拉曼激光脉冲放大特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受激拉曼散射是一种非常有效的频率变换方法,转换后的拉曼激光波长由泵浦基频光的波长和具体的拉曼介质决定。物质的三种状态固体、液体、气体都包括丰富的拉曼介质。受激拉曼散射光的光谱可遍及紫外到近红外,大大拓宽了激光光谱范围。此外受激拉曼散射具有多种优良特性,如拉曼散射光光束质量好、脉冲宽度窄、转化效率高,并且区别于其他非线性效应的是,受激拉曼散射不需要相位匹配。因此,对于拉曼介质的研究自从上世纪60年代发现受激拉曼散射以来从未间断,拉曼介质对于拉曼激光脉冲的放大特性是拉曼介质最重要的特性之一。因此,研究各种各样的拉曼介质对于拉曼激光脉冲的放大特性是一项非常重要的工作。
     本论文以YVO4晶体作为拉曼转换晶体,通过YVO4晶体对皮秒拉曼激光脉冲及纳秒拉曼激光脉冲的放大实验,测试了拉曼晶体对拉曼激光脉冲的放大特性,并测得了YVO4晶体的拉曼增益系数。以下为本论文的具体研究内容。
     在皮秒锁模脉冲泵浦激励下,观测YVO4晶体对于皮秒拉曼激光脉冲的放大特性,并根据两块长度不同YVO4晶体对于皮秒拉曼激光脉冲的放大差异得到YVO4晶体的拉曼增益系数。首次实现了根据两块长度不同YVO4晶体对于皮秒拉曼激光脉冲的放大实验得到YVO4晶体的拉曼增益系数。
     系统地研究了以a切Nd:YVO4晶体作为拉曼介质的端面泵浦主动调Q自拉曼激光器的特性,Nd:YVO4晶体既是激光晶体同时又是拉曼晶体,使用不同透过率的输出镜,在不同的脉冲重复率下,得到不同能量比例状态的基频光和拉曼光,为测试YVO4晶体对于纳秒拉曼激光脉冲的放大特性做充分的准备。实验中选取30 kHz调Q频率并使用特定输出耦合镜(对基频光和拉曼光反射率分别为97.6%和93.7%)时的输出脉冲光来做纳秒拉曼激光脉冲的放大实验。
     系统地研究了以Nd:YAG作为激光晶体、以a切YVO4晶体作为拉曼介质的端面泵浦主动调Q内腔式拉曼激光器的特性,使用不同透过率的输出镜,在不同的脉冲重复率下,得到不同能量比例状态的基频光和拉曼光。实验中选取20 kHz调Q频率并使用特定输出耦合镜(对基频光和拉曼光反射率分别为97.6%和93.7%)时的输出脉冲光来做纳秒拉曼激光脉冲的放大实验。
Stimulated Raman scattering (SRS) is a fairly effective way to shift the frequency of laser. The frequencies of Raman lasers are determined by both the pump laser frequencies and the Raman materials. There are many kinds of Raman materials in all three states of materials, solid, liuquid, and gas. The spectrum of Raman laser ranges from ultraviolet to near-infrared. Besides, stimulated Raman scattering has plenty of excellent characteristics, such as good quality of scattering light, narrow pulse width, high convertion efficiency, without requiring phase matching. So, researches in Raman materials are always on the frontier of science as early as 60's in the last century. The characteristics of Raman amplifier are one of the most important aspects of Raman materials. It is a quite important job to conduct researches on Raman amplifiers.
     In this thesis I use YVO4 as the Raman material, studing its amplifying characteristics for Raman laser pulses and measuring its Raman gain coefficient, based on experiments in amplifying nanosecond Raman laser pulses and picosecond Raman laser pulses. The specific contents are stated as following.
     The Raman gain coefficient is calculated by comparing the outputs of two YVO4 crystals in different lengths under the pump of picosecond mode-locked pulses. This is the first time to obtain the Raman gain coefficient by this method to our knowledge.
     Both the fundamental laser and Raman laser are obtained from an end-pumped actively Q-switched self-Raman laser, using an a-cut Nd:YVO4 crystal as the laser crystal and Raman crystal. By changing the Q-switched pulse frequency and the transmission of output mirror, different output powers at the fundamental laser and Raman laser are obtained. The experiments of amplifying nanosecond Raman laser pulse are conducted under the condition that the output mirror reflectivity is 97.6% for fundamental wavelength and 93.7% for Raman wavelength and the Q-switched pulse frequency is 30 kHz.
     Both the fundamental laser and Raman laser are obtained from an end-pumped actively Q-switched intracavity Raman laser, using an Nd:YAG crystal as the laser crystal and an a-cut YVO4 crystal as the Raman crystal. Through changing the Q-switched pulse frequency and the transmission of output mirror, different output powers at the fundamental laser and Raman laser are obtained. In specific experiments for obtaining appropriate pulses in amplifying nanosecond Raman laser, I use output mirror whose reflectivity is 97.6%for the fundamental wavelength and 93.7%for the Raman wavelength and choose Q-switched pulse frequency of 20 kHz.
引文
[1]H. M. Pask, " Review design and operation of solid-state Raman lasers," Prog. Quantum Electron., vol.27, pp.3-56,2003.
    [2]T. T. Basiev, A. A. Sobol, P. G. zverev, L. I. Ivleva, V. V. Osiko R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol.11, pp.307-314,1999.
    [3]T. T. Basiev, A. A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [4]J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, R. A. Stolzenberger, "Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett., vol.20, pp. 1017-1019,1995.
    [5]S. Eremenko, S. N. Karpukin, A. I. Stepanov, "Stimulated Raman scattering of the second harmonic of a neodymium laser in nitrate crystals," Sov. J. Quantum Electron., vol.10, pp.113-114,1980.
    [6]S. N. Karpukhin, A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quantum Electron., vol.16, pp.1027-1031,1986.
    [7]P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, T. T. Basiev, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol.97, pp.59-64,1993.
    [8]P. G. Zverev, W. Jia, H. Liu, T. T. Basiev, "Vibrational dynamic of the Raman-active mode in barium nitrate crystal," Opt. Lett., vol.20, pp. 2378-2380,1995.
    [9]C. L. McCray, T. H. Chyba, "High resolution spectral measurements of Raman shifts in barium nitrate," Opt. Mater., vol.11, pp.383-390,1999.
    [10]P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii, V. E. Yakobson, "Physical, chemical and optical properties of barium nitrate Raman crystal," Opt. Mater., vol.11, pp.315-334,1999.
    [11]J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, J. Hulliger, "Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers," Appl. Phys. B., vol.70, pp.159-162,2000.
    [12]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5-μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp. 421-423,2005.
    [13]R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express., vol.12, pp. 785-790,2004.
    [14]J. Findeisen, H. J. Eichler, P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp. 129-133,2000.
    [15]I. V. Mochalov, "Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd)," Opt. Eng., vol.36, pp. 1660-1669,1997.
    [16]J. Findeisen, H. J. Eichler, A. A. Kaminskii, "Efficient picosecond PbWO4 and two-wavelength KGd(WO4)2 Raman lasers in the IR and visible," IEEE J. Quantum Electron., vol.35, pp.173-178,1999.
    [17]T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, P. Dekker, "Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser," Opt. Commun., vol.232, pp.327-331,2004.
    [18]M. Matsuse, T. Deguchi, H. Ohtsuka, N. Takeyasu, Y. Hirakawa, T. Imasaka, "Effect of laser pulsewidth on the generation of multi-color laser emission by stimulated Raman scattering and four-wave Raman mixing in a KGd(WO4)2 crystal," Opt. Commun., vol.223, pp.411-416,2003.
    [19]T. T. Basiev, V. N. Voitsekhovskii, P. G. Zverev, F. V. Karpushko, A. V. Lyubimov, S. B. Mirov, V. P. Morozov, I. V. Mochalov, A. A. Pavlyuk, G. V. Sinitsyn, "Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2- color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals," Sov. J. Quantum Electron., vol.17, pp.1560-1561, 1987.
    [20]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, G I. Ryabtsev, A. A. Demidovich, "All solid-state diode-pumped Raman laser with self-frequency conversion," Appl. Phys. Lett., vol.75, pp.3742-3744,1999.
    [21]A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, G. I. Ryabtsev, V. A. Orlovich, A. A. Demidovich, "Stimulated Raman scattering in Nd:KGW laser with diode pumping," J. Alloy. Compd., vol.300-301, pp.300-302,2000.
    [22]A. Brenier, F. Bourgeois, B. Metrat, N. Muhlstein, G. Boulon, "Spectroscopic properties and 1.351 μm of Nd3+-doped KY(WO4)2 and KGd(WO4)2 single crystals for Raman conversion," Opt. Mater., vol.16, pp.207-211,2001.
    [23]V. A. Berenberg, S. N. Karpukhin, I. V. Mochalov, "Stimulated Raman scattering of nanosecond pulses in a KGd(WO4)2 crystal," Sov. J. Quantum Electron., vol.17, pp.1178-1179,1987.
    [24]S. V. Kurbasov, L. L. Losev, "Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal," Opt. Commun., vol.168, pp.227-232, 1999.
    [25]A. Z. Grasiuk, S. V. Kurbasov, L. L. Losev, "Picosecond parametric Raman laser based on KGd(WO4)2," Opt. Commun., vol.240, pp.239-244,2004.
    [26]A. Major, J. S. Aitchison, P. W. E. Smith, N. Langford, A. I. Ferguson, "Efficient Raman shifting of high-energy picosecond pulses into the eye-safe 1.5 μm spectral region by use of a KGd(WO4)2 crystal," Opt. Lett., vol.30, pp. 421-423,2005.
    [27]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. Wang, Y. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express., vol.13, pp.10120-10128,2005
    [28]P. Cerny, P. G. Zverev, H. Jelinkova, and T. T. Basiev, "Efficient Raman shifting of picosecond pulses using BaWO4 crystals," Opt. Commun., vol.177, pp.397-404,2000.
    [29]P. Cerny, H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp. 360-362,2002.
    [30]P. Cerny, W. Zendzian, J. Jabczynski, H. Jelinkova, J. Sulc, K. Kopczynski, "Efficient diode-pumped passively Q-switched Raman laser on barium tungstate crystal," Opt. Commun., vol.209, pp.403-409,2002.
    [31]P. Cerny, H. Jelinkova, T. T. Basiev, and P. G Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp. 1471-1478,2002.
    [32]S. T. Li, X. Y. Zhang, Q. P. Wang, X. L. Zhang, Z. H. Cong, H. J. Zhang, J. Y. Wang, "Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm," Opt. Lett., vol.32, pp.2951-2953,2007.
    [33]L. I. Ivleva, T. T. Basiev, I. S. Voronina, P. G. zverev, V. V. Osiko, N. M. Polozkov, "SrWO4:Nd3+-new material for multifunctional lasers," Opt. Mater., vol.23, pp.439-442,2003.
    [34]H. Jelinkova, J. Sulc, T. T. Basiev, P. G. Zverev, S. V. Kravtsov, "Stimulated Raman scattering in Nd:SrWO4," Laser Phys. Lett., vol.2, pp.4-11,2005.
    [35]F. Cornacchia, A. Toncelli, M. Tonelli, E. Cavalli, E. Bovero, N. Magnani, "Optical spectroscopy of SrWO4:Nd3+ single crystals," J. Phys.:Condens. Mat., vol.16, pp.6867-68876,2004.
    [36]B. Alain, G. H. Jia, C. Y. Tu, "Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in Nd3+:SrWO4 crystal," J. Phys. Condens. Matter., vol.16, pp.9103-9108,2004.
    [37]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S.Z. Fan, Z. J Liu,J. Chang, S. S.Zhang, S. M. wang, Y. R. Liu "Highly Efficient Raman Frequency Converter With Strontium Tungstate Crystal," IEEE J. Quantum Electron., vol. 42, pp.78-84,2006.
    [38]A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, K. Ueda, "High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals," Opt. Commun., vol.183, pp.277-287, 2000.
    [39]V. A. Orlovich, V. N. Burakevich, A. S. Grabtchikov, V. A. Lisinetskii, A. A. Demidovich, H. J. Eichler, P. Y. Turpin, "Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd:YVO4 laser," Laser Phys. Lett., vol.3, pp.71-74,2006.
    [40]G. M. A. Gad, H. J. Eichler, "Highly efficient 1.3μm second-Stokes PbWO4 Raman laser," Opt. Lett., vol.28, pp.426-428,2003.
    [41]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient x(3)-materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [42]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253, 2004.
    [43]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser:influence of dopant concentration," Opt. Lett., vol.29, pp. 1915-1917,2004.
    [44]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol. 42, pp.927-933,2006.
    [45]F. F. Su, X.Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D., vol.39, pp.2090-2093,2006.
    [46]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett., vol. 6, pp.26-29,2009.
    [47]Y. F. Chen, "Efficient 1521 nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp.2632-2634,2004.
    [48]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B., vol.78, pp.685-687,2004.
    [49]T. T. Basiev, S. V. Vassiliev, V. A. Konjushkin, V. V. Osiko, A. I. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, "Diode pumped 500-picosecond Nd:GdVO4 Raman laser," Laser Phys. Lett., vol.1, pp. 237-240,2004.
    [50]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, X. L. Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser," J. Phys. D., vol.41, pp. 055104-055107,2008.
    [51]李请,“光纤拉曼增益系数测量,”红外,vol.28, pp.37-41,2007
    [52]金永兴,“一种新的光纤拉曼增益系数的测量方法,”光通信研究,vol.4, pp.39-41,2008
    [53]E. J. Corat, Vladimir J. T. Airoldi, S. L. Scolari, C. C. Ghizoni, "Gain measurements in stimulated rotational Raman scattering in para hydrogen," Opt. Lett., vol.11, pp.368-370,1986
    [54]M. Poelker, P. Kumar, "Sodium Raman laser direct measurements of the narrow-band Raman gain," Opt. Lett., vol.17, pp.399-401,1992
    [55]M. A. F. Scarparo, J. H. Lee, J. J. Song, "Near-zero-frequency stimulated Raman gain spectroscopy in CS2," Opt. Lett., vol.6, pp.193-195,1981
    [56]M. poelker, P. Kumar, "sodium Raman laser direct measurements of the narrow-band Raman gain," Opt. Lett., vol.17, pp.399-401,1992
    [57]A. Cereyon, B. Champagnon, V. Martinez, L. Maksimov, O. Yanush, V. N. Bogdanov, "xPbO-(1-x)GeO2 glasses as potential materials for Raman amplification," Opt. Mater., vol.28, pp.1301-1304,2006
    [58]M. D. O'Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, A. B. Seddon, "Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra," Opt. Mater., vol. 30, pp.946-951,2008
    [59]R. Jose, G. Qin, Y. Arai, Y. Ohishi, "Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers," J. Opt. Soc. Am. B., vol.25, pp.373-382,2008
    [60]V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, "Dianov Raman band intensities of tellurite glasses," Opt. Lett., vol.30, pp 1156-1158,2005
    [61]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman Scattering," Opt. Mater., vol.11, pp.307-314,1999
    [62]T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Applied optics., vol.38, pp.594-598,1999
    [63]P. Cerny, H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett., vol.27, pp. 360-362,2002
    [64]C. Rivero, R. Stegeman, M. Couzi, D. Talaga, T. Cardinal, K. Richardson, G. Stegeman, "Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses," Opt. Express., vol.13, pp.4759-4769,2005
    [65]P. Cerny, H. Jelinkova, T. T. Basiev, P. G. Zverev, "Highly Efficient Picosecond Raman Generators Based on the BaWO4 Crystal in the Near Infrared, Visible, and Ultraviolet," IEEE J. Quantum Electron., vol.38, pp. 1471-1478,2002
    [66]P. Cerny, H. Jelinkova, P. G. Zverev, T. T. Basiev, "Evaluation of BaWO4 steady-state Raman gain in single-and double-pass," Arrangement Advanced Solid-State Lasers., vol.50, pp.225-230,2001
    [67]周炳琨,“激光原理,”国防工业出版社,2009
    [68]王青圃,“激光原理,”山东大学出版社,2003
    [69]V. A. Lisinetskii, S. V. Rozhok, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, V. A. Orlovich, T. T. Basiev, P. G. Zverev, "Measurements of Raman gain coefficient for barium tungstate crystal," Laser Phys. Lett., vol.2, pp.396-400,2005
    [70]M. Katsuragawa and K. Hakuta, "Raman gain measurement in solid parahydrogen," Opt. Lett., vol.25, pp.177-179,2000
    [71]P. G. Zverev, T. T. Basiev, A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman Crystals," Opt. Mater., vol.11, pp.335-352,1999
    [72]P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves, "Stimulated Raman scattering of picosecond pulses in barium nitrate crystals," Opt. Commun., vol. 97, pp.59-64,1993
    [73]P. Cerny, H. Jelnkov, P. G. Zverev, T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quantum Electron., vol.28, pp.113-143, 2004
    [74]J. A. Piper and H. M. Pask, "Crystalline Raman Lasers," IEEE Journal of selected topics in Quantum Electron., vol.13, pp.692-704,2007
    [75]R. Stegeman, C. Rivero, G. Stegeman, P. Delfyett, "Raman gain measurements in bulk glass samples," J. Opt. Soc. Am. B., vol.22, pp.1861-1867,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700