, Ohio.1993. 201-204.
    [148]Zhao K T. Lacertidae. In:Fauna Sinica, Reptilia Vol.2 (Squamata: Lacertilia). (Zhao EM, Zhao KT, Zhou KY. eds). Science Press, Beijing. (In Chines).1999,219-242.
    [149]Olsson M, Shine R. The limits to reproductive output:offspring size versus number in the sand lizard (Lacerta Agilis). Am Nat.1997,149:179-188.
    [150]Harmsen R, Cooke F. Binomial sex-ratio distribution in the lesser snow goose:a theoretical enigma. Am Nat.1983,121:1-8.
    [151]Williams G C. The question of adaptive sex ratio in outcrossed vertebrates. Proc R Soc Lond B Biol Sci.1979,205(1161):567-80.
    [152]Bull J J. Temperature-sensitive periods of sex determination in a lizard: similarities with turtles and crocodilians. J Exp Zool.1987,241:143-148.
    [153]Avery H W, Spotila J R, Congdon J D, Fischer R U, Standora E A, Avery S B. Roles of diet protein and temperature in the growth and nutritional energetics of juvenile slider turtles, Trachemys scripta. Physiol Zool.1993.66:902-925.
    [154]Wang T, Zaar M, Arvedsen S, Vedel-Smith C, Overgaard J. Effects of temperature on the metabolic response to feeding in Python molurus. Comp Biochem Physiol A.2002,133:519-527.
    [155]Hubbell S P, Johnson L K. Environmental variance in lifetime mating success, mate choice, and sexual selection. Am Nat.1987,130:91-112.
    [156]Crowley P H, Travers S E, Linton M C, Cohn S L, Sih A, Sargent R C. Mate density, predation risk, and the seasonal sequence of mate choices:a dynamic game. Am Nat.1991,137:567-596.
    [157]Kokko H, Rankin D J. Lonely hearts or sex in the city? Densitydependent effects in mating systems. Phil Trans R Soc B.2006,361:319-334.
    [158]Qualls C P, Shine R. Reconstructing ancestral reaction norms:an example using the evolution of reptilian viviparity. Func Ecol.1996,10:688-697.
    [159]Ji X, Lin L H, Luo L G, Lu H L, Gao J F, Han J. Gestation temperature affects sexual phenotype, morphology, locomotor performance, and growth of neonatal brown forest skinks, Sphenomorphus indicus. Biol J Linn Soc.2006,88: 453-463.
    [160]Hare J R, Holmes K M, Wilson J L, Cree A. Modelling exposure to selected temperature during pregnancy:the limitations of squamate viviparity in a cool-climate environment. Biol J Linn Soc.2009,96:541-552.
    [161]While G M, Wapstra E. Effects of basking opportunity on birthing asynchrony in a viviparous lizard. Anim Behav.2009,77:1465-1470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700