几丁寡糖结构类似物β-1,3-乙酰氨基葡聚糖的化学合成及其诱导植物抗病性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氨基葡萄糖为起始原料,采用化学合成的方法,设计合成了一系列不同聚合度的几丁寡糖结构类似物β-1,3-乙酰氨基葡聚糖,并测定了几丁寡糖及其结构类似物对植物抗病性的诱导作用,对几丁寡糖及其结构类似物诱导处理后烟草植株体内抗性相关酶系活性动态进行了检测和分析,试图探讨上述寡糖类诱导物分子结构与其诱导抗病性的关系。
     主要的研究结果如下:
     1.几丁寡糖结构类似物β-1,3-乙酰氨基葡聚糖的化学合成
     β-1,3-乙酰氨基葡聚二糖的合成:以氨基葡萄糖为化学合成的起始原料,用邻苯二甲酰基保护化合物7和8的2位氨基;以苄叉来保护其4,6位的羟基,避免了糖化反应发生在4位上,从而保证了糖苷键的连接具有特定的立体和区域选择性(β-1,3连接糖苷键);化合物8还用硫烃基保护异头碳上羟基,使硫糖苷作为糖基供体,成为合成乙酰氨基葡聚糖的离去基团;化合物8的3位再用乙酰基加以保护,避免它同时作为糖基供体和糖基受体,只能充当糖基供体;由3位是自由羟基、异头碳上为甲氧基的化合物7作为糖基受体,以NIS-TfOH作催化剂,7和8发生糖基化反应,高区域、高立体选择性、高产率地合成了β-1,3连接的二聚糖9,其核磁共振氢谱也证实了新产生的糖苷键为β构型(J=8.40 Hz)。
     β-1,3-乙酰氨基葡聚三糖和四糖的合成:将二聚糖9及随后得到的三聚糖15脱去3′或3″位的乙酰基,得到的化合物14和20,它们再作为糖基受体,与糖基供体8在NIS-TfOH催化下进行糖基化反应,即可得到β-1,3连接的乙酰氨基葡聚三糖15和乙酰氨基葡聚四糖21。核磁共振氢谱显示新产生的糖苷键为β构型(J=8.48Hz和J=8.40Hz)。
     β-1,3-乙酰氨基葡聚五糖的合成:化合物8先转化为异头碳为游离羟基的化合物25,然后又与三氯乙腈加成形成端基活化中间体三氯乙酰亚胺酯26。糖基供体26与3位为自由羟基,硫烃基保护异头碳的糖基受体5发生缩合反应,形成双糖27;27又作为糖基供体与糖基受体20反应生成五聚糖28。其核磁共振氢谱显示新产生的糖苷键为β构型(J=8.54 Hz和J=8.37 Hz)。
     β-1,3-乙酰氨基葡聚糖的脱保护:分别尝试了醋酸水解、催化氢化以及对甲苯磺酸(PTSA)水解的方法来脱去苄叉保护基,醋酸会使得乙酰氨基葡聚糖分解,催化氢化适用于二糖9、三糖15以及四糖21的脱保护,但五糖28在催化氢化时反应不完全,只能使用对甲苯磺酸的水解。邻苯二甲酰氨基的脱保护,均采用水合肼在水溶性的乙醇中回流,得到游离的氨基中间体;之后,或者直接全乙酰化,将全乙酰化的产物分离纯化后再脱去乙酰基即得到纯度较高的二糖和三糖的终产物13和19;或者游离的氨基中间体直接选择性乙酰化,得到终产物24和31,再分离纯化。
     β-1,3-乙酰氨基葡聚糖的结构确定:化学合成的4个β-(1→3)-2-脱氧-2-乙酰氨基葡聚糖,聚合度分别是从2—5,其准确的化学结构均通过高分辨质谱以及核磁共振~1H NMR、~(13)C NMR的分析确证。上述4个化合物的总收率分别为10.56%、3.08%、1.28%和0.33%。与天然的几丁寡糖不同,合成的4个乙酰氨基葡聚糖均采取了β-1→3糖苷键的连接方式,是几丁寡糖的结构类似物,其结构清楚、组分单一,从而提供了研究几丁寡糖诱导植物抗病活性与寡糖区域异构体之间关系的理想材料。
     化学合成的四个几丁寡糖结构类似物的化学结构Chemical structure of the four synthesized chitin oligosaccharide analogues
     2.β-1,3-乙酰氨基葡聚糖诱导黄瓜对枯萎病的抗性研究
     对5种植物病原真菌菌丝生长的抑制作用:在实验室条件下,分别测定了3个供试寡糖即β-1,3-乙酰氨基葡聚二糖、β-1,3-乙酰氨基葡聚三糖和Lewis~a三糖对黄瓜枯萎病菌(Fusarium oxysporum f. sp. cucumerium)、烟草黑胫病菌(Phytophthora parasitica var. nicotianae)、烟草赤星病菌(Alternaria alternata)、水稻纹枯病菌(Rhizoctonia solani)和稻瘟病菌(Magnaporthe grisea)等5种植物病原真菌菌丝生长的抑制作用。结果显示,3个供试寡糖对上述病原菌的菌丝生长没有显著的抑制作用。
     黄瓜幼苗子叶期诱导对枯萎病的抗性:供试的3个寡糖,以5个不同浓度和2种诱导方法(叶面喷雾法和灌根法)对黄瓜幼苗分别进行诱导时,只有10μg/ml的β-1,3-乙酰氨基葡聚二糖和β-1,3-乙酰氨基葡聚三糖的叶面喷雾处理表现抗病性。而Lewis~a三糖的所有诱导处理均不表现抗性。
     黄瓜胚根期诱导对枯萎病的抗性:在黄瓜胚根期,β-1,3-乙酰氨基葡聚二糖和β-1,3-乙酰氨基葡聚三糖浸泡处理种子胚根后,表现出抗病性,最低有效诱导浓度为5μg/ml。而Lewis~a三糖的5个诱导浓度处理均不表现诱导抗病性。3个供试寡糖在黄瓜胚根期与幼苗子叶期对枯萎病的诱导抗性结果相似。
     3.β-1,4-乙酰氨基葡聚糖及β-1,3-乙酰氨基葡聚糖诱导烟草抗病性的研究
     活体接种条件下寡糖诱导烟草对黑胫病的抗性:7个供试寡糖,以1μg/ml、10μg/ml和100μg/ml 3种不同浓度诱导烟草植株,再活体茎杆接种烟草黑胫病菌后,Lewis~a三糖、β-1,3-乙酰氨基葡聚二糖、β-1,3-乙酰氨基葡聚三糖、β-1,4-乙酰氨基葡聚二糖处理均不表现抗病性;β-1,3-乙酰氨基葡聚四糖、β-1,4-乙酰氨基葡聚三糖和β-1,4-乙酰氨基葡聚四糖的处理对黑胫病具有诱导抗性。在3种不同的诱导浓度中,10μg/ml是大多数供试寡糖适合的处理浓度。
     离体接种条件下寡糖诱导烟草对黒胫病的抗性:7个供试寡糖以10μg/ml的浓度对烟草植株进行诱导,再离体接种黑胫病菌后,β-1,3-乙酰氨基葡聚二糖、β-1,3-乙酰氨基葡聚三糖、Lewis~a三糖和β-1,4-乙酰氨基葡聚二糖均无诱导抗性效果;只有β-1,3-乙酰氨基葡聚四糖、β-1,4-乙酰氨基葡聚三糖和β-1,4-乙酰氨基葡聚四糖表现出诱导抗性。
     离体接种条件下寡糖诱导烟草对赤星病的抗性:7个供试寡糖以10μg/ml的浓度对烟草植株进行诱导,再离体接种赤星病菌后,β-1,3-乙酰氨基葡聚二糖、Lewis~a三糖和β-1,4-乙酰氨基葡聚二糖均无诱导抗性效果;β-1,3-乙酰氨基葡聚三糖、β-1,3-乙酰氨基葡聚四糖、β-1,4-乙酰氨基葡聚三糖和β-1,4-乙酰氨基葡聚四糖这4个供试寡糖处理则表现诱导抗性。
     4.寡糖类诱导物的分子结构与其诱导抗病性之间的关系
     甲苷化Lewis~a三糖的主链链接方式和糖残基类型对诱导效果的影响:甲苷化Lewis~a三糖对于黄瓜枯萎病、烟草黑胫病和赤星病,均不具有诱导抗病效果,可能是因为其主链的链接方式和糖残基的类型与几丁寡糖及其结构类似物不同,因而影响了其诱导活性。通过与相关资料的比较,可知Lewis寡糖类型的主链链接方式可能是决定诱导活性的主要因素,但不能排除糖残基的类型对诱导活性的影响。
     C-1位的取代基团对诱导效果的影响:供试的7个寡糖均在还原端C-1含有取代的甲氧基,其诱导抗病效果却表现出极大差异,这说明了C-1位置上的甲氧基并非是决定这7个寡糖是否具有诱导活性的关键因素。
     几丁寡糖及其结构类似物的聚合度对诱导效果的影响:几丁寡糖及其结构类似物诱导植物抗病性需要达到最低聚合度的阀值,因寡糖类型及植物病害系统不同而有差异。几丁寡糖结构类似物分别诱导黄瓜枯萎病,烟草赤星病和烟草黑胫病的抗性有效聚合度最低为2,3和4;几丁寡糖诱导对烟草黑胫病和烟草赤星病抗性的有效聚合度最低为3。
     几丁寡糖及其结构类似物的糖苷键链接方式对诱导效果的影响:诱导抗性的产生,也许并不局限于乙酰氨基葡萄糖糖残基是否连接于C-4的位置,碳骨架主链是否采取β-1,4链接方式。β-1,4的糖苷键链接方式并非唯一的、可形成具有诱导活性的乙酰氨基葡聚糖的链接方式,碳骨架主链采取β-1,3链接方式而形成的几丁寡糖结构类似物——β-1,3-乙酰氨基葡聚糖同样具有诱导植物的抗病活性。
     几丁寡糖及其结构类似物诱导抗病性的特点:几丁寡糖及其结构类似物的诱导抗病性属于系统的诱导抗病性,具有广谱性(非特异性)诱导抗性的特点。
     5.β-1,3-乙酰氨基葡聚糖及β-1,4-乙酰氨基葡聚糖诱导烟草抗病性的生理机制
     寡糖的诱导对3种防御酶活性变化的影响:5个供试寡糖诱导酶活性的不同效果具体表现在总体酶活水平、酶活峰值及到达最高峰的时间。β-1,3-乙酰氨基葡聚四糖和β-1,4-乙酰氨基葡聚四糖显著提高了POD、PPO和PAL的酶活性,诱导后48h达到酶活峰值,上述2寡糖对3种酶活性诱导效果分别为40%和99%;238%和186%;81%和73%,均高于相应的其他三种寡糖的诱导处理。
     寡糖诱导的酶活性变化与烟草黑胫病诱导抗性效果之间的关联性:β-1,3-乙酰氨基葡聚四糖和β-1,4-乙酰氨基葡聚四糖可诱导烟草对黑胫病的抗病性;同时也可诱导过氧化物酶(POD)、多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)这3种酶活性的显著性增加。表明β-1,3-乙酰氨基葡聚四糖和β-1,4-乙酰氨基葡聚四糖诱导的POD、PPO和PAL这3种酶的活性提高与诱导烟草对黑胫病抗病性之间在是相对应的,具有关联性。
     寡糖的分子结构对3种防御酶活性的影响:在5个供试寡糖中,聚合度均为4的β-1,3-乙酰氨基葡聚四糖和β-1,4-乙酰氨基葡聚四糖均可诱导POD、PPO和PAL这3种酶的酶活显著增加;而具有同样的化学结构,聚合度仅仅为2的β-1,3-乙酰氨基葡聚二糖和β-1,4-乙酰氨基葡聚二糖的总体酶活性与对照相接近。这表明了聚合度大小是影响几丁寡糖及其结构类似物对POD、PPO和PAL这3种酶活性诱导效果的因素之一。
     β-1,3和β-1,4糖苷键分别链接形成的几丁寡糖结构类似物和几丁寡糖,均可诱导烟草的抗病性和POD、PPO和PAL 3种抗性酶的活性,说明了几丁寡糖及其结构类似物的化学结构具有影响POD、PPO和PAL这3种酶活性变化的化学分子结构特征。
Through chemical synthesis, a series of novel Chitin oligosaccharide analogues,β-1, 3-N-acetyl-glucosamine oligosaccharides, with different degree of polymerization, were designed and synthesized by glucosamine as starting material. The induced resistance of cucumbers and tobacco to the diseases by the synthesizedβ-1, 3-N-acetyl-glucosamine oligosaccharides together with methyl glycoside Lewis~a trisaccharide and three Chitin oligosaccharides were investigated, and three enzyme activities in the tobacco plants induced by the five synthetic oligosaccharides was tested and analyzed.
     The main results were as follows:
     1. Chemical Synthesis ofβ-1, 3-N-acetyl-glucosamine oligosaccharides
     Synthesis ofβ-1, 3-N-acetyl-glucosamine disaccharide: The phthalic group was used for both compounds 7 and 8 as amino protecting group, and the benzylidene was used to protect the hydroxy groups at 4, 6 position. The glycosylation reaction was proceeded, catalyzed with NIS-TfOH, using compound 8 as donor,and compound 7 as acceptor, So a novel chitin oligosaccharide analogue,β-1, 3-N-acetyl-glucosamine disaccharide 9 was obtained. The stereochemistry of the newly introduced glycosidic linkage was determined to beβon the basis of the ~1H NMR of H-1', H-2' coupling constant (J= 8.40 Hz).
     Synthesis ofβ-1, 3-N-acetyl-glucosamine trisaccharide and tetrasaccharide:Compound 14 and 20 could be readily prepared from disaccharide 9 and trisaccharide 15 by deacetylation at the 3' or 3" position with NaOMe solution. The compound 14 and 20, with a free hydroxy group in C-3' or C-3", respectively, and a methyl group at C-1, could be used as acceptors ; and compound 8, with a thiophenyl as leaving group at the reducing terminal, could be used as donor. The glycosylation reaction was performed and gave the expected trisaccharide 15 and tetrasaccharide 21, respectively. The stereochemistry of the newly introduced glycosidic linkage was determined to beβon the basis of the ~1H NMR of H-1", H-2" or H-1''', H-2''' coupling constant (J= 8.48 Hz, J = 8.40 Hz, respectively).
     Synthesis ofβ-1, 3-N-acetyl-glucosamine pentasaccharide: The compound 8, protected at C-3 with acetyl, and at the reducing terminal with thiophenyl, was treated first with BF_3·Et_2O/HgO to give 25 with a free hydroxyl at the reducing terminaln, followed by treatment with Cl_3CCN/DBU to give trichloroacetimidate 26 with an active leaving group at reducing terminal. Condensation of 26 with the previously described 5, in the presence of TMSOTf and dichloromethane, gaveβ(1→3) linked disaccharide 27. The glycosylation of 20 with donor 27 was achieved under the conditions described above, providing the desired pentasaccharide 28. The stereochemistry of the newly introduced linkage of 27 and 28 was determined to beβon the basis of the coupling constant (J= 8.54 Hz, J= 8.37 Hz, respectively).
     Deprotection ofβ-1, 3-N-acetyl-glucosamine oligosaccharides: Acetic acid hydrolysis, PTSA hydrolysis, and catalyzed hydrogenation were used to remove the 4, 6-O-benzylidene protective groups. Acetic acid hydrolysis could cause decompose of saccharide, catalyzed hydrogenation was fit for the disaccharide 9, trisaccharide 15 and tetrasaccharide 21, but was not applicable for the pentasaccharide 28 to which the PTSA hydrolysis was proved to be feasible. The compounds were then treated with hydrazine hydrate and water in boiling ethanol, to remove the phthalic groups. Finally the peracetylation was performed by acetic anhydride and pyridine, followed by de-O-acetylation to giveβ-1, 3-N-acetyl-glucosamine disaccharide 13 and trisaccharide 19; theβ-1, 3-N-acetyl-glucosamine tetrasaccharide 24 and pentasaccharide 31 were obtained using a selective N-acetylation by acetyl anhydride in dichloromethane and methanol.
     Structure confirmation ofβ-1, 3-N-acetyl-glucosamine oligosaccharides: Allsynthesized novel compounds were characterized and confirmed by ~1H NMR, ~(13)C NMR and HRMS, and the total yields for the di-, tri-, tetra- and pentasaccharide were 10.56%、3.08%、1.28% and 0.33%, respectively. Being different with the natural chitin oligosaccharide, these four synthesized chitin oligosaccharide analogues have a backbone of 1→3 linked structure, with a degree of polymerization from 2 to 5. These compounds could be applied to study the relationship between induced resistance to plant diseases and the molecular structures of tested Chitin oligosaccharides and their analogues.
     2. Induced Resistance of Cucumber to Fusarium Wilt Disease by synthesizedβ-1, 3-N-acetyl-glucosamine oligosaccharides
     Inhibition on mycelial growth by three chemosynthesised oligodaccharides:The inhibition in vitro on mycelial growth to five plant pathogens were showed that there was no inhibition on the mycelial growth by these three oligosaccharides.
     Induced Resistance of cucumber in seedling phase to Fusarium Wilt : Incucumber seedling phase, after treating with five different concentrations and two methods (Foliar spaying and irrigating roots), only the plants induced byβ-1, 3-N-acetyl-glucosamine disaccharide andβ-1, 3-N-acetyl-glucosamine trisaccharide at 10μg/ml by foliar spraying showed resistance to the wilt disease.
     Induced Resistance of cucumber in radicle phase to Fusarium Wilt Disease: Inradicle phase, the cucumber plants, roots of which were soaked withβ-1, 3-N-acetyl-glucosamine disaccharide andβ-1, 3-N-acetyl-glucosamine trisaccharide solution, showed resistance to the wilt disease. The effective concentration of the oligosaccharides was at least 5μg/ml.
     3. Induced Resistance of tobacco to the diseases by synthesizedβ-1, 3 -N-acetyl-glucosamine oligosaccharides andβ-1, 4-N-acetyl-glucosamine oligosaccharides
     Induced resistance of tobacco in vivo to black shank (Phytophthora parasUica van nicotianae) : Induced resistance of tobacco to black shank disease treated by seven synthesized oligosaccharides at three different concentrations (1μg/ml 10μg/ml and 100μg/ml) was investigated. The tobacco treated byβ-1, 3-N-acetyl-glucosamine tetrasaccharide,β-1, 4-N-acetyl-glucosamine trisaccharide andβ-1, 4-N-acetyl -glucosamine tetrasaccharide showed resistance to the disease. The effective concentration of oligosaccharides for induction was 10μg/ml mostly.
     Induced resistances of tobacco detached leaves to black shank disease and brown spot disease: The tobacco plants were treated by seven tested oligosaccharides at concentration of 10μg/ml, and then inoculated with Phytophthora parasitica or Alternatia alternataon the detached leaves. The tobacco treated byβ-1, 3-N-acetyl-glucosamine tetrasaccharide,β-1, 4-N-acetyl-glucosamine trisaccharide, andβ-1, 4-N-acetyl-glucosamine tetrasaccharide showed resistance to Phytophthora parasUica var. nicotianae; The tobacco treated byβ-1, 3-N-acetyl-glucosamine trisaccharide,β-1, 3-N-acetyl-glucosamine tetrasaccharide,β-1, 4-N-acetyl-glucosamine trisaccharide andβ-1, 4-N-acetyl-glucosamine tetrasaccharide showed resistance to Alternatia alternate.
     4. The relationship between the molecular structures of the synthesized oligosaccharides and induced resistance of plants to diseases
     The backbone linked structure and sugar residues of methylated Lewis~a trisaccharide: All the treatments with methylated Lewis~a trisaccharide showed no resistance to both cucumber and tobacco. That would be due to the difference of backbone linkage structure and sugar residues between methylated Lewis~a trisaccharide and Chitin oligosaccharides / Chitin oligosaccharide analogues. Compared with documents, it showed that the backbone linkage structures were the main factors influencing the induced resistance. However, the effect of sugar residues can not be excluded.
     The substituents on the reducing terminal C-1: Although there was a substituent methyl on the reducing terminal C-1 of all the seven tested oligosaccharides, the induced resistance by these oligosaccharides was diverse. It was saggested that the substituent methyl on the C-1 was not the key factor for the induced resistance by the seven tested oligosaccharides.
     The degree of polymerization of Chitin oligosaccharides / Chitin oligosaccharide analogues
     The effective degree of polymerization (DP) of Chitin oligosaccharides / Chitin oligosaccharide analogues to induce plant resistance was varied with the type of oligosaccharides and with the plant-disease systems. That of Chitin oligosaccharide analogues for the induced resistance to cucumber Fusarium wilt disease, to tobacco brown spot disease and to tobacco black shank disease was at least 2, 3 and 4. The effective degree of polymerization of Chitin oligosaccharides for the induce resistance to tobacco brown spot disease and black shank disease was at least 3.
     The backbone linkage structure of Chitin oligosaccharides / Chitin oligosaccharide analogues: Bpth Chitin oligosaccharide and Chitin oligosaccharide analogues showed induced resistance to cucumber and/or tobacco. It can be concluded that induced resistance was not limited in the structure of Chitin oligosaccharide; Chitin oligosaccharide analogues were another kind of N-acetyl-glucosamine oligosaccharides, which show induced resistance to plants.
     The induced resistance characteristics of Chitin oligosaccharides and Chitin oligosaccharide analogues: the induced resistance by Chitin oligosaccharide analogues and Chitin oligosaccharides appeared in both induced and non-induced leaves as a systemic induced resistance, and it was also no-specific.
     5. The physiological mechanism of tobacco induced resistance ofβ-1, 3-N-acetyl-glucosamine oligosaccharides andβ-1, 4-N-acetyl-glucosamine oligosaccharides
     Dynamics of three defense enzymes, POD, PPO and PAL, in the tobacco plants induced by five tested oligosaccharides: The enhanced activity of POD, PPO and PAL would be one of mechanisms of the induced resistance. The tobacco plants treated withβ-1, 3-N-acetyl-glucosamine tetrasaccharide andβ-1, 4-N-acetyl-glucosamine tetrasaccharide showed significantly higher activity of POD, PPO and PAL in comparison to the control, and reached the peak after 48h with induced efficiencies in enzyme activity of 40% and 99%; 238% and 186%; 81% and 73%, respectively. Most of the total enzymes activities induced by other three saccharides were similar to the enzyme activity of control tobacco.
     The differences of induced efficiencies in the enzyme activity of the five tested oligosaccharides displayed in these aspects: the total enzyme activity level, the time to reach enzyme activity peak, the enzyme activity peak value. There was relativity between the enzymes activity change of POD, PPO, PAL and Induced resistances of tobacco to Phytophthora parasitica var. nicotianae disease.
引文
Aiba S. I. . Preparation of an acetylchitooligosaccharides from lysozymic hydrolysates. Carbohydr. Res. , 1992, 261: 297-306.
    Albershein P, Nevins D. J. , English P. D. , et al. A method for the analysis of sugars in plantcell-wall polysaccharide by gas-liquid chromatography. Carbohydr Res, 1967, 5(2): 340-345.
    Angela R. , Patricia C. , Luz M. P. . Oligosacchrides released by pectinase trentment of itrus linon seedlings are elicitors of the plant response. Phytochemistry, 1993, 336: 1301-1306.
    Antonio R. S. , Maria I. I. , Emma N. Q. and Marta A. V. . An N-acetylglucosamine oligomer binding agglutinin (lectin) from ripe Cyphomandra betacea sendt fruits. Plant Science, 2001, 160(4):659-667.
    Ardourel M. , Demont N. ,. Debelle F. et al. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell, 1994, 6: 1357-1374.
    Augur C. , Yu L. , Saksi K. et al. Further studies on the ability of xyloglucan oligosaccharides to inhibit auxin—induced growth. Plant Physiol, 1992, 99:180-185.
    Baker B. R. , Joseph J. P. , Schaub R. E. , Williams J. H. . Puromycin synthetic studies Ⅳ. Glucosyl derivatives of 6-dimethylaminopurine. Journal of Organic Chemisty, 1954, 19: 1780-1785.
    Banoub J. , Boullanger P. , lafont D. . Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chemical Reviews, 1992, 92(6): 1167-1195
    Barber M. S. , Bertram R. E. , andRide J. P. . Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology, 1989, 34, (1): 3-12.
    Barber M. S. , Ride J. P. . Levels of elicitor-active β (1-4) linked N-acetyl-D-glucosamine oligosaccharides in the lignifying tissues of wheat Physiological and Molecular Plant Pathology, 1994, 45(1): 37-45.
    Barker S. A. , Foster A. B. , Stocey M. et al. Amino-sugars and related compounds: isolation and properties of oligosaccharides obtained by controlled fragmentation of chitin. J. chem Suc, 1958: 2218-2227.
    Bate N. J. , Orr J. , Nl W. et al. Quantitative relationship between phenylalanine ammonia—lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate—determining step in natural product synthesis. Proceedings of the National Academy of Sciences, 1994, 91: 7608-7612.
    Baureithel K. , Felix G. , Boller T. . Specific, high affinity binding of chitin fragments to tomato cells and membranes—competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J. Biol. Chem. , 1994, 269: 17931-17938.
    Benjamin G. Davis. Recent developments in oligosaceharide synthesis. J. Chem. Soc. Perkin Trans, 2000, 1: 2137-2160.
    Ben-Shalom N, Aki C, Ardi R, Pinto R. . Elicitation effects of chitin oligomers and chitosan sprayed on the leaves of cucumber (Cucumis sativus) and bean (Phaseolus vulgaris) plants, Israel journal of plant sciences, 2002, 50 (3): 199-206.
    Ben-Shalom N, Kudabeava N, Pinto R. . Differences in the elicitation of soluble and ionic bound enzymes in tomato leaves using chitin derivatives. Israel journal of plant sciences, 2002, 50 (4): 259-263.
    Bol J. F. , Linthorst H. J. M. , Cornelissen B. J. C. . Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol, 1990, 28:113-118.
    Boot R. G. , Renkema G. H. , Verhoek M. , et al. The human chitotriosidase gene nature of inherited enzyme deficiency. J Biol Chem, 1998, 273, 25680-25685.
    Bowers S. G. , Coe D. M. , Boons G-J. . Application of the 2, 5-dimethylpyrrole group as a new and orthogonal amine-protecting group in oligosaccharide synthesis. Journal of Organic Chemisty, 1998, 63 (14): 4570-4571
    Braccini I. , Derouet C. , Esnault J. , Penhoat de C. H. , Mallet J-M. , Michon V. , Sinay P. , Conformational analysis of nitrilium intermediates in glycosylation reactions. Carbohydrate Research, 1993, 246: 23.
    Carolyn R. , Bertozzil, Laura L. . Chemical glycobiology. Carbohydrates and glycobiology. 2001, 291: 2357-2364.
    Chang M-m. , Hadwiger L. , Daniel H. M. . Molecular characterization of a pea β-1, 3-glucanase incuced by Fusarium solani and chitosan challenge. Plant mol Biol, 1992, 20:609-618.
    Chang N. C. , Hung S. I. , Hwa K. Y. et al. A macrophage protein, Yml, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem, 2001, 276: 17497-17506.
    Cheong J-J. , Birberg W. , et al. Structure-activity relationships of oligo-β-glucoside Elicitors of Phytoalexin Accumulation in Soybean. The Plant Cell, 3, 127-136.
    Chestwer K. S. The problem of acquired physiological immunity in plants. Review Boilogy, 1933, 8: 275-324.
    Chowdhury A. K. , Mukherjee I. , Mukhopadhyay B. , Roy N. . Journal of Carbohydrate chemistry, 1999, 18: 361-367.
    Chowdhury U. S. . C, C-coupling with sulfur-stabilized carbanions-6. Preparation and electrophilic substitution of 1-[3-methyl-2-(2-thiolanylthio)-butyl]piperidine and dethioacetalization of semicyclic dithioacetals. Tetrahedron, 1996, 52: 12755.
    Cody R. M. . Screening microorganisms for chitin hydrolysis production of ethanol from amino sugar. Biomass, 1990, 24(4): 285-295.
    Cohen Y. . Local and systemic control of Phytophthom infestans in tomato plants by DL-3-Amino-n-butanoic acids. Phytopathology, 1994, 84: 55-59.
    Cohn J. , Day R. B. , and Stacey G. Legume nodule organogenesis. Trends plant Sci. , 1998, 3: 105-110.
    Cohn J. R. , Uhm T. , Ramu S. et al. . Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol, 2001, 125:2104-2119.
    Colson-Hanks E. S. , Deverall B. J. . Effects of 2, 6-dichloroisorticotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathology, 2000, 49: 441-456.
    Colson-Hanks E. S. , et al. Effect of 2,6-dichloroisonicotinic acid or benzothiadiazole on alternaria leaf spot, bacterial blight and verticillium wilt in cotton under field conditions. Australasian Plant Pathology, 2000, 29: 170-177.
    Conrath U, et al. Priming as a mechanism in induced systemic resistance of plants. Eur. J. Plant Pathol, 2001, 107:113-119.
    Cote, F. , Hahn, M. G. . Oligosaceharins: structures and signal transduction. Plant Molecular biology ,1994, 26, 1379-1411.
    Crews CM, Splittgerber U. Chemical genetics: exploring and controlling cellular processes with chemical probes. Trends Biochem Sci, 1999, 24:317~320.
    Crowley, J. F. , Goldstein I. J. , Arnarp J. , Lonngren J. . Carbohydrate binding studies on the lectin from Datum stramonium seeds. Archives of Biochemistry And Biophysics, 1984, 231(2): 524-533.
    Dalisay R F. , Kuc J. A. . Persistence of induced resistance and enhanced peroxidase and chitinase activities in cucumber plants. Physiological and molecular plant pathology, 1995, 47(5):315-327.
    Day R. B. , McAlvin C. B. , Loh, J. T. et al. Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant-Microbe Interact, 2000 13: 1053-1070.
    Day R. B. , Okada M. , Ito Y. , Tsukada K. , Zaghouani H. , Shibuya N. , Stacey G. . Binding site for chitin oligosaccharides in the soybean plasma membrane, plant physiology, 2001, 26 (3) : 1162-1173.
    Defaye D. . Chitin and chitosan. London: Elsevier Applied Science, .1989: 415.
    Dejter-Juszynski M. , Flower H. M. . Studies on the Koenigs-Knorr reaction : Part Ⅱ. Synthesis of an α-L-linked disaccharide from tri-O-benzyl-α-L-fucopyranosyl bromide. Carbohydrate Research, 1971,18: 219.
    DeNinno M. P. , Etienne J. B. , and Duplantier K. C. . A method, for the selective reduction of carbohydrate 4,6-O-benzylidene. acetals. Tetrahedron Letters, 1995, 36(4): 669-672.
    Denision C. , Kodadek T. . Small-molecule-based strategies for controlling gene expression. chemistry & biology. 1998, 5(6): 129-145.
    Diaz C. , Spaink H. P. , Kijne J.W. . Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant-Microbe Interact, 2000, 13: 268-276.
    Ebel J.; Bhagwat A. A.; Cosio E.G.et al. Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response. Canadian Journal of Botany, 1995, 73: 506-510.
    Ebel J.; Mithofer A. . Eady Events in the Elicitation of Plant Defence. Planta, 1998, 206: 335-348.
    Ehara T. , Kameyama A. , Ishida H. et al. Carbohydrate Research, 1996, 281: 237-252.
    Ek M. , Garegg P. J. , Hultberg H. , Oscarson S. . Reductive ring openings of carbohydrate benzylidene acetals using borane-trimethylamine and aluminum-chloride-regioselectivity and solvent dependence. Journal of Carbohydrate Chemisty, 1983, 2: 305-311.
    Emmanuel B. , Alain D. , Marie-madeleine G.-g. . Study of the solid-state hydrolysis of chitosan in presence of HCl. Journal of Polym Sci Part A: polym Chem, 1997, 35: 3181-3191.
    Eric K. , Koden Z-J. , Gijs A. et al. Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the Mesorhizobium loti chitin oligosaccharide synthase NodC. Carbohydrate Research, 1999, 321(3-4): 176-189.
    Etzler M. E. , Kalsi G. , Ewing N. N. et al. A Nod factor binding lectin with apyrasc activity from legume roots. Proc Natl Acad Sci USA, 1999, 96: 5856-5861.
    Felix G. , Regenass M. , Boller T. . Specific perception of subnanomolar concentrations of chitin fragments by tomato cells. Induction of extracellular alkalinizations changes in protein phosphorylation, and establishment of a refractory state. Plant J, 1993, 4: 307-316.
    Ferrier R. J. , Furneaux R. H. . struction of. a variety of carbohydrate-based molecules. Carbohydrate Research, 1976, 52: 63-68.
    Flower H. M. . Studies on the Koenigs-Knorr reason: Part Ⅰ. Synthesis of 6-O-α-D-glucopyranosyl-D-galactose and 3-O-α-D-glucopyranosyl-D-galactose. Carbohydrate Research, 1971, 18: 211.
    Fumiya K. , Nobuhiro T. , Arasuke N. . Induction, purification and possible function of chitinase in cultured carrot cells. Physiol Mol Plant Pahtol, 1987, 31: 201-210.
    Hashimoto S. , Honda T. , Ikegami S. , biological recognition and cellular communication. Journal of American Chemical Society, chemical communication, 1989, 685-687.
    Heike D. , Dietrich K. , Polysaccharides as elicitors for anthraquinone synthesis in Morinda citrifolia cultures. Journal of Agricultural and Food Chemistry, 1994, 42 (4) : 1048-1052.
    Hengel A. J. , Tadesse Z. , Immerzeel P. , et al. N-acetylglucosamine and glucosamine-containing arabino galactan proteins control somatic embryogenesis. Plant Physiol, 2001, 125: 1880-1890.
    Hirano S. , Ohe Y. ; Ono H. . Selective N-acylation of chitosan. Carbohydrate Research, 1976, 47 (2) : 315-320.
    Horowitz S. I. , Roseman S. , Blumenthal H. J. . The preparation of glucosamine oligosaccharides and separation. J Am Chem Soc. , 1957, 79: 5046-5049.
    Hutadilok N. , Mochimasu T. , The effect of N-substitution on the hydrolysis of chitosan by an endo-chitosanase. Carbohydr Res, 1995, 368: 143.
    Inui H. , Yamaguchi Y. , Hirano S. . Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase and L-phenylalanine ammonia-lyase induction in rice suspension culture, bioscience biotechnology and biochemistry, 1997, 1 (6) : 975-978.
    Inui H. , Yamaguchi Y. , Ishigami Y. et al. Three extracellular chitinases in suspension-cultured rice cells elicited by N-acetylchitooligosaccharides, bioscience biotechnology and biochemistry, 1996, 60 (12) : 1956-1961.
    Jain R. K. , Piskorz C. F. , Locke R. D. ; Matta K. L. . A practical synthesis of 2-O-substituted beta-D-galactopyranosyl (1→4) linked di-and tri-saccharides as specific ac, ceptors for (1→3)-alpha-L-fucosyltransferase. Carbohydrate Research, 1992, 236 (15) : 327-334.
    James C. , Linden and Muenduen P. . Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus Canadensis.Plant Science, 2000, 158(1-2) : 41-51.
    Jong de A. J, Hcidstra R. , Spaink H. P. et al. Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell, 1993 (5), 615-620.
    Keller H. , Pamboukdjian N. , Ponchet M. , Poupet A. , et al. Pathogen-induced elictin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell, 1999, 11: 223-235.
    Kendra D. F. , Christain D. , Hadwiger L. A. . Chitosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion of spore lings and form fungal wall chitin activity inhibit fungal growth aand enhance disease resistance. Physiol Mol Plant Pathol, 1989, 35: .215-230.
    Kessmann H, et al. Induction of systimic acquired disease resistance in plant by chemicals. Annual Review of Phytopathology, 1994, 32: 439-459.
    Kihlberg J. O. , Leigh D. A. , Bundle D. R. , et al. The insitu activation of thioglycosides with. Bromine: An improved glycosylation method. J. Org. Chem. , 1990, 55 (9) : 2860-2863.
    Kim Y. S. , Lee J. H. , Yoon G. M. et al. CHRK1, a chitinase-related receptor-like kinase in tobacco. Plant Physiol, 2000 (123), 905-916.
    Kobata A. . Glycobiology: an expanding research area in carbohydrate chemistry. Acc. Chem. Res. , 1993, 26 (9) : 319~324.
    Kochibe N. , Matta K. L. . Purification and properties of an N-acetylglucosamine-specific lectin from Psathyrella velutina mushroom. The Journal of Biological Chemistry, 1989, 264 (1) : 173-177.
    Koeniges W. , Knorr E. Koenigs-Knorr Synthesis. Chemische Berichte, 1901, 34: 957.
    Koenigs W, Knorr E. Formation of glycosides from acetylated glycosyl halides and alcohols or phenols in the presence of silver salts. Chem, 1901, 34: 354-364.
    Kondo, H. Ichikawa Y. , Wong C. H. . Beta-Sialyl phosphite and phosphoramidite: synthesis and application to the chemoenzymic synthesis of CMP-sialic acid and sialyl oligosaccharides. Journal of American Chemical Society, 1992, 114 (22) : 8748-8752.
    Kristiansen A. , Nysaeter A. , Grasdalen H. , Kjell M. V. . Quantitative studies of the binding of wheat germ aggiutinin (WGA) to chitin-oligosaccharides and partially N-acetylated chitosans suggest inequivalence of binding sites. Carbohydrate Polymers, 1999, 38 (1) : 23-32.
    Kuc J. Concepts and directions of induced systemic resistance, in plant and its application. Eur. J. Plant Pathol. , 2001, 107: 7-12.
    Li X-B. , Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, (2) : 627-631.
    Liang R. , Yan L. , Loebach J. et al. Synthesis and Screening of a solid phase Carbohydrate Library. Science, 1996, 29 (274) : 1520-1522.
    Liner F. , Thibault J-F, Van Cutsem P. . Influence of the degree of polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies. Plant Physiol, 1992, 99: 1099-1104.
    Lonn H. , Sulfuryl chloride trifluoromethane sulfonic acid-a novel promoter system for glycoside synthesis using thioglycosides asglycosyl donors. Glycoconj J. , 1987, 4: 117-118.
    Makoto H. , Akira I. , Fumihiko O. . Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydr Polym, 1993, 20: 279-283.
    Maksimov Ⅵ, Rodoman VE, Luntsevich VG. Phytoactive chinin derivatives, applied biochemistry and microbiology, 1997, 33 (4) : 315-321.
    Malinda K. M. , Ponce L. , Kleinman H. K. , Shackelton L. M. and Millis A. J. . Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res. , 1999, 250: 168-173.
    Martin T. J. , Schmid R. R. Efficient sialylation with phosphite as leaving group. Tetrahedron Letters, 1992, 33: 6123.
    Mithofer A. , Fliegrnann J. , Neuhaus-Url G. , Schwarz H. , Ebel J. , The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family. Biol Chem, 2000, 381: 705-713.
    Okada M, Matsumura M, Ito Y, Shibuya N. High-affinity binding proteins for N-acetylchitooligosaccharide elicitor in the plasma membranes from wheat, barley and carrot cells: Conserved presence and correlation with the responsiveness to the elicitor, plant and cell physiology, 2002, 43 (5) : 505-512.
    Okada M, Matsumura M, Shibuya N. Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane from rice leaf and root cells, journal of plant physiology, 2001, 158 (1) : 121-124.
    Palli S. R. , Retnakaran A. . Molecular and biochemical aspects of chitin synthesis inhibition. EXS, 1999, 87: 85-98.
    Patrick PG. , Holst H, Schlaman RM. , Herman P. S. . Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Current Opinion in Structural Biology, 2001, 11 (5) : 608-616.
    Pearce RB, Ride JP. Specifity of induction of the lignification response in wounded wheat leaves. Physiol Plant Pathol, 1980, 16: 197-204.
    Perret X. , Staehelin C. , Broughton W. J. , Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64 (2000), 180-201.
    Plante O. J. , Palmacci E. R. , Seeberger P. H. , Formation of b-Glucoamines and b-Mannose Linkages Using Glycosyl Phosphates; Organic Letters 2000, 27(2) : 3841-3843.
    Ray S. , Ahmed H. , Basu S. , Chatterjce B. P. . Purification, characterization, and carbohydrate specificity of the lectin of Ficus cunia. Carbohydrate Research, 1993, 242(7) : 247-263.
    Renkema G. H. , Boot R. G. , Au F. L. et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, arc homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem, 1998, 251: 504-509.
    Roby D. , Gadelle A. , Toppan A. . Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochemical and biophysical Research communications, 1987, 143 (3) : 885
    Ross A. F. Localized acquired resistance to plant virus infection in hypersentive host. Virology, 1961, 14: 329-339.
    Ross A. F. Systemic acquired resistance induced by localized virus infection in plant. Virology, 1961, 14: 340-358.
    Sakai K. , et al. Biotransformation of Ajmaline in Plant Cell Cultures of Rauvolfia serpentina Benth. : The new Indole Alkaloids Raumacline and N (b)-Methylraumacline. Tetrahedron letter, 1990, 31: 6693-6696.
    Schlaman W. R. M. , Gisel A. A. , Quaedvlieg N. E. M. et al. Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development, 1997, 124: 4887-4893.
    Schreiber S L. You A. J. ; Jackman R. J. , Whitesides G. M. . A miniaturized arrayed assay format for detecting small molecule-protein interactions in cells, chemistry &biology, 1997, 4(12) : 969-975.
    Schreiber, S. L. . Chemical genetics resulting from a passion for synthetic organic. Chemistry. Bioorg. Med. Chem. , 1998, 6, 1127-1152.
    Semino, C. E. , Allende, M. L. Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. The International Journal of Developmental Biology, 2000, 44 (2) : 183-193.
    Sharp J. K. , et al. Comparison of the structures and Elicitor Activities of a Synthetic and a Mecelial Wall Derived Hexa (β-D-glucopyranosyl)-D-glucited. J. Biol. Chem. , 1984, 259: 11341-11345.
    Shibuya N. , Ebisu N. , Kamada Y. , Kaku H. , Cohn J. and Ito Y. Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant Cell Physiol, 1996, 37: 894-898.
    Smit F. , Dubery I. A. . Cell wall reinforcement in cotton hypocotyls in response to a verticillium dahliae elicitor. Phytochemistry, 1997, 44: 811-815.
    Snaar-Jagalska, Boguslawa E; Krens, Simon F G; Robina, Inmaculada; Wang, Lai-Xi; Spaink, Herman P. Specific activation of ERK pathways by chitin oligosacchaddes in embryonic zebrafish cell lines. Glycobiology, 2003, 13 (10) : 725 -732.
    Spaink H. P. . Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol, 2000, 54: 257-288.
    Stacey G, Shibuya N. Chitin recognition in rice and legumes, plant and soil, 1997, 194 (1-2) : 161-169.
    Stougaard J. , Regulators and regulation of legume root nodule development. Plant Physiol, 2000, 124: 531-540.
    Suzuki K. , Tokoro A. , Okawa Y. , et al. Effect of N-acetylchito-oligosaccharides on activation of phagocytes. Microbiol Immunol, 1986, 30(8) : 777.
    Tokuyasu, K; Ono, H; Ohnishi-Kameyama, M; Hayashi, K; Mori, Y. Deacetylation of chitin oligosaccharides of dp 2-4 by chitin deacetylase from Colletotrichum lindemuthianum. Carbohydrate Research, 1997, 303(3) : 353-358.
    Tsukada K, Ishizaka M, Fujisawa Y, Iwasaki Y, Yamaguchi T, Minami E, Shibuya N Rice receptor for chitin oligosaccharide elicitor does not couple to heterotrimeric G-protein: elicitor responses of suspension cultured rice cells from Daikoku dwarf (dl) mutants lacking a functional G-protein (?)-subunit. Physiol. Plant, 2002, 116: 373-382
    Tuzun S, et al. Effects of stem injection with Peronospora tabacina on growth of tabacco and protection against blue mold in the field. Phytopathology, 1986, 76: 938-941.
    Van Loon L. C. . Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 1997, 103: 753-765.
    vander Holst PPG, Schlaman HRM, Spaink HP. Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development, current opinion in structural biology, 2001, 11 (5) : 608-616.
    Veeneman G. H. , Van Leeuwen S. H. , Van Boom J. H. Iodonium ion promoted reactions at the anomeric centre. Ⅱ An efficient thioglycoside mediated approach toward the formation of 1, 2-trans linked glycosides and glycosidic esters. Tetrahedron Letters, 1990, 31(9) : 1331-1334.
    Walling, L. L. Induced resistance: from the basic to the applied. Trends Plant Sci. , 2001, 6: 445-447.
    Y. Ito, H. Kaku and N. Shibuya, Identification of a high-affinity binding protein for N-acetylchitooligosaccharide elicitor in the plasma membrane of suspension-cultured rice cells by affinity labeling. Plant J, 12 (1997) : 347-356.
    Yamaguchi T, Ito Y, Shibuya N. Oligosaccharide elicitors and their receptors for plant defense responses, Trends in glycoscience and glycotechnology, 2000, 12 (64) : 113-120.
    Yan L. , Kahne D. , Generalizing glycosylation: synthesis of the blood group antigens Le~a, Le~b, and Le~x using a standard set of reaction conditions. Journal of American Chemical Society, 1996, 118: 9239-9248.
    Zemplen G. , Berichte der D. . Abbau der reduzierenden biosen. 1. Direkte konstitutions-enrtittlung der cellobiose. Ber. Dtsch. Chem. Ges. , 1926, 59, 1254-1258.
    Zhang D. , Hrmova M. , Wan C-H. et al. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Molecular Biology, 2004, 54(3) : 353-372.
    Zhang Y-M. , Esnault J. , Mallet J-M. , Sinay P. . Journal of Carbohydrate Chemisty, 1999, 18: 419.
    Zhang Z. , Magnusson G. Conversion of p-methoxyphenyl glycosides into the corresponding glycosyl chlorides and bromides, and into thiophenyl glycosides. Carbohydrate Research, 1996, 295, 41-55.
    陈岷,汪国平,吴定华等.黄瓜枯萎病抗、感品种在病菌入侵后的病理组织学差异研究.华南农业大学学报(自然科学版),2003,24(4):110-112.
    陈晓峰,陆祖宏.寡糖组合合成.化学进展,2002,14(6):477-485.
    荻维,王林,王升启.寡糖及其衍生物的生物活性研究进展.中国药物化学杂志,2002,48(4):243-248.
    杜灿屏,唐晋,张礼和.化学生物学将成为21世纪重要的新兴交叉学科.化学进展, 12(1):355-356.
    杜昱光,白雪芳,虞星炬.寡聚糖类物质生理活性的研究.中国生化药物杂志,1997,18(5):268.
    杜昱光,白雪芳.甲壳素生物降解制备低聚氨基葡萄糖.精细与专用化学品,2003,11(7):16-18.
    杜昱光,姜华等.壳寡糖对烟草防御酶活性及同工酶酶谱的影响.中国生物防治,2002,18(2):83-86.
    杜昱光,金宗濂等.壳寡糖抑制肿瘤作用的研究.中国海洋药物,2002,21(2):18-21.
    杜昱光.化学与生命学科交叉新领域—糖生物学与寡糖工程.中国微生态学杂志,2000,12(5):251-252.
    方中达.植病研究方法.北京:中国农业出版社,1998.
    郭忠武,王来曦.糖化学研究进展.化学进展,1995,7(1):10-29.
    洪剑明,邱泽生.植物的诱导抗病性.植物学通报,1997,14(2):23-29.
    胡健,陈云等.壳寡糖对水稻纹枯病不同抗性品种几丁质酶诱导的研究.江苏农业研究,2000,21(4):37-40.
    黄丽萍,刘宗明.几丁寡糖、壳寡糖的应用与开发.中国微生态学杂志,1998,10(3):180-183.
    黄雪梅,张昭其等.果蔬采后诱导抗病性.植物学通报,2002,19(4):412-418.
    蒋冬花,郭泽建,陈旭君等.激发子隐地蛋白基因介导的烟草抗病性研究.农业生物技术学报,2003,11(3):299-304.
    蒋秋燕,乔旭光,生命科学的新领域—糖生物学.山东农业大学学报(自然科学版),2003,34(2):294-298.
    蒋选利,李振岐,康振生等.几丁质酶与植物的抗病性.西北农业学报,2002,11(3):71-75.
    金城,张树政.糖生物学与糖工程的兴起与前景.生理工程进展,1995,15(3):12-17.
    金城.糖生物学—破解基因组功能的必由之路.中国科学院研究生院学报,2001,18(1):66-75.
    瞿涤.“甜蜜”的微生物学—微生物糖生物学.国外医学(微生物学分册),2004,27(4):44-45.
    孔繁作.寡糖类农药的研制.环境化学,2000,19(4):293-299.
    孔繁祚.用不保护或少保护的糖为原料高区选、高立体选地合成寡糖.化学通报,2002,4:251-253.
    李华,刘开启.微生物几丁质酶在植物病害生物防治中的应用.仲恺农业技术学院学 报,2003,16(1):54-60.
    李靖,利容千.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报,1991,21(4):277-283.
    李淼,檀根甲,承河元等.植物抗病性研究现状与前景展望.江西农业大学学报(自然科学版),2002,24(5):731~736.
    廖春燕,陈美慈等.不同分子量壳聚糖对几种植物病原真菌的拮抗作用.浙江农业学报,2001,13(3):172-175.
    廖春燕,洪文英等.壳聚糖对番茄枯萎病菌的拮抗作用.浙江大学学报(农业与生命科学版),2001,27(6):619-623.
    廖春燕,洪文英等.壳聚糖诱导植物抗病机制研究进展.东海海洋,2001,19(2):23-31
    廖春燕,马国瑞,洪文英.壳聚糖诱导番茄对早疫病的抗性及其生理机制.浙江大学学报(农业与生命科学版),2003,29(3):280-286
    罗建平,贾敬芬.植物寡糖素的结构和生理功能.植物学通报,1996,13(4):28-33.
    马鹏鹏,何立千.壳聚糖对植物病害的抑制作用研究进展.天然产物研究与开发,2001,13(6):82-86.
    马鹏鹏,何立千等.不同脱乙酰度壳聚糖对植物病原细菌的抑制作用研究.北京联合大学学报(自然科学版),2003,17(3):28-31.
    马鹏鹏,何立千等.壳聚糖对植物病原细菌的抑制作用研究.天然产物研究与开发,2003,15(5):411-414.
    欧阳光察,薛应龙.植物生理学通讯,1988,(3):661~667.
    曲波,李宝聚等.物理因子诱导植物抗病性研究进展.沈阳农业大学学报,2003,34(2):142-146.
    王克夷.作为信息分子的糖类.化学进展,1996,8(2):98-108.
    王克夷.糖类研究的进展和前沿.生命的化学,1994,14(5):4-8.
    王世敏,宋功武.化学生物学的科学内涵及其发展.湖北化工,2002,19(4):1-3.
    翁祖信,蒋兴祥,肖小文.黄瓜枯萎病抗病性鉴定方法研究—胚根接种法.中国蔬菜,1985,(2):30-34.
    吴厚铭.化学生物学—新兴的交叉前沿学科领域.化学进展,2000,12(4):423-430.
    邢荣娥,刘松,李鹏程.甲壳寡糖的研究与应用.海洋科学.2002,26(5):25-27.
    徐文联,吕士恩等.植物诱导抗病性原理和研究.董汉松主编,科学出版社,1995,97-116.
    薛应龙,欧阳光察,澳绍根.植物苯丙氨酸解氨酶的研究,Ⅳ、水稻幼苗中PAL活性的动态变化.植物生理学报,1983,9(3):301-305.
    薛应龙,欧阳光察.植物抗病的物质代谢基础(余叔文,汤章诚,植物生理与分子生物学).北京:科学出版社,1998,770-783.
    杨艳芳,梁永超,娄运生等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系.中国农业科学,2003,36(7):813-817.
    叶新山.寡糖的组合合成,北京大学学报(医学版),2002,34(5):451-456.
    于汉寿,张益民.油菜几丁质酶的纯化及其在抗菌核病中的作用.南京农业大学学报,1999,22(3):41-44.
    于汉涛,张益民.壳聚糖对油菜生长及油菜菌核病的影响.上海农业学报,1999,15(2):80-83.
    岳东霞,许长葛,张耀武等.黄瓜枯萎病拮抗细菌的筛选和防治.天津农业科学.2002,8(4):7-10.
    翟彩霞,马春红等.植物诱导抗病性的常规鉴定—相关酶活性变化与诱导抗病性的关系.中国农学通报,2004,20(5):222-224.
    张欣.与植物抗病性有关酶的研究进展.华南热带农业大学学报.2000,6(1):41-46.
    张燕,方力.壳聚糖对烟草种子萌发及幼苗生理生化特性的影响.吉林农业大学学报,1998,20(3):28-30.
    赵鸿莲,于荣敏.诱导子在植物细胞培养中的应用研究进展.沈阳药科大学学报,2000,17(2):152-156.
    赵会杰.现代植物生理学试验指南.中国科学院上海植物生理研究所,上海市植物生理学会编,科学出版社,1999,317-318.
    赵新生,化学生物学在生物芯片技术中的角色.化学进展,2003,15(5):436-438
    中华人民共和国行业标准:烟草病害分级及调查方法,YC/T 39-1996.
    朱广廉,钟诲文,张爱琴.植物生理学实验.北京,北京大学出版社,1990,51-54;245-252.
    朱毅勇,沈其荣,谢学东等.磷酸盐诱导黄瓜系统抗病中主要酶活性的变化.南京农业大学学报,1999,22(2):50-54.
    朱振元,张勇民,徐同.化学合成寡糖诱导烟草抗黑胫病的初步研究.植物病理学报.2004,34(3):231-236.
    朱振元,张勇民,徐同.几种新的二聚糖的合成.浙江大学学报(工学版),2005,39(2):311-316.
    竺国芳,赵鲁杭.几丁寡糖和可寡糖的研究进展.中国海洋药物,2000,19(1):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700