半边莲的活性成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对半边莲全草的化学成分及其体内外抗流感病毒活性进行了研究。采用多种色谱分离手段,从半边莲中共分离得到37个化合物,综合运用NMR、HR-ESI-MS、CD等现代谱学技术和化学方法鉴定了其中32个化合物的结构,7个为新化合物。本论文还系统地评价了半边莲醇提物及其不同极性部位体内外抗流感病毒活性。此外,还对分离得到的哌啶生物碱类和木脂素类化合物的电子轰击电离(EI)质谱裂解规律进行了研究和总结。一、半边莲化学成分研究
     半边莲(Lobelia chinensis Lour.)为桔梗科(Campanulacea)半边莲属植物,为一年生矮小草本。半边莲全草具利尿消肿、清热解毒之功效,常用于治疗带状疱疹、急性肾炎、蛇咬伤等疾病。本课题在抗流感病毒中药筛选中发现,半边莲醇提物对感染流感小鼠有显著保护作用。为寻找其药效成分,本论文对半边莲的乙醇提取物进行了系统的化学研究。采用各种色谱技术分离得到37个化合物,并通过NMR、MS及CD等现代谱学技术和化学方法鉴定了其中32个化合物的结构。其中8个为哌啶类生物碱,分别为cis-2-(2-butanone)-6-(2-hydroxy butyl)-piperidine (LC-1), (2R,4R,6R,2"S)-N-methyl-4-hydroxyl-2-(2-butanone)-6-(2-hydroxybutyl)-piperidine (LC-2), rel-(2R, 4R,6S)-N-methyl-4-hydroxyl-2-(2-butanone)-6-(2-hydroxybutyl)-piperidine (LC-3), cis-N-methyl-2-(2-hydroxybutyl)-6-[2-[(1,3)-dioxolan-4-yl-methanol]-propyl]-piperidine (LC-4),trans-N-methyl-2,6-bis(2-hydroxybutyl)-△3-piperideine (LC-5),trans-8,10-diethyl-lobelidiol (LC-6), trans-10-ethyl-8-methyl-lobelidiol (LC-7), trans-8,10-diethyl-lobelionol (LC-8);11个为木脂素和新木脂素类化合物,分别为(2R,3S)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-methyl-7-methoxy-5-benzofuran propanoic acid ethyl ester ((+) LC-9), (2S,3R)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-methyl-7-methoxy-5-benzofuran propanoic acid ethyl ester ((-)LC-9), (2R,3S)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-3-hydroxymethyl-7-methoxy-5-benzofuran propanol acetate ((+)LC-10), (2S,3R)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-5-benzofuran propanol acetate ((-)LC-10), (+)-pinoresinol (LC-11), (+)-epipinoresinol (LC-12), (+)-medioresinol (LC-13), (-)-syringaresinol (LC-14), (-)-episyringaresinol (LC-15); 4个为香豆素类化合物,分别为6,7-二甲氧基香豆素(LC-16),6-羟基-5,7-二甲氧基香豆素(LC-17),5-羟基-7-甲氧基香豆素(LC-18),5-羟基-6,7-甲氧基香豆素(LC-19);7个为黄酮类化合物,分别为3'-羟基芫花素(LC-20),芹菜素(LC-21),槲皮素(LC-22),木犀草素(LC-23),山柰酚(LC-24), luteolin 3',4'-dimethylether-7-O-(3-D-glucoside (LC-25),蒙花苷(LC-26);2个苯丙素类化合物,分别为异阿魏酸(LC-27),迷迭香酸乙酯(LC-28);及1个长链多羟基酯类2,3,10-三羟基-4,9-二甲基-6(E)-十二烯二酸二乙酯(LC-29)和1个多炔类化合物lobetyolin (LC-30),以上化合物中,LC-1~LC-4, (+) LC-9, (-) LC-9及LC-29为7个新化合物,其它16个化合物为首次从半边莲属植物中分离得到。
     二、哌啶生物碱类和木脂素类化合物的EI电离质谱裂解规律研究
     本论文对从半边莲中分离获得的2,6-取代哌啶生物碱类、双四氢呋喃木脂素和二氢苯并呋喃木脂素类化合物的EI电离质谱裂解特征进行了研究,并得出如下规律:
     1.2,6-取代哌啶生物碱类化合物
     这类化合物的分子离子很不稳定,质谱中通常不显示分子离子。α断裂同时发生氢重排是其主要裂解方式。侧链取代基β碳原子上是否含羰基对这类分子的裂解有重要影响。如果分子侧链β碳原子上不含羰基,则生成N-甲基脱氢哌啶基离子(m/z 98);如果分子中侧链β碳原子上含有羰基,则哌啶环上p碳原子上的H原子发生重排转移到羰基氧原子上,生成N-甲基氢化吡啶基特征离子(m/z 96);对于环上含有双键的去氢哌啶生物碱或环上连接羟基的哌啶生物碱,如果侧链上p碳原子不含羰基,则生成m/z 96特征离子,如侧链p碳原子含有羰基,则生成特征的吡啶基(m/z 94)离子。
     2.双四氢呋喃木脂素和二氢苯并呋喃木脂素类化合物
     这类化合物有较稳定的分子离子峰。同时发生α断裂,造成呋喃环的裂开,随即再发生a断裂并伴随H转移,生成特征的m/z 151或m/z 181离子。该离子进一步电离,生成相应的子离子m/z 137或m/z 167。对于呋喃环上含有-CH2OH基团的苯并四氢呋喃类新木脂素,分子离子容易丢失一个H2O或CH2O分子,生成基峰离子[M-H2O]+和较高丰度的[M-CH2O]+离子,同时也发生四氢呋喃环开裂,生成m/z 151和m/z 137离子对。
     哌啶生物碱和木脂素类化合物EI电离质谱规律研究结果为利用质谱快速推测这两类化合物的结构提供了依据。
     三、半边莲醇提物及其不同极性部位体内外抗流感病毒作用研究
     本论文建立了用于评价药物抗流感病毒药效的MDCK细胞感染模型和BALB/c小鼠感染模型,系统地评价了半边莲醇提物及其乙酸乙酯萃取物、氯仿萃取物(总生物碱)、正丁醇萃取物和水溶物体内外抗流感病毒效果。结果表明,半边莲醇提物及其总生物碱对感染H9N2及H1N1亚型流感病毒小鼠有显著的保护作用。灌喂500 mg/kg/d的半边莲醇提物对感染H9N2及H1N1亚型流感病毒小鼠的肺指数抑制率分别39.7%和44.8%(p<0.01),对感染小鼠的生命保护率分别为70%和80%(p<0.01);灌喂125 mg/kg/d的半边莲总生物碱对感染H9N2亚型流感病毒小鼠的肺指数抑制率为35.8%(p<0.05),生命保护率为60%(p<0.05),灌喂250mg/kg/d的半边莲总生物碱对感染H1N1亚型流感病毒小鼠的肺指数抑制率为39.3%(p<0.05),生命保护率为60%(p<0.05)。在MDCK细胞中,半边莲醇提物、总生物碱及其分离单体LC-8和盐酸洛贝林(Lobeline)对感染H9N2、H1N1和H5N1三种亚型流感病毒均有不同程度的抑制作用。由此推测生物碱是半边莲抗流感的活性成分组。但8种从半边莲中分离得到的哌啶生物碱对流感病毒神经氨酸酶(NA)没有抑制活性,表明NA不是其作用靶点。根据文献报道半边莲中分离的生物碱洛贝林具有显著的兴奋呼吸作用,本论文推测半边莲的抗流感作用可能与其生物碱的兴奋呼吸作用有关。
The studies on chemical constituents and inhibitory activities against influenza viruses in vivo and in vitro of Lobelia chinensis (L. chinensis) had been carried out in the dissertation.37 compounds were isolated from the plant through various chromatographic methods. The chemical structures of 32 compounds were elucidated on the basis of NMR, HR-ESI-MS, CD analysis and other chemical techniques. Among them,7 compounds are novel compounds. The EI-MS fragmentation mechanisms of piperidine-type alkaloids, ditetrahydrofuran-type lignans and dihydrobenzofuran-type neolignans isolated from L. chinensis were presumed, and the fragmentation rules of the two type compounds were separately summarized. Furthermore, the inhibitory activities against influenza viruses in vivo and in vitro of ethanol extract and different fractions from L. chinensis were systematically evaluated.
     1. Studies on the chemical constituents of Lobelia chinensis
     Lobelia chinensis is an annual plant and belongs to the genus Lobelia in the family Campanulacea. The plant has been known as a traditional Chinese medicine with functions of prompting diuresis and detumescence, clearing away heat and toxicity, and has been widely used in the treatment of herpes, acute nephritis, snake bite and other diseases. In our screening for anti-influenza activity of Chinese herbal medicines, the alcohol extract of L. chinensis showed a remarkable anti-influenza viral activity. This result inspired us to initiate a phytochemical study on the plant. A total of 37 compounds were isolated from the plant through various chromatographic methods. The chemical structures of 32 compounds were elucidated on the basis of NMR, HR-ESI-MS, CD analysis and other chemical techniques. Their structure were elucidated as cis-2-(2-butanone)-6-(2-hydroxy butyl)-piperidine (LC-1), (2R, 4R,6R,2"S)-N-methyl-4-hydroxyl-2-(2-butanone)-6-(2-hydroxybutyl)-piperidine (LC-2), rel-(2R, 4R,6S)-N-methyl-4-hydroxyl-2-(2-butanone)-6-(2-hydroxybutyl)-piperidine (LC-3), cis-N-methyl-2-(2-hydroxybutyl)-6-[2-[(1,3)-dioxolan-4-yl-methanol]-propyl]-piperidine (LC-4), trans-N-methyl-2,6-bis(2-hydroxy butyl)-A3-piperideine (LC-5), trans-8,10-diethyl-lobelidiol (LC-6), trans-10-ethyl-8-methyl-lobelidiol (LC-7), trans-8,10-diethyl-lobelionol (LC-8), (2R,3S)-2,3-dihydro-2-(4-hydroxy-3-methoxy phenyl)-3-hydroxy-methyl-7-methoxy-5-benzofuran propanoic acid ethyl ester ((+) LC-9), (2S,3R)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-methyl-7-methoxy-5-benzofuran propanoic acid ethyl ester ((-)LC-9), (2R,3S)-2,3-dihydro-2-(4-hydroxy-3-methoxy-phenyl)-3-hydroxymethyl-7-methoxy-5-benzofuran propanol acetate ((+)LC-10), (2S, 3R)-2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-5-benzofuran propanol acetate ((-)LC-10), (+)-pinoresinol (LC-11), (+)-epipinoresinol (LC-12), (+)-medioresinol (LC-13), (-)-syringaresinol (LC-14), (-)-episyringaresinol (LC-15),6, 7-dimethoxycoumarin (LC-16), fraxinol (LC-17),7-methoxy-5-hydroxycoumarin (LC-18), tomentin (LC-19),3'-hydroxy-genkwanin (LC-20), apigenin (LC-21), quercetin (LC-22), luteolin (LC-23), kaempferol (LC-24), luteolin 3',4'-dimethyl ether-7-O-β-D-glucoside (LC-25), linarin (LC-26), isoferulic acid (LC-27), ethyl rosmarinate (LC-28),2,3,10-trihydroxy-4,9-dimethyl-dodec-6-enedioic acid diethyl ester (LC-29), lobetyolin (LC-30). Among them, LC-1~LC-4, (+) LC-9, (-) LC-9 and LC-29 are new compounds, and 16 compounds were isolated from the genus Lobelia for the first time.
     2. Studies on the c behavoir of piperidine-type alkaloids and lignans & neolignans using electron ionization (EI) mass spectrometry
     The fragmentation behavoir of 2,6-substitued piperidine-type alkaloids, ditetrahydro furan-type lignans and dihydrobenzofuran-type neolignans neolignans in EI mass spectrometry had been studied in this dissertation. The fragmentation rules were summarized as follows:
     2.1.2,6-Substitued piperidine-type alkaloids
     Piperidine-type alkaloids usually did not show molecular ion peaks in the mass spectrum due to the instability of these compounds in EI-MS. The major fragment ions were produced by a cleavage and hydrogen rearrangement. It was found that the carbonyl group at theβ-C position of the side chain residue played an important effect on the fragmentation behavior of these compounds. For compounds without a carbonyl group atβ-C position of the side chain residue, N-methyl dehydropiperidine ion with m/z 98 was observed as the base peak in the mass spectrum. However, for compounds with a carbonyl group at P-C position of the side chain residue, N-methyl dihydropyridine ion with m/z 96 arised as the base peak in the mass spectrum due to hydrogen transfer from theβcarbon of the piperidine ring to theβcarbonyl group of the side chain residue. For compounds with an unsaturated bond or a hydroxyl at the piperidine ring, N-methyl dihydropyridine ion with m/z 96 was observed as the base peak in the mass spectrum of those compounds withoutβcarbonyl group in the side chain residue, and N-methyl pyridine ion with m/z 94 arised as the base peak in the mass spectrum of those compounds withβcarbonyl group in the side chain residue, respectively.
     2.2. Ditetrahydrofuran-type lignans and dihydrobenzofuran-type neolignans
     The molecular ions could be steadily observed in the mass spectrum of these compounds. The characteristic ions of m/z 151 or m/z 181 were produced from the molecular ions by a cleavage and hydrogen rearrangement, and their daughter ions m/z 137 or m/z 167 could be produced from m/z 151 or m/z 181 by a cleavage, respectively. [M-H20]+ion (base peak) and [M-CH20]+ion (the second abundant ion) were observed in the spectrum of dihydrobenzofuran-type neolignans with a hydroxylmethyl group at the furan ring. The characteristic ions of m/z 151 and m/z 137 were also observed in neolignans due to the cleavage of the furan ring.
     The results of presumed fragmentation mechanisms of piperidine-type alkaloids and lignans & neolignans by El mass spectrometry could provide information to the structural investigation for these two types of compounds.
     3. Studies on the inhibitory activities against influenza viruses of ethanol extract from L. chinensis and it's fractions with different polarity in vivo and in vitro
     The inhibitory activities against influenza viruses of ethanol extract from L. chinensis and it's fractions extracted by ethyl acetate, chloroform, n-butanol and water soluble fraction had been systematically evaluated using MDCK model (in vitro) and BALB/c mice model (in vivo), respectively. Ethanol extract from L. chinensis and the fraction extracted by chloroform (alkaloids) showed significant protective effect on mice infected by the H9N2 and H1N1 influenza viruses. For ethanol extract from L. chinensis,500 mg/kg/day was the most effective dose with a 39.7% and 44.8%(p<0.01) lung index inhibition rate, and a 70% and 80% survival rate, respectively, after infection with the H9N2 and H1N1 viruses. For the fraction of total alkaloids, a 35.8%(p<0.05) lung index inhibition rate and 60% survival rate was achieved at the dose of 125 mg/kg/d after infection with the H9N2 viruses, and a 39.3%(p<0.05) lung index inhibition rate and 60% survival rate was achieved at the dose of 250 mg/kg/d after infection with the H1N1 viruses. Furthermore, Ethanol extract from L. chinensis, alkaloids fraction, LC-8 and lobeline showed considerable inhibitory activities against H9N2, H1N1, and H5N1 influenza viruses in MDCK cells. These results indicated that alkaloids were bioactive constituents of L. chinensis for inhibiting influenza viruses.8 piperidine-type alkaloids from L. chinensis failed to show inhibitory activities on neuramidinase (NA) of influenza viruese in vitro, and it indicated that NA was not the molecular target of alkaloids inhibiting viruses. It was reasonably presumed that the anti-influenza activity of L. chinensis in mice might be attributed to the respiratory excitation of piperidine-type alkaloids based on reported pharmacological action of lobeline on respiratory.
引文
[1]云南省植物研究所.云南植物志第二卷[M].北京:科学出版社1979:521-534.
    [2]Felpin F. X., and Lebreton J. History, chemistry and biology of alkaloids from Lobelia inflate [J]. Tetrahedron,2004,60:10127-10153.
    [3]Wieland H., Ishimasa M., and Kaschara W. Lobinine. A new alkaloid from the lobelia plant [J]. Justus Liebigs. Ann. Chem.,1931,49:14-29.
    [4]F U. O. Polarography of lobeline in Lobelia [J]. Pharm. Weekbl.,1952,87:646-651.
    [5]Schopf C., Kauffmann T., Berth P., Bundschuh W., Dummer G., Fett H., Habermehl G., Wieters E., and Wust W. The strongly hydrophilic minor alkaloids of Lobelia inflata [J]. Justus Liebigs Ann. Chem.,1957,608:88-127.
    [6]Franck B. Sedum alkaloids. Ⅲ. The constitution of sedinine [J]. Chem. Ber.,1959,92: 1001-1012.
    [7]Tschesche I. R., Kometani K., Kowitz F., and Snatzke G. The alkaloids from Lobelia syphilitica [J]. Chem. Ber.,1961,94:3327-3336.
    [8]Gedeon J., and Gedeon S. Alkaloids of Lobelia nicotiana leaves [J]. Pharm. Acta. Helv., 1955,30:185-189.
    [9]Marambio O., Monsalve E., and Schmeda-Hirschmann G. DNA-binding alkaloids from Lobelia bridgesii Hook et Arn and Lobelia tupa L [J]. Bol. Soc. Chil. Quim.,1999,44: 385-389.
    [10]Kaczmarek F., and Steinegger E. Paper chromatography of alkaloids of Lobelia [J]. Pharm. Acta. Helv.,1958,33:201-206.
    [11]Kursinszki L., Ludanyi K., and Szoke E. LC-DAD and LC-MS-MS analysis of piperidine alkaloids of Lobelia inflate [J]. Chromatographia,2008,68:S27-S33.
    [12]K W., W B., W E., and P K. Norlobelanidine, the main alkaloid from Lobelia polyphylla Hook and Arn [J]. Justus. Liebigs. Ann. Chem.,1972,756:177-180.
    [13]Locock R. A., and Teare F. W. Absorption spectroscopy of certain Lobelia alkaloids [J]. Can. Pharm.,1962,95:536-541.
    [14]Schoepf C., and Schenkenberger E. Biosynthesis of lobeline. Stereochemical relations between Lobelia inflata alkaloids [J]. Justus Liebigs Ann. Chem.,1965,682:206-211.
    [15]Beyerman H. C., Eenshuistra J., Eveleens W., and Zweistra A. Sedum alkaloids. V. Synthesis and optical resolution of sedamine and sedridine [J]. Recl. Trav. Chim. Pays-Bas Belg.,1959,78:43-58.
    [16]Kaczmarek F., and Steinegger E. Separation of lobinalline from the alkaloids of Lobelia inflata [J]. Pharm. Acta. Helv.,1959,34:330-333.
    [17]O'Donovan D. G., Long D. J., Forde E., and Geary P. Biosynthesis of Lobelia alkaloids. III. Intermediates in the biosynthesis of lobeline. Biosynthesis of 8,10-diethyllobelidione [J]. Chem. Soc., Perkin Trans.,1975,1:415-419.
    [18]Zhang M. Z., Wang J. C., and Zhou S. H. Alkaloids and triterpenoids of Lobelia davidii [J]. Phytochemistry,1990,29:1353-1354.
    [19]张明哲,曹立伟.紫燕草化学成分的研究[J].北京大学学报(自然科学版),1991,27(2):205-209.
    [20]Thoma O. Isolobinine, a new alkaloid from Lobelia inflata [J]. Justus Liebigs Ann. Chem., 1939,540:99-103.
    [21]Wieland H., Koschara W., Dane E., Renz J., Schwarze W., and Linde W. Lobelia alkaloids. VII. Accessory alkaloids of Lobelia inflata [J]. Ann. Chem.,1939,540,103-156.
    [22]Franck B. Sedum alkaloids. IV. Structure and biosynthesis of sedinine [J]. Chem. Ber.,1960, 93:2360-2371.
    [23]Williams H. J., Ray A. C., and Kim H. L. Delta 3-Piperideine alkaloids from the toxic plant Lobelia berlandieri [J]. J. Agric. Food Chem.,1987,35:19-22.
    [24]Shibano M., Tsukamoto D., Masuda A., Tanaka Y., and Kusano G. Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of alpha-glucosidase from Lobelia chinensis Lour [J]. Chem. Pharm. Bull.,2001,49(10):1362-1365.
    [25]Zhou Y., Wang Y., Wang R., Guo F., and Yan C. Two-dimensional liquid chromatography coupled with mass spectrometry for the analysis of Lobelia chinensis Lour, using an ESI/APCI multimode ion source [J]. J. Sep. Sei.,2008,31(13):2388-2394.
    [26]Su M., Wu, X., Chung H. Y., Li Y., and Ye, W. Antiproliferative activities of 5 Chinese medicinal herbs and active compounds in Elephantopus scaber [J]. Nat. Prod. Commun., 2009,4(8):1025-1030.
    [27]Casana G. V., Gimeno S. M., Gimeno S. B., and Moser M. Continuous multi-microencapsulation process for improving the stability and storage life of biologically active ingredients in foods, cosmetics and drugs.,2005, p 72, GAT Formulation G.m.b.H., Austria, WO.
    [28]Grancai D., and Suchy V. Flavonoid compounds present in an above-ground part of the Veratrum album subsp. lobelianum (Bernh.) Suessenguth plant [J]. Farm. Obz.,1981,50: 563-567.
    [29]姜艳艳,石任兵,刘斌,王秋莹,戴莹.半边莲药效物质基础研究[J].中国中药杂志,2009,34(3):294-297.
    [30]Plouvier V. Flavone heterosides in some Fraxinus, Tilia, and other plants. New species containing rhoifolin, linarin, diosmin, hesperidin, and kaempferitrin [J]. C. R. Hebd. Seances Acad. Sci., Ser. D,1967,265:1647-1650.
    [31]邓可众,熊英,高文远.半边莲的化学成分研究[J].中草药,2009,40(8):1198-1201.
    [32]张明哲,王景朝.江南山梗菜化学成分的研究[J].植物学报,1992,34(1):58-61.
    [33]Subarnas A., Tadano T., Oshima Y., Kisara K., and Ohizumi Y. Pharmacological properties of beta-amyrin palmitate, a novel centrally acting compound, isolated from Lobelia inflata leaves [J]. J. Pharm. Pharmacol.,1993,45:545-550.
    [34]LaFace F., and Riganesis M. D. Recent applications of spectrophotometry in the analysis of citrus essential oils [J]. Ricerca sci.,1956,26:819-824.
    [35]Suchy V., Grancai D., Grznar K., Tomko J., Dolejs L., and Budesinsky M. Non-alkaloidal constituents of Veratrum album subsp. lobelianum (Bernh.) Suessenguth [J]. Acta. Univ. Palacki. Olomuc. Fac. Med.,1980,93:141-147.
    [36]李瑜,师彦平,Edwards O.E.红山梗莱化学成分研究[J].高等学校化学学报,1993,14(10):1391-1393.
    [37]Ishimaru K., Yonemitsu H., and Shimomura K. Lobetyolin and lobetyol from hairy root culture of Lobelia inflata [J]. Phytochemistry,1991,30:2255-2257.
    [38]Ishimaru K., Sadoshima S., Neera S., Koyama K., Takahashi K., and Shimomura K. A polyacetylene gentiobioside from hairy roots of Lobelia inflata [J]. Phytochemistry,1992, 31:1577-1579.
    [39]Qu Y. A Chinese medicinal dripping pill prepared from Herba Lobeliae Chinensis, Herba Scutellariae Barbatae, and Herba Hedyotidis Diffusae for treating multiple furuncle, tonsillitis, and mastitis, and its preparation method.,2005, Beijing Chia Tai Green Contient Pharmaceutical Co., Ltd., Peop. Rep. China, CN.
    [40]Simon I. S., and Shostenko Y. V. Determination of lobeline in Lobelia by paper romatography [J]. Farm. Zh. (Kiev),1962,17:38-44.
    [41]Vickerman D. B., and de Boer G. Maintenance of narrow diet breadth in the monarch butterfly caterpillar:response to various plant species and chemicals [J]. Entomol. Exp. Appl.,2002,104(2-3):255-269.
    [42]Millspaugh, C. F. Lobelia inflata In:American Medicinal Plants [M]. Dover:New York 1974:385-388.
    [43]Wieland, H. and Mayer, R. Pharmachcologic investigations on the respiratory center. II. Action of lobeline and lobelia alkaloids on the narcotized or morphinized respiratory center. Action of lobeline on the circulation [J]. Arch. Exp. Pathol. Pharmakol.,1922,92:195-230.
    [44]Dwoskin, L. P., Crooks, P. A. Lobeline compounds as a treatment for psychostimulant abuse and withdrawal, and for eating disorders [P]. Patent US,5830904,1998.
    [45]Decker, M. W., Majchrzak, M. J., and Anderson, D. J. Effects of nicotine on spatial memory deficits in rats with septal lesions [J]. Brain Res.,1992,572(1-2):281-285.
    [46]Newhouse, P.A., Potter, A., Kelton, M. and Corwin, J. Nicotinic treatment of Alzheimer's disease [J]. Biol. Psychiatry,2001,49 (3):268-278.
    [47]从化县吕田公社卫生院.新医药通讯[M].广州市医药卫生研究所,1972,2:39.
    [48]苏凤.半边莲治疗带状疱疹经验[J].中国医学研究与临床,2003,14:63.
    [49]湖南医药工业研究所六室.半边莲治疗毒蛇咬伤一例[J].中草药通讯,1979,2:34.
    [50]李俊岭.复方半边莲治疗小儿上呼吸道感51例[J].临床医学,2004,24(8):58.
    [51]薛宏利.复方半边莲注射液治疗外感高热130例[J].实用中医内科杂志,2002,16(4):235,237.
    [52]Zheng, G., Horton, D.B., Deaciuc, A.G., Dwoskin, L.P., and Crooks, P.A.. Des-keto lobeline analogs with increased potency and selectivity at dopamine and serotonin transporters [J]. Bioorg. Med. Chem. Lett.,2006,16(19):5018-5021.
    [53]栗超跃,暨荀鹤,惠国桢,张建国,周伟,步星耀,郭礼和.洛贝林抑制细胞膜多巴胺转运蛋白摄取[J].中华神经外科疾病研究杂志,2007,6(3):247-249.
    [54]Dwoskin, L. P., and Crooks, P. A.. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse [J]. Biochemical Pharmacology,2002, 63(2):89-98.
    [55]陈融,李莉,任冬梅,王婧婧,邴鲁军,李瑞峰.蚤休总皂甙与半边莲生物碱对内皮素及内皮型一氧化氮合酶表达的对比研究[J].山东大学学报(医学版),2005,43(1):41-43.
    [56]高永琳,高冬,林德馨,白平.半边莲对Hela细胞钙信号系统的影响[J].福建中医学院学报,2002,12(3):23-26.
    [57]刘晓宇,张红.半边莲煎剂对肝癌H22荷瘤小鼠的抑瘤作用及对P27和Survivin表达的影响[J].中国药物与临床,2009,9(10):944-946.
    [58]Ma, Y. and Wink, M. Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells [J]. Phytomedicine,2008,15 (9):754-758.
    [1]张明哲,王景朝,周淑华,江南山梗菜化学成分的研究[J].植物学报,1992,34(1):58-61.
    [2]Van Dyck S. M. O., Lemiere G. L. F, Jonckers T. H. M, Dommisse R, Pieters L, and Buss V. Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalyzed acetylation [J]. Tetrahedron:Asymmetry,2001,12(5):785-789.
    [3]Whiting D. A.. Lignans, neolignans, and related compounds [J]. Nat. Prod. Rep.,1987,4(5): 499-525.
    [4]Shiming L., Tommy I., Knut L., Adrian F.. Reassignment of relative stereochemistry at C-7 and C-8 in arylcoumaran neolignans [J]. Phytochemistry,1997,46(5):929-934.
    [5]Antus S., Kutan T., Juhase L., Kiss L., Hollosi M., and Majer Z.. Chiroptical properties of 2,3-dihydrobenzol-furan and chromane chromophores in naturally occurring O-heterocycles [J]. Chirality,2001,13(8):493-506.
    [6]Williams H. J., Ray A. C., and Kim H. L..3-Piperideine alkaloids from the toxic plant Lobelia berlandieri [J]. Journal of Agricultural and Food Chemistry,1987,35(1):19-22.
    [7]Tschesche I. R., Kometani K., Kowitz F., and Snatzke G.. The alkaloids from Lobelia syphilitica [J]. Chemische Berichte,1961,94:3327-3336.
    [8]张明哲,曹立伟.紫燕草化学成分的研究[J].北京大学学报(自然科学版),1991,27(2):205-209.
    [9]van Dyck S. M. O., Lemiere G. L. F., Jonckers T. H. M., Dommisse R., Pieters L., and Buss V.. Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalyzed acetylation [J]. Tetrahedron:Asymmetry,2001,12(5):785-789.
    [10]Michel S., Nicole K., and Jacques P.. Isolation of Leishmanicidal Triterpenes and Lignans from the Amazonian Liana Doliocarpus dentatus (Dilleniaceae) [J]. Phytotherapy Research, 1996,10:1-4.
    [11]Sansei N., Hiroki T., and Sueo H.. Effects of O-methylation and O-glucosylation on carbon-13 nuclear magnetic resonance chemical shifts of matairesinol, (+)-pinoresinol and (+)-epipinoresinol [J]. Chem. Pharm. Bull.,1984,32(11):4653-4657.
    [12]Michel S., Nicole K., and Jacques P.. Isolation of Leishmanicidal Triterpenes and Lignans from the Amazonian Liana Doliocarpus dentatus (Dilleniaceae) [J]. Phytotherapy Research, 1996,10(1):1-4.
    [13]Adriana C. C., and Alicia B. P.. Lignans and a stilbene from Festuca argentina [J]. Phytochemistry,1994,35 (2):479-482.
    [14]谢韬,梁敬钰,刘净,王敏,魏秀丽,杨春华.滨蒿化学成分的研究[J].中国药科大学学报,2004,35(5):401-403.
    [15]Tsukamoto H., Hisada S., and Nishibe S.. Coumarins from bark of Fraxinus japonica and F. mandshurica var. japonica [J]. Chem. Pharm. Bull.,1985,33(9):4069-4073.
    [16]Mitsugi K., Kimiye B., Yonko M., Kiyoshi H.. Studies on coumarins from the root of Anglica Pubescens Maxim [J]. Chem. Pharm. Bull.,1980,28(6):1782-1784.
    [17]Murray R. D. H., Sutcliffe M., and Hasegawa M.. Claisen rearrangements. Ⅶ. Novel reactions of the coumarin tomentin [J]. Tetrahedron,1975 31(23):2966-2971.
    [18]曾毅梅,肖洁,李铣,王金辉.芫花醋炙品中黄酮类成分的分离与鉴定[J].沈阳药科大学学报,2009,26(5):353-356.
    [19]谢威,李俊,李红梅.雪莲果化学成分的研究[J].中药材,2008,31(10):15150-1512.
    [20]桑育黎,郝延军,杨松松.独一味的化学成分研究[J].中草药,2008,39(11):1622-1624.
    [21]陆娟,崔贵军,王秀英,朱娜,刘桂英,李绪文,金永日.葛枣猕猴桃叶化学成分的研究[J].中国药学杂志,2009,44(5):328-330.
    [22]El-Desoky S. K., Hawas U. W., and Sharaf M.. A new flavone glucoside from Stachys aegyptiaca [J]. Chem. Nat. Compd.,2007,43(5):542-543.
    [23]王亚君,杨秀伟,郭巧生.黄菊花化学成分研究[J].中国中药杂志,2008,33(5):526-528.
    [24]林文翰,王天欣,蔡孟深,尚尔宁.斩龙剑中新苯丙素贰的结构鉴定[J].药学学报,1995,30(10):752-756.
    [25]Hou Z. F., Tu Y. Q., Li Y.. Three new phenolic compounds from Nepeta prattii [J]. Journal of the Chinese Chemical Society (Taipei, Taiwan),2002,49(2):255-258.
    [26]Ishimaru K., Arakawa H., Yamanaka M., and Shimomura K.. Polyacetylenes in Lobelia sessilifolia hairy roots [J]. Phytochemistry,1994,35(2):365-369.
    [27]Ishimaru K., Osabe M., Yan L., Fujioka T., Mihashi K., and Tanaka N.. Polyacetylene glycosides from Pratia nummularia cultures [J]. Phytochemistry,2003,62(4):643-646.
    [1]Dwoskin, L. P., Crooks, P. A. A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse [J]. Biochemical Pharmacology,2002,63(2): 89-98.
    [2]张国良,李娜,林黎琳,王明伟.木脂素类化合物生物活性研究进展[J].中国中药杂志,2007,32(20):2089-2094
    [3]王光辉,熊少祥.有机质谱解析[M].北京:化学工业出版社,2005.
    [4]McLafferty F. W.. Interpretation of Mass Spectra [M]. California:University Science Books Mill Valley,1980.
    [5]Maksimovic M., Sober M., Nikolin B.. Gas chromatography/mass spectrometry in the elucidation of the structure of piperidine alkaloids [J]. Rapid Commun. Mass Spectrom., 1990,4(12):503-504.
    [6]Kursinszki L., Ludanyi K., Szoke E.. LC-DAD and LC-MS-MS analysis of piperidine alkaloids of Lobelia inflate L. (In vitro and in vivo) [J]. Chromatographia,2008,68(Suppl.): S27-S33.
    [7]Fitch W. L., Djerassi C.. Mass spectrometry in structural and stereochemical problems. CCXLIII. Functional group interaction. Unusual fragmentations of amides as exemplified by bipiperidyl alkaloids [J]. J. Am. Chem. Soc.,1974,96(15):4917-4927.
    [8]Boldizsar I., Fuzfai Z., Toth F., Sedlak E., Borsodi L., Molnar P. I.. Mass fragmentation study of the trimethylsilyl derivatives of arctiin, matairesinoside, arctigenin, phylligenin, matairesinol, pinoresinol and methylarctigenin:Their gas and liquid chromatographic analysis in plant extracts [J]. J. Chromatogr. A,2010,1217(10):1674-1682.
    [9]Struijs K., Vincken J. P., Gruppen H.. Comparison of atmospheric pressure chemical ionization and electrospray ionization mass spectrometry for the detection of lignans from sesame seeds [J]. Rapid Commun. Mass Spectrom.,2008,22(22):3615-3623.
    [10]Ricci A., Fiorentino A., Piccolella S., D'Abrosca B., Pacifico S., Monaco P.. Structural discrimination of isomeric tetrahydrofuran lignan glucosides by tandem mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2010,24(7):979-985.
    [11]Wang Y. Q., Guo Z. M., Jin Y., Zhang X. L., Li W., Liang X. M.. Selective enrichment with "click oligo (ethylene glycol)" column and TOF-MS characterization of simple phenylpropanoids in the fruits of Forsythia suspense [J]. J. Sep. Sci.,2009,32(17): 2958-2966.
    [12]Lou Z. Y., Zhang H., Gong C. G., Zhu Z. Y., Zhao L., Xu Y. J., Wang B., Zhang, G. Q.. Analysis of lignans in Schisandra chinensis and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry [J]. Rapid Commun. Mass Spectrom.,2009,23(6):831-842.
    [1]Palese, P.. Influenza:old and new threats [J]. Nature Medicine,2004,10(12):S82-S87.
    [2]Jonathan, S., Nguyen, V. T., Chloe, S.. Avian influenza and the threat of the next human pandemic [J]. Journal of Hospital Infection,2007,65(2):10-13.
    [3]de Clercq, E. Antiviral drugs in current clinical use [J]. Journal of Clinical Virology,2004, 30(2):115-133.
    [4]Ehrhardt, C., Hrincius, E. R., Korte, V., Mazur, I., Droebner, K., Poetter, A., Dreschers, S., Schmolke, M., Planz, O. and Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance [J]. Antiviral Res.,2007,76(1):38-47.
    [5]Kim, H. L.. Effects of SKF 525-A, phenobarbital and 3-methylcholanthrene on the toxicity of lobeline sulfate [J]. Vet. Hum. Toxicol.,1985,27(1):1-2.
    [6]Aviado, D. M.. Ganglionic stimulants and blocking drugs. In Drill's Pharmacology in Medicine,3rd ed. [M]. McGraw Hill, New York,1971,708-731.
    [7]Miller, D. K., Lever, J. R., Rodvelt, K. R., Baskett, J. A., Will, M. J., and Kracke, G. R. Lobeline, a potential pharmacotherapy for drug addiction, binds to m opioid receptors and diminishes the effects of opioid receptor agonists [J]. Drug Alcohol Depen.,2007,89: 282-291.
    [8]Santosa, M. H., Herzog, R., and Voelter, W.. Antitumor activity on the hot water extract of Lobelia chinensis [J]. Planta Med.,1986,52:555-558.
    [9]Varghese, J.N., Laver, W. G., and Colman, P. M.. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution [J]. Nature,1983,303(5912):35-40.
    [10]郭元吉.抗流感新药:神经氨酸酶抑制物研究近况[J].国外医学病毒学分册,2000,7(3):89-93.
    [11]Hussell, T., Pennycook, A., and Openshaw, P. J. Inhibition of tumour necrosis factor reduces the severity of virus-specific lung immunopathology [J]. European Journal of Immunology 2001,31:2566-2573.
    [12]Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S. X. Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J. and Anderson, L. J. A novel coronavirus associated with severe acute respiratory syndrome [J]. New England Journal Medicine, 2003,348(20):1953-1966.
    [13]Zhou, Y, Hao, X., Tian, Z., Tong, G., Yoo, D., An, T., Zhou, T., Li, G., Qiu, H., Wei, T. and Yuan, X.. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China [J]. Transboundary Emerging Dis.,2008,55(3-4):152-164.
    [14]Tracy, H., Robert, S.. Co-stimulation:novel methods for preventing viral-induced lung inflammation [J]. Trends In Molecular Medicine,2004,10(8):379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700