空心微珠复合吸波材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸波材料在军用及民用领域有着广泛的应用,已经成为各国军事装备隐身和民用防电磁辐射等技术领域研究的热点。在众多的吸波材料中,铁氧体和金属粉末吸收剂由于具有较好的性能和较低的成本往往是其中的主要吸波成分。但是铁氧体和金属粉末都有一个致命的缺点就是密度太大,不利于制备出质量轻的吸波材料。为解决这一难题,本文在前人研究的基础上设计出以火电厂粉煤灰空心微珠为基核,用化学镀和溶胶凝胶法制备空心微珠复合涂层颗粒吸收剂,并对化学镀和溶胶-凝胶法制备空心微珠涂层颗粒的制备工艺进行系统研究。
    首次以AgNO3代替昂贵的PdCl2作催化剂并简化前处理步骤在空心微珠表面化学镀Ni-P和Ni-Co-P合金镀层,并对该工艺过程进行系统研究,确定了最佳制备工艺。
    研究了溶胶-凝胶法制备钡铁氧体超细粉末、稀土(钇、钕、铕等)搀杂钡铁氧体超细粉末的各种工艺条件(溶胶组成、溶液浓度、络合剂配比、热处理制度及稀土搀杂量等)对铁氧体粉末物相结构、形貌及电磁性能影响的规律性。
    首次用溶胶-凝胶法在空心微珠表面制备钡铁氧体包覆层,并用差热-热重分析(DTA-TG)、X射线衍射仪(XRD)、能谱仪(EDX)、扫描电镜(SEM)、X射线光电子能谱仪(XPS)、振动样品磁强计(VSM)和矢量网络分析仪对其进行了分析表征。
    本文研究的成果和结论如下:
    (1)将粉体化学镀的前处理步骤进行简化,省掉敏化步骤,并利用相对价廉的AgNO3代替贵金属PdCl2做催化剂,将催化剂的还原与化学镀中Ni2+的还原步骤合并为一步,在空心微珠表面化学镀Ni-P,Ni-Co-P合金镀层。VSM分析表明镍磷镀层的比饱和磁化强度为2.96emu/g,矫顽力为1807.2A/m;镍钴磷非晶态合金层的比饱和磁化强度达27.36emu/g,矫顽力为2059.5A/m,经400℃热处理后镀层结晶化,其比饱和磁化强度下降到2.08emu/g,矫顽力提高到15620.8A/m。空心微珠表面化学镀的机理为:通过碱洗步骤强化了空心微珠表面羟基化,从而提高了微珠表面吸附Ag(NH3)2+络离子的能力;Ag(NH3)2+离子通过氢键与微珠表面Al2O3和SiO2相结合,然后在镀液中被H2PO2-还原成金属银,为后续的化学镀提供催化活性中心。
    (2)空心微珠表面化学镀Ni-P镀层过程中镀液的组成及试镀工艺条件对化学镀过程有较大影响。镀液中初始Ni2+浓度增加,反应速度并不随Ni2+浓度增大而加快,反应后剩余Ni2+浓度随初始Ni2+浓度增加而增大;还原剂次亚磷酸钠的浓度越大,反
    
    
    应速度越快,反应后剩余金属离子浓度随次亚磷酸钠浓度增大而呈下降趋势;[Ni2+]/[柠檬酸根离子]的摩尔比越大亦即柠檬酸根离子浓度越低,反应速度越慢,反应后剩余金属离子浓度降低;用氨水调PH值时,当PH值少于9时,随着pH值增大,反应速度加快,当PH值大于9时,随pH值增大反应速度减慢;用氢氧化钠调节pH值,反应速度基本随pH值增加而增大,即pH值越大,反应速度越快;温度升高,反应速度加快;装载量越大,反应速度越快。
    (3)空心微珠表面化学镀Ni-Co-P过程中,主盐中 Ni2+ 浓度增大,反应速度加快,突变时间缩短,总反应时间也缩短。当/(+)摩尔比大于0.4时,反应速度变化不大;次亚磷酸钠浓度的增大反应速度加快,当次亚磷酸钠的浓度大于0.3mol/l 时,反应突变时间已经变化不大,说明当次亚磷酸钠浓度与主盐的浓度比大于2:1时,反应速度达到最大,再增加次亚磷酸钠的浓度对镀速影响很小;缓冲剂硼酸对反应速度的影响较小,但存在最佳值0.5mol/l;采用柠檬酸钠和酒石酸钾钠复合作络合剂,在总浓度不变的情况下(络合剂总浓度为0.2mol/l),络合剂柠檬酸钠浓度越大,反应速度越快。但当柠檬酸钠浓度大于0.05mol/l时,增加柠檬酸钠浓度反应速度变化不大;用氨水调pH值时,当pH值小于8.5时,随着pH值增大,反应速度加快。当pH值大于9.5时,随pH值增大,反应速度急剧变缓,这主要由于氨水中的NH3对金属离子的络合作用降低了金属离子的浓度。用氢氧化钠调pH值,反应速度明显快于用氨水调pH值,并且随pH值增大,反应速度有加快的趋势。但是当pH值增大到10.5时,反应速度又有变缓的趋势,这可能是由于pH值过高,镀液中[OH-]浓度过大,[OH-]对金属离子进行络合的结果。装载量越大,反应速度越快。温度越高,反应速度越快。
    (4)溶胶凝胶法制备的BaFe12O19铁氧体的生成条件是450℃预热处理1h后经850℃热处理3h。850℃保温时间太短,钡铁氧体没有完全晶化;保温时间太长,容易引起晶粒的长大。在溶胶凝胶法制备钡铁氧体的过程中,预热处理是一个关键的步骤,经过预热处理可以保证前驱物能够完全转化为γ-Fe2O3避免生成α-Fe2O3中间产物,从而降低钡铁氧体的完全晶化温度。初始溶液的pH值为7时才能得到均匀稳定的溶胶, 经热处理后生成单一、均匀的M型钡铁氧体。Fe与Ba之比从10到12之间都能够形成单一、均匀的M型钡铁氧体。原料中柠檬酸与硝酸盐之比为1时,自燃烧过程最剧烈;柠檬酸比例越高,所得粉体的颗粒越小;溶胶初期加入聚乙二醇可以降低所得超细粉末的颗粒粒径。
    (5)随着Y、Eu、Nd等稀土元素RE搀杂量的增大,主晶相为六角晶系磁铅石型钡铁氧体相结构的钡铁氧体逐渐出现比较明显的REFeO3的衍射峰,并伴随着REFeO3
    
    
    的出现,也出现了很少量的α-Fe2O3。Y、Eu、Nd等稀土元素RE对钡铁氧体的搀杂使样品的比饱和磁化强度下降,比剩余磁化强度?
Microwave absorbing materials have been widely in stealth technology and in electro-magnetic compatibility (EMC) technology, and they are researching hotspot in these technology field. In most of absorbers, the ferrite and metal powder are the main components because of good performance and low cost. But the defect of high density is not benefit for the preparation of light absorber. In response to the need for high performance absorber, in this paper, the composite-coating absorbers with hollow cenosphere as nuclear are prepared by sol-gel and electroless plating technology.
    The Electroless Ni-P and Ni-Co-P-coating processes is modified by replacing the conventional sensitization and activation steps with only using activation step with AgNO3 activator, and the optimal forming conditions is made certain.
    The BaFe12O19 and BaRexFe12-xO19 (RE denote Y、Nd and Eu) ultrafine powders with M-type structure are synthesized by sol-gel technique. The effects of the composition of the gel, strength of solution, the amount of complexing agent, the different kinds of anions, the adding of dispersant, and the condition in heat treatment of the gel on crystal phase, morphology and magnetic properties of The BaFe12O19 and BaRexFe12-xO19 were investigated systematically to clarify the optimum forming conditions.
    Thin films of Barium hexaferrite are prepared on fly ash cenpsphere particles by sol-gel using Fe(NO3)3·9H2O、Ba(NO3)2 and citric acid as raw materials. The prepared films are characterized by differential and thermogravimetric analysis (DTA-TG), X-ray diffraction analysis (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer(VSM) and Vector Network Analyzer.
    Some important results are concluded as follows:
    (1) The Electroless Ni-P and Ni-Co-P-coated cenospheres is preparated by replacing the conventional sensitization and activation steps with only using activation step with AgNO3 activator. The magnetic properties of Ni-P coated cenospheres are δs (27.3emu/g) and Hc (1807.2A/m) , while those of Ni-Co-P coated cenospheres are δs (27.36emu/g) and Hc (2059.5A/m), and those of Ni-P coated cenospheres after heat treatment are δs (2.08
    
    
    emu/g) and Hc (15620.8A/m). The electroless mechanism is following: the ability of absorbing Ag(NH3)2+ is improved by hydroxy on cenosphere surface after alkali solution liquid rinsing. Then in the coating bath, [Ag(NH3)2]+ are reduced to Ag by H2PO2- . The catalytic action of Ag act as a nucleation sites for subsequent Ni-P or Ni-Co-P deposition.
    (2) In the process of Ni-P electroless plating, the velocity of reaction is not augmented, while the residual Ni2+ after reaction is increased with the increased concentration of Ni2+. The velocity of reaction is increased, while the residual Ni2+ after reaction is declined with the increased concentration of H2PO2-. The velocity of reaction is fell, while the residual Ni2+ after reaction is declined with the increased mol ratio of Ni2+/[C6H5O7]3-. When the pH is adjusted by NH3.H2O the velocity of reaction is increased with the increase of pH (pH<9.0) and the velocity of reaction is fell with the increase of pH (pH>9.0). But when the pH is adjusted by NaOH the velocity of reaction is increased with the increase of pH. And the velocity of reaction is increased with the increasing temperature and the increasing loading.
    (3) In the process of Ni-Co-P electroless plating, the velocity of reaction is augmented with the increased concentration of Ni2+. While the mol ratio of /(+) is more then 0.4, the velocity of reaction only change a little with the increased concentration of Ni2+. The velocity of reaction is increased with the increased concentration of H2PO2-. But when the concentration of H2PO2- is more than 0.3mol/l, the velocity of reaction only change a little. There is a little effect of the concentration of H3BO3 on the velocity of reaction, 0.5mol/l is the optimal concentration. The velocity of reaction is increased with the
引文
赵九蓬, 李垚, 吴佩莲. 新型吸波材料研究动态. 材料科学与工艺, 2002, 2: 219-224
    V. M. Petrov and V. V. Gagulin. Microwave Absorbing Materials. Inorganic Materials, 2001, 37(2): 93-98
    焦桓, 罗发. 纳米吸波材料的研究与发展趋势, 宇航材料与工艺, 2001, 31(5): 9-11
    刘祥萱, 王煊军. 雷达波吸收剂的研究进展, 现代防御技术, 2003, 31(3): 55-59
    赵东林, 周万城. 涂覆型吸波涂层及其涂层结构设计, 兵器材料科学与工程, 1998, 21(4): 58
    邱景辉, 李在清, 王宏等, 电磁场与电磁波, 哈尔滨工业大学出版社, 2001
    科夫涅里斯特, 拉扎列娃, 拉瓦耶夫(苏)著, 蔡德录译, 微波吸收材料, 科学出版社, 1985
    K. J. Vinoy, R. M. Jha. Radar absorbing materials from theory to design and characterization. Kluwer Academic Publishers, 1996
    Eugene F. Knott, John F. Shaeffer, Michael T. Tuley. Radar Cross Section. Artech House, Boston. London, 1993
    Giovanni Valdre. 3D magnetic characterization of nanocrystalline cobalt thin films by combined magnetic force and Lorentz microscopy. NanoStructured Materials, 1998, 10(3): 419
    Magali Silveira Pinho. Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polymer Degradation and Stability, 2001, 73: 1
    R. Westergard, N. Axen, U. Wiklund, An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing, Wear, 2000, 246: 12
    Ramesh D. Peelamedu, Rustum Roy. Anisothermal reaction synthesis of garnets, ferrites, and spinels in microwave field. Materials Research Bulletin, 2001, 36: 2723
    H. S. Ku, F. Siu, E. SioresApplications of fixed and variable frequency microwave (VFM) facilities in polymeric materials processing and joining, Journal of Materials
    
    
    Processing Technology, 2001, 113: 184
    Sarah E. Mouring. Buckling and postbuckling of composite ship panels stiffened with preform frames. Ocean Engineering, 1999, 26: 793
    G. P. Bierwagen, D. E. Tallman, Choice and measurement of crucial aircraft coatings system properties. Progress in Organic Coatings, 2001, 41: 201
    C. Sreedhar, G. Santhanakrishnan. Effect of processing parameters on the laser glazing of plasma-sprayed alumina–titania ceramic. Journal of Materials Processing Technology, 2001, 114: 246
    Nobuyuki Ando, Manabu Takeuchi. Electrical resistivity of the polymer layers with polymer grafted carbon blacks. Thin Solid Films, 1998, 334: 182
    Daniel Balagaes, Patrick Levesque. EMIR: a photothermal tool for electromagnetic phenomena characterization. Rev. Cen. Therm., 1998, 37: 725
    A. S?. Demirkyran, E. Avcy. Evaluation of functionally gradient coatings produced by plasma-spray technique. Surface and Coatings Technology, 1999, 116-119: 292
    S. Marchant, F. R. Jones, T. P. C. Wong. Free-space microwave characteristics of polypyrrole coated glass fibre. Synthetic Metals, 1998, 96: 35
    Jun-Ho Song, Sang-Yeup Park. In situ co-textured microstructure of alumina alumina Ca hexaluminate multilayer composites. Ceramics International, 2001, 27: 443
    Joseph Majdalani, William K. Van Moorhem. Laminar cold-flow model for the internal gas dynamics of a slab rocket motor. Aerosp. Sci. Technol, 2001, 5: 193
    S. Tondu, T. Schnick, L. Pawlowski. Laser glazing of FeCr–TiC composite coatings. Surface and Coatings Technology, 2000, 123: 247
    Masaru Nakamichi, Takeshi Takabatake. Hiroshi Kawamura, Material design of ceramic coating by plasma spray method. Fusion Engineering and Design, 1998, 41: 143
    A. K. Sharma, S. Aravindhan, R. Krishnamurthy. Microwave glazing of alumina–titania ceramic composite coatings. Materials Letters, 2001, 50: 295
    E. T. Thostenson, T. W. Chou. Microwave processing: fundamentals and applications. Composites: Part A, 1999, 30: 1055
    Daniel P. Raymer. Next generation attack fighter conceptual design study. Aircraft
    
    
    Design, 1998, 1: 43
    Thomas J. Webster, Richard W. Siegel. Osteoblast adhesion on nanophase ceramics. Biomaterials, 1999, 20: 1221
    Kinam Kim. Perspectives on giga-bit scaled DRAM technology generation. Microelectronics Reliability, 2000, 40: 191
    S. Asai. Recent development and prospect of electromagnetic processing of materials. Science and Technology of Advance Materials, 2000, 1: 191
    Mingzhong Wu, Haijun Zhang, Xi Yao. Microwave characterization of ferrite particles. J. Phys. D: Appl. Phys., 2001, 34: 889
    Zhang Huai-wu, Shi Yu, Zhong Zhi-yong. Electric and Magnetic Properties of a New Ferrite-Ceramic Composite Material. Chin. Phys. Lett., 2002, 19(2): 269
    H L Luo, G H Wang. A study of the induced magnetic anisotropy mechanism in acicular cobalt-ferrite particles. J. Phys. D: Appl. Phys., 1994, 27: 892
    M A Tsankov, S I Ganchev, B I Vichev. A simplified technique for measuring the effective resonance linewidth and the permittivity of microwave ferrites. J. Phys. E: Sci. Instrum., 1985, 18: 708
    H J Masterson y, J G Lunney, J M Dcoey. An investigation of the low-temperature Faraday rotation spectrum of BaFe12O19, J. Phys. : Condens. Matter, 1997, 9 : 4761
    Q A Pankhuurst. Anisotropy field measurement in barium ferrite powders by applied field Mossbauer spectroscopy. J. Phys. : Condens. Matter, 1991, 3: 1323
    P C Fannin, S W Charles, T Relihan. Broad-band measurement of the complex susceptibility of magnetic fluids. Meas. Sci. Technol., 1993, 4: 1160
    H Leblond, M Manna. Coalescence of electromagnetic travelling waves in a saturated ferrite. J. Phys. A: Math. Gen., 1993, 26: 6451
    N Rezlescu, E Rezlescu, C Pasniou. Effects of the rare-earth ions on some properties of a nickel-zinc ferrite. J. Phys. : Condens. Matter, 1994, 6: 5707
    H Leblond, Electromagnetic waves in ferrites from linear absorption to the nonlinear Schrdinger equation, J. Phys. A: Math. Gen., 1996, 29: 4623
    S A Mazen, F Metawe, S F Mansour. IR absorption and dielectric properties of Li - Ti ferrite. J. Phys. D: Appl. Phys., 1997, 30: 1799
    C N Chinnasamy, A Narayanasamy, N Ponpandian. Magnetic properties of
    
    
    nanostructured ferrimagnetic zinc ferrite. J. Phys. : Condens. Matter, 2001, 13: 1179
    P Novák, K Idland, A V Zalesskij. Magnons and sublattice magnetisations in hexagonal Ba ferrite. J. Phys. : Condens. Matter, 1989, 1: 8171
    焦洪震, 叶英, 都有为. BaFe12-2xCr2xO19的穆斯堡尔谱学研究. 核技术, 1994, 17(12): 737
    N S Walmsley, G N Coverdale, R W Chantrell. Monte Carlo calculations of the microstructure of barium ferrite dispersions. J. Phys. D: Appl. Phys., 1998, 31: 1652
    M D Sundararajan, A Narayanasamy, T Nagarajan. Mossbauer investigation of magnesium ferrite-aluminate. J. Phys. C: Solid State Phys., 1984, 17: 2953
    Yu, Hsuan-Fu; Huang, Kao-Chao. Preparation and characterization of ester-derived BaFe12O19 powder. Journal of Materials Research, 2002, 199
    D R Franklin, A J Pointon, R C LJenkins. Resonance linewidths and crystallite alignment in oriented samples of polycrystalline barium hexaferrite. J. Phys. D: Appl. Phys., 1996, 29: 1268
    S C Bhargava, A H Morrish, H Kunkel. Spin-glass ordering in a spinel ferrite. Mg(Al, Fe)2O4, J. Phys. : Condens. Matter, 2000, 12: 9667
    Rams, E. Estevez, Garcia. Structural transformation with milling on sol-gel precursor for BaM hexaferrite. Journal of Physics. D, Applied Physics, 2000, 7: 2708
    G Albanese, A Deriu, S Rinaldi. Sublattice magnetization and anisotropy properties of Ba3Co2Fe24O41 hexagonal ferrite. J. Phys. C: Solid State Phys., 1976, 9: 1313
    A Lisfi, J C Lodder. The effects of ZnO underlayer on microstructural and magnetic properties of BaFe12O19 thin films. J. Phys. : Condens. Matter, 2001, 13 : 5917
    S. L. KADAM, K. K. PATANKAR, V. L. MATHE. Dielectric Behavior and Magnetoelectric Effect Ni0. 75Co0. 25Fe2O4+Ba0. 8Pb0. 2TiO3 ME Composites. Journal of Electroceramics, 2002, 9: 193-198
    JUNGHO RYU, ALFREDO V, AZQUEZ CARAZO. Piezoelectric and Magnetoelectric Properties of Lead Zirconate Titanate/Ni-Ferrite Particulate Composites. Journal of Electroceramics, 2001, 7: 17-24
    K. K. PATANKAR, V. L. MATHE, A. N. PATIL. Electrical Conduction and Magnetoelectric Effect in CuFe1。8Cr0。2O4–Ba0。8Pb0。2TiO3 Composites. Journal of Electroceramics, 2001, 6(2): 115-122
    
    黄婉霞, 毛健, 吴行. 铁磁性Mn-Zn, Ni-Zn铁氧体与铁电性BaTiO3复合材料吸收电磁波能力研究. 四川联合大学学报(工程科学版), 1998, 2(6): 110-113
    郭文宇, 岳振星, 周济. Bi2O3对自燃烧法合成NiZnCu铁氧体的显微结构与性能的影响[J]. 压电与声光, 2001, 23(5): 391
    Zhenxing Yue, Longtu Li, Ji Zhou. Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels[J]. Materials Science and Engineering, 1999, B64: 68-72
    郭睿倩, 李洪桂, 孙培梅. 轻稀土镧取代M型钡铁氧体超微粉末的合成与表征[J]. 稀有金属, 2001, 25(2): 86
    S. Sugimoto, T. Maeda, D. Book. GHz microwave absorption of a fine -Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. Journal of Alloys and Compounds, 2002, 330-332: 301
    Magali Silveira Pinho, Maria Luisa Gregori. Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polymer Degradation and Stablity, 2001, 73: 1
    K. L. Ford, B. Chambers. Smart microwave absorber. Electronics Letters, 2000, 36(1): 50
    Kudo Toshio, Tamura Hideaki, Noda Kenichi. Multilayer wave absorber. United States Patent 5, 708, 435, 1998
    Woldanski Greg L. Normal incidence multi-layer elastomeric radar absorber. United States Patent6, 224, 982, 2001
    Ping Sheng, Mireille Gadenne. Effective magnetic permeability of granular ferromagnetic metals. J. Phys. : Condens. Matter, 1992, 4: 9735
    Y Alayli, R Djouaher. Influence of the sorbed atmospheric humidity on the microwave conductivity of a composite material potential applications in EMI shielding and absorbers. Meas. Sci. Technol., 1997, 8: 793
    Bregar VB. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Transactions on Magnetics, 2004, 40 (3): 1679
    Kim SS, Kim ST, Ahn JM, et al. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. Journal of Magnetism and Magnetic Materials, 2004, 271 (1): 39
    
    Amano M, Kotsuka Y. A method of effective use of ferrite for microwave absorber. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(1): 238
    Godoi RHM, Marques RFC, Varanda LC, et al. Yttrium iron garnet heterocoagulated by silica. IEEE Transactions on Magnetics, 2002, 38 (5): 2625
    Guan JG, Wang W, Gong RZ, et al. One-step synthesis of cobalt-phthalocyanine/iron nanocomposite particles with high magnetic susceptibility. LANGMUIR, 2002, 18 (11): 4198
    Bregar VB. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Transactions on Magnetics, 2004, 40 (3): 1679
    Kato Y, Sugimoto S, Shinohara K, et al. Magnetic properties and microwave absorption properties of polymer-protected cobalt nanoparticles. Materials Transactions, 2002, 43 (3): 406
    Lee CY, Lee DE, Jeong CK, et al. Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 2002, 13 (8): 577
    Bingle M, Davidson DB, Cloete JH. Scattering and absorption by thin metal wires in rectangular waveguide - FDTD simulation and physical experiments. IEEE Transactions on Microwave Theory and Techniques, 2002, 50 (6): 1621
    He HH, Wu MZ, Zhao ZS. Study of the anisotropy of microwave electromagnetic parameters of polycrystalline iron fiber absorber. Acta Physica Sinica, 1999, 48 (12): S138
    Liu AX, Ru MY, Meng FJ, et al. Research on synthesis and microwave-absorbing behavior of polycrystalline iron fibers. Chinese Journal of Inorganic Chemistry, 2004, 20 (3): 358
    Zhang L, Nie Y, Xu PY, et al. Study of polycrystalline iron fibers/barium titanate nanocomposite absorbing materials. Key Engineering Materials, 2003, 249: 373
    Yu XL, Zhang XC, Li HH, et al. Simulation and design for stratified iron fiber absorbing materials. Materials & Design, 2002, 23 (1): 51
    Yang FL, Zhang B, Wang JX, et al. The effect of grinding machine stiffness on surface integrity of silicon nitride. Journal of Manufacturing Science and Engineering-Transactions of the Asme, 2001, 123 (4): 591
    
    Wu MZ, Zhao ZS, He HH, et al. Preparation and microwave characteristics of magnetic iron fibers. Journal of Magnetism and Magnetic Materials, 20002, 17 (1-3): 89
    Yu Dl, He Jl, Tian Yj, et al. Role Of Alloying Elements P, Cu In Liquid-Phase Sintering of Short Cast-Iron Fiber. Journal of Materials Science & Technology, 1995, 11 (2): 122
    Makarious As, Bashter Ii, Kany Ami. Radiative-Capture Gamma-Rays Arising from Iron Fiber Additions to Ilmenite Limonite Concrete Shields. Annals of Nuclear Energy, 1988, 15 (10-11): 513
    张立德. 纳米材料学. 沈阳: 辽宁科学技术出版社, 1994
    徐国财, 张立德. 纳米复合材料. 北京: 化学工业出版社, 2002
    张志焜, 崔作林. 纳米技术与纳米材料. 北京: 国防工业出版社, 2000
    朱屯, 王福明, 王习东等编. 国外纳米材料技术进展与应用. 北京: 化学工业出版社, 2002
    王军, 宋永才, 冯春祥. 具有微波吸收功能的掺混型碳化硅纤维的研制. 功能材料, 1997, 6: 619
    陈利民, 亓家钟, 朱雪琴. 纳米γ-(Fe, Ni)合金颗粒的微观结构及其微波吸收特性. 微波学报, 1999, 4: 43
    Bregar VB. Advantages of ferromagnetic nanoparticle composites in microwave absorbers. IEEE Transactions on Magnetics, 2004, 40 (3): 1679
    Meshram MR, Agrawal NK, Sinha B, et al., Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. Journal of Magnetism and Magnetic Materials, 2004, 271 (2-3): 207
    Deng LW, Jiang JJ, Fan SC, et al. GHz microwave permeability of CoFeZr amorphous materials synthesized by two-step mechanical alloying. Journal of Magnetism and Magnetic Materials, 2003, 264 (1): 50
    Song JM, Yoon HJ, Kim DI, et al. Dependence of electromagnetic wave absorption on ferrite particle size in sheet-type absorbers. Journal of the Korean Physical Society, 2003, 42 (5): 671
    Reinert J, Psilopoulos J, Jacob AF. On a statistical assessment of realistic chiral materials. Electromagnetics, 2003, 23 (8): 637
    
    Reinert J, Psilopoulos J, Grubert J, et al. On the potential of graded-chiral Dallenbach absorbers. Microwave and Optical Technology Letters, 2001, 30 (4): 254
    Cloete JH, Kuehl SA, Bingle M. The absorption of electromagnetic waves at microwave frequencies by synthetic chiral and racemic materials. International Journal of Applied Electromagnetics and Mechanics, 1998, 9 (2): 103
    Mariotte F, Sauviac B, Heliot Jp. Heterogeneous Chiral Materials Modeling (Mtwc Model) - Theory, Comparison With Experimental Results And Applications. Journal De Physique Iii, 1995, 5 (10): 1537
    Liao Sb, Yin Gj. Reflectance of A Chiral Plate Absorber. Applied Physics Letters, 1993, 62 (20): 2480
    Singh P, Babbar VK, Razdan A, et al. Magnetic, dielectric and microwave absorption studies of Ba-CoTi hexaferrite - Epoxy composites. Indian Journal of Pure & Applied Physics, 2004, 42 (3): 221
    Scortanu E, Priscariu C, Caraculacu AA. Study of the mechanical properties of dibenzyl-based polyurethane containing a molecularly dispersed UV absorber. High Performance Polymers, 2004, 16(1): 113
    Kato Y, Sugimoto S, Shinohara K, et al. Magnetic properties and microwave absorption properties of polymer-protected cobalt nanoparticles. Materials Transactions, 2002, 43 (3): 406
    王海泉, 陈秀琴. 吸波材料的研究进展. 材料导报, 2003, 17(9): 170
    王军, 宋永才, 冯春祥. 具有微波吸收功能的掺混型碳化硅纤维的研制. 功能材料, 1997, 28(6): 619
    王军, 宋永才, 冯春祥. 掺混型碳化硅纤维及其微波吸收特性. 材料工程, 1998, 5: 41
    Vereshchagina TA, Anshits NN, Maksimov NG, et al. The nature and properties of iron-containing nanoparticles dispersed in an aluminosilicate matrix of cenospheres. Glass Physics and Chemistry, 2004, 30 (3): 247
    Lu SG, Zhu L. Effect of fly ash on physical properties of ultisols from subtropical China. Communications in Soil Science and Plant Analysis, 2004, 35 (5-6): 703
    Barbare N, Shukla A, Bose A. Uptake and loss of water in a cenosphere-concrete composite material. Cement and Concrete Research, 2003, 33 (10): 1681
    
    Wang DJ, Tang Y, Dong AG, et al. Zeolitization of fly ash cenosphere to create hollow composite spheres. Acta Chimica Sinica, 2003, 61 (9): 1425
    李云凯, 王勇, 高勇等. 空心微珠简介. 兵器材料科学与工程, 2002, 25(3): 51
    韩怀强, 蒋挺大. 粉煤灰利用技术. 北京: 化学工业出版社, 2001
    葛凯勇. 空心微珠表面改性及其吸波特性. 功能材料与器件学报, 2003, 9(1): 67
    Tiwari V, Shukla A, Bose A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Applied Acoustics, 2004, 65 (3): 263
    Chalivendra VB, Shukla A, Bose A, et al. Processing and mechanical characterization of lightweight polyurethane composites. Journal of Materials Science, 2003, 38 (8): 1631
    Matsunaga T, Kim JK, Hardcastle S, et al. Crystallinity and selected properties of fly ash particles. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2002, 325 (1-2): 333
    Parameswaran V, Shukla A. Processing and characterization of a model functionally gradient material. Journal of Materials Science, 2000, 35(1): 21
    Adanez J, de Diego LF, Garcia-Labiano F. Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere. Fuel, 1999, 78 (5): 583
    Pervez S, Pandey Gs, Jain Vk Cenosphere-Load In Coal-Ash Discharge of Thermal Power-Plant. Research and Industry, 1993, 38 (2): 99
    黄世鲜. 多功能的非金属新材料. 粉煤灰综合利用, 1997, 4: 54-56
    Shukla S, Seal S, Schwarz S, Zhou D. Synthesis and characterization of nanocrystalline silver coating of fly ash cenosphere particles by electroless process. Journal of Nanoscience and Nanotechnology, 2001, 1(4): 417-424
    Shukla S, Seal S, Akesson J, Oder R. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Applied Surface Science, 2001, 181(1-2): 35-50
    葛凯勇. 碳化硅吸波性能改进的研究. 功能材料与器件学报, 2002, 8(3): 263
    杜玉成, 龚先政, 黄坤良. 空心微珠为基核的纳米隐身材料的制备研究. 矿冶, 2002, 11(1): 71-73
    Kudo, Toshio. Tamura, multilayer wave absorber. United States Patent: 5708435,
    
    
    1998
    Hatakeyama, Kenichi. Electromagnetic wave absorber for VHF to UHF band. United States Patent: 5179381, 1993
    Diaz, Rodolfo E. High-performance matched absorber using magnetodielectrics. United States Patent: 6337125, 2002
    Stash, Sandra J. Ceramic RAM film coating process. United States Patent: 6001425, 1999
    雷景轩, 马学鸣, 朱丽慧. 液相包覆技术及其在材料制备中的应用. 材料科学与工程, 2002, 20(1): 93-96
    张巨先, 杨静漪, 高陇桥. Al2O3和Y2O3包覆的SiC复合粒子置备. 无机材料学报, 1999, 14(3): 380-384
    桂劲宁, 唐月锋, 凌志达. 涂层复合粉料和颗粒涂层方法. 硅酸盐通报, 2000, 1: 58-62
    王宝友, 姜军生, 黄传真. 粉末涂层陶瓷材料的涂层工艺及涂层机理. 陶瓷学报, 2000, 21(1): 37-40
    Li GJ, Huang XW, Huang XX, et al. Fabrication and mechanical properties of Al2O3/5vol%Ni composite by a powder coating technique. Key Engineering Materials, 2002, 224-2: 331
    Walker WJ, Brown MC, Amarakoon VRW. Aqueous powder coating methods for preparation of grain boundary engineered ceramics. Journal of the European Ceramic Society, 2001, 21 (10-11): 2031
    Lee BS, Kang S. Low-temperature processing of B4C-Al composites via infiltration technique. Materials Chemistry and Physics, 2001, 67(1-3): 249
    Huang CZ, Wang J, Ai X. Development of new ceramic cutting tools with alumina coated carbide powders. International Journal of Machine Tools & Manufacture, 2000, 40 (6): 823
    张慧泽. 刘涛. 王幼文. 氮化硅超细粉钴磷合金镀层的制备. 中国有色金属学报, 2003, 13(3): 713
    何丽君, 王春明. 超薄铜膜包覆的金刚石纳米复合粉体制备与表征. 化学学报, 2004, 62(1): 34
    梁胜德, 朱时珍, 赵振波. 化学镀法制备金属/陶瓷复合粉体的特点及应用. 材
    
    
    料导报, 1996, 5: 68
    姜晓霞, 沈伟. 化学镀理论与实践. 北京: 国防工业出版社, 2000
    李宁, 袁国伟, 黎德育编著. 化学镀镍基合金理论与技术. 哈尔滨: 哈尔滨工业大学出版社, 2000
    Kretz F, Gacsi Z, Kovacs J, et al. The electroless deposition of nickel on SiC particles for aluminum matrix composites. Surface & Coatings Technology, 2004, 180-181: 575
    田彦文, 邵忠财, 翟玉春. 化学镀法制备Ni包覆ZrO2微粉. 腐蚀科学与防护技术, 1998, 10(6): 355
    周向阳, 胡国荣, 李庆余. 化学镀银鳞片石墨作锂离子电池负极材料. 电池, 2002, 32(5): 255
    Huang L, Ling G, Zhang C, et al. Electroless plating of silver nanoparticles on silica spheres. Plating and Surface Finishing, 2004, 91 (3): 46
    Ulicny JC, Mance AM. Evaluation of electroless nickel surface treatment for iron powder used in MR fluids. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2004, 369 (1-2): 309
    Wang LJ, Li W, Zhang MH, et al. Preparation of NiB/TiO2 amorphous alloy catalyst by powder electroless plating and its catalytic performance for hydrogenation of sulfolene. Chinese Journal of Catalysis, 2003, 24 (11): 816
    Zhang C, Ling GP, He JH. Co-Al2O3 nanocomposites powder prepared by electroless plating. Materials Letters, 2004, 58 (1-2): 200
    Hong MZ, Bae SC, Lee HS, et al. A study of the Co-coated Ni cathode prepared by electroless deposition for MCFCs. Electrochimica Acta, 2003, 48 (28): 4213
    Shukla S, Seal S, Akesson J, Oder R. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Applied Surface Science, 2001, 181(1-2): 35-50
    魏美玲, 任卫, 程之强. 超细陶瓷粉及铁粉的表面化学包覆改性的研究. 现代技术陶瓷, 2000, 83(1): 3
    熊晓东, 翟玉春, 田彦文. 铝粉化学镀Ni-Mo合金的析出行为. 材料保护, 1996, 29(11): 18
    葛凯勇, 王群, 毛倩瑾等. 空心微珠表面改性及其吸波特性. 功能材料与器件学
    
    
    报, 2003, 9(1): 67
    Paez LR, Matousek J. Preparation of TiO2 sol-gel layers on glass. Ceramics-Silikaty, 2003, 47 (1): 28
    Sonawane RS, Hegde SG, Dongare MK. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics, 2003, 77 (3): 744
    Agrafiotis C, Tsetsekou A, Stournaras CJ, et al. Evaluation of sol-gel methods for the synthesis of doped-ceria environmental catalysis systems. Part I: preparation of coatings. Journal of the European Ceramic Society, 2002, 22 (1): 15
    Boulle A, Oudjedi Z, Guinebretiere R, et al. Ceramic nanocomposites obtained by sol-gel coating of submicron powders. Acta Materialia, 2001, 49 (5): 811
    Hanada K, Takagi H, Murakoshi Y, et al. Improvement of interface in SiC particle-reinforced Al-Li composite by sol-gel coating technique. Materials and Manufacturing Processes, 2000, 15 (2): 183
    Ruys AJ, Mai YW. The nanoparticle-coating process: a potential sol-gel route to homogeneous nanocomposites. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1999, 265 (1-2): 202
    Zhou QF, Tang XG, Yin LS, et al. Nanocrystalline powder and thin films of calcium and lanthanum modified lead titanate by the Sol-gel process. Journal of the Korean Physical Society, 1998, 32: S1380
    Bursik J, Niznansky D, Subrt J, et al. Sol-gel thin films of BaFe12O19 from chemically modified alkoxide precursors. Journal of Sol-Gel Science and Technology, 1997, 8 (1-3): 941
    Bursik J, Simsa Z, Cernansky M. Magneto-optical characteristics of Co, Ti-substituted barium hexaferrite films deposited by the dip-coating method. Journal of Sol-Gel Science and Technology, 1997, 8 (1-3): 947
    吴淑荣, 许丽丽, 畅柱国等. PTCR纳米晶粉体的一步法制备及表征. 电子元件与材料, 1997, 16(2): 17
    林殷茵, 刘秦, 张良莹等. 纳米复合Fe-Si O 2粉体的制备和结构. 硅酸盐通报, 1999, 2: 6
    陈大明, 彭应国, 李斌太. Al2O3、ZrO2复合纳米超微粉的制备及其特性研究. 金
    
    
    属热处理学报, 2000, 21(2): 36
    张迈生, 祁家雄, 杨燕生. Sol-Gel法和微波辐射法合成亚纳米级Zn2SiO4∶Mn2 +, Er3 +高效绿色荧光体. 发光学报, 1999, 20(3): 258
    曹维良, 张敬畅, 石锦华等. 超微粒子氧化铁的制备研究. 应用科学学报, 2000, 18(2): 171
    Igawa N, Taguchi T, Yamada R, et al. Preparation of silicon-based oxide layer on high-crystalline SiC fiber as an interphase in SiC/SiC composites. Journal of Nuclear Materials, 2004, 329-33: 554
    Hwang KS, Kwon JT, Oh JS, et al. Surface morphological properties of sol-gel derived SiO2 fiber. Journal of Materials Science, 2004, 39 (5): 1683
    Yun L. High extraction efficiency solid-phase microextraction fibers coated with open crown ether stationary phase using sol-gel technique. Analytica Chimica Acta, 2003, 486 (1): 63
    征茂平, 金燕苹, 吴桢干等. Sol-gel法制备TiO2/PVP纳米复合材料及其表征. 金属学报, 1999, 35(11): 1224
    Schmidt H. K. Organic/Inorganic Hybrid Materials. Materials Research Society Symposium Proceeding, 1996, 435: 13~24
    Novak Bruce M, Ellsworth Mar and Wallow Tom. Simultaneous interpenetrating networks of inorganic glasses and organic polymers. Polym prepr, 1990, 32 : 698
    胡晓云. TiO2溶胶 凝胶制备工艺对其光学性质的影响. 光子学报, 1998, 27(8): 757
    张国昌, 陈运法, 吴镇江等. MgAl2O4陶瓷复合膜的制备与表征. 膜科学与技术, 2000, 20(2): 19
    Guglielmi M etc. J Non-Cryst Solids, 1992, 147&148: 474
    Atik M etc. J Non-Cryst Solids, 1992, 147&148: 813
    R. Di Maggio, S. Rossi, Surface and coatings technology, 1997, 89: 292
    Naoki Katoh etc. Zairyo-to-Kankyo, 1992, 41: 535
    Koichi HASEGAWA, etc. Journal of the ceramic Society of Japan, 1997, 105(7): 569
    A. R. Di Giampaolo, M. Medina etc. Surface and coatings technology, 1997, 89: 31
    Kazuo KISHIDA, etc. Journal of the ceramic Society of Japan, 1994, 102(4): 336
    黄小忠, 冯春祥, 李效东等. 一种新型的Ba-M型铁氧体磁性涂层吸波炭纤维研
    
    
    制. 新型炭材料, 1999, 14(4): 72
    曾庆冰. 溶胶-凝胶法Al2O3涂层碳纤维增强铝基复合材料的研制. 复合材料学报, 1998, 15(1): 68
    张发建等. 溶胶法涂覆SiCw的工艺研究. 材料科学与工艺, 1 996, 4(1): 10
    徐明霞. Sol-Gel法莫来石被覆SiC复合粒子的制备. 硅酸盐通报, 1 996, (1): 31
    黄传真, 方斌, 刘含莲. 新型粉末涂层刀具及其切削性能研究. 金刚石与磨料磨具工程, 2003, 135(3): 32
    [美]A. W. 亚当森著, 顾惕人译. 表面的物理化学. 北京: 科学出版社, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700