海堤工程探地雷达检测技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达作为一种无损、高效的工程探测技术,随着近年来经济社会的迅猛发展,已经被广泛应用到岩土工程当中。抛石海堤在海岸堤坝工程中十分常见,而对存在淤泥的地质进行填筑时常使用爆破挤淤法对基底进行地基处理。由于爆破法的效果难以准确控制,使得地基可能存在未排出淤泥层,对堤坝的稳定性产生很大影响。本文针对探地雷达在确定海堤抛石底界的应用进行基础研究,具有重要的工程实际意义。
     本文首先对探地雷达的原理和主要的工程应用进行了总结,并对探地雷达技术中的探测方法和各参数进行了分析和讨论。采用TDR法对海堤工程中常见的介质进行了电性质测定,针对盐水浸没对碎石介电常数的影响,用探地雷达法测定了各浸没深度的介电常数,并总结出其变化规律和公式。制作海堤模型进行探地雷达海堤探测试验,并用FDTD法进行GPR二维正演模拟,把正演模拟结果与实测结果进行对比验证。分析着重关注了抛石底界的形态和埋深:从实测图像中识别碎石层底界位置,通过计算双程走时差,结合电磁波在该介质中的波速来得到埋深。分别用平均介电常数法和分层计算法对抛石底界进行了计算,总结和比较了两种方法的适用条件,对误差的产生原因进行了分析。
     试验结果表明:海水对介质电性质的影响很大,介电常数和电导率随含水量的增加而增加,大电导率使介质的复介电常数增大,并使电磁波衰减明显。在海水浸没的条件下,界面形态变平缓,界面反射减弱,探测误差增大。
In recent years, ground penetrating radar is commonly used in geotechnical engineering as a non-destructive detection and effective method. Riprap embankment is one of general coastal projects, and explosive compaction is used in foundation treatment of soft soils. Because of uncontrollability of explosive results, residual mud zone in embankment bottom would have negative impacts to stability of riprap embankment. Therefore, investigation of riprap bottom boundary detection with GPR in coastal riprap embankment is an important issue, which is just the object of this thesis.
     Based on the summary of related work, the parameters and detection methods are discussed. TDR is used in measurement of electrical properties of clay, seawater, gravel. GPR is chosen to measure the permittivity of gravel with saltwater immersion, and permittivity formulas are gotten in different saltwater depths. Furthermore, model experiments are conducted to investigate the influence of seawater on the signal and image of GPR, especially to figure out the image variation of riprap bottom boundary. Then, the measured results are compared with that obtained by numerical FDTD analysis for verification. The back-analysis emphasizes the shape image of riprap bottom boundary under the effects of seawater intrusion. Riprap bottom boundary is calculated respectively through average permittivity method and layered calculation. After comparing the results of both, cause of accuracy error and applicable condition are investigated.
     The experiment results indicate that seawater has great influence on dialectical properties of materials. GPR is effective to identify the riprap bottom boundary of coastal embankment without seawater. When it is submerged by seawater, the electrical properties of mediums changed significantly, moreover, measurement error is a little bit bigger and the interface image appears fuzzy.
引文
[1]A. Giannopoulos. The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of Ground Probing Radar[D].York: University of York,1997.
    [2]A. Giannopoulos, A numerical investigation into the accuracy of determining dielectric properties and thicknesses of pavement layers using reflection amplitude GPR data [RJ.Tenth International Conference on Ground Penetrating Radar,2004.
    [3]Alvin K. Benson. Applications of ground penetrating radar in assessing some geological hazards:examples of groundwater contamination, faults, cavities[J]. Journal of Applied Geophysics,1995,33(1995):177-193.
    [4]Antoine Robert. Dielectric permittivity of concrete between 50 Mhz and 1Ghz and GPR measurement for building materials evaluation[J]. Journal of Applied Geophysics, 1998,40(1998):89-94.
    [5]Carl A.Lenngren, Jorgen Bergstrom, Benny Ersson. Using ground penetrating radar for assessing highway pavement thickness[J]. Subsurface Sensing Technologies and Application(AM101).
    [6]Caner Ozdemir, Sevket Demirci, Enes Yigit. A hyperbolic summation method to focus B-scan ground penetrating radar images:An experimental study with a stepped frequency system[J].2007,49(3):671-676.
    [7]Dalton F.N. Development of time domain reflectometry for measuring soil-water content and bulk soil electrical conductivity. Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice; Soil Sci. Am, Madison, WI,1992.
    [8]Derald G. Smith, Harry M. Jol. Ground penetrating radar:antenna frequencies and maximum probable depths of penetration in Quaternary sediments[J]. Journal of Applied Geophysics,1995,33(1995):93-100.
    [9]Darold Wobschall. A theory of the complex dielectric permittivity of soil containing water: the semi-disperse model[J].IEEE Transactions on Geoscience Electronics,1977,15 (1):49-59.
    [10]E. Cardarelli, C. Marrone, L. Orlando. Evaluation of tunnel stability using integrated geophysical methods[J]. Journal of Applied Geophysics,2003,52(2003):93-102.
    [11]F.A. Monteiro Santos, Antonio Mateus, Jorge Figueiras. Mapping groundwater contamin-ation around a landfill facility using the VLE-EM method-A case study [J]. Journal of Applied Geophysics,2006,60(2006):115-125.
    [12]Fan-Nian Kong, Tore Lasse By. Performance of a GPR system which uses step frequency signals[J]. Journal of Applied Geophysics,1995,33(1995):15-26.
    [13]Francesco Soldovieri, Giancarlo Prisco, Raffaele Persico. A strategy for the determination of the dielectric permittivity of a lossy soil exploiting GPR surface measurements and a cooperative target[J] Journal of Applied Geophysics,2009,67(2009):288-295.
    [14]Gary R. Olhoeft. Maximizing the information return from ground penetrating radar[J]. Journal of Applied Geophysics.2000,43(2000):175-187.
    [15]Huang Ling, Zeng Zhaofa, Wang Munan. High resolution GPR and its experimental study[J]. Applied Geiphysics,2007,4(4):301-307.
    [16]J.Carlos Santamarina, Soil and Waves[M].West Sussex:John Wiely& Sons,2001.
    [17]Jung-Ho Kim, Myeong-Jong Yi, Application of geophysical methods to the safety analysis of an earth dam[J]. JEEG,2007,12(2):221-235.
    [18]Jeffrey J.Daniels, Roger Roberts, Mark Vendl. Ground penetrating radar for the detection of liquid contaminants[J]. Journal of Applied Geophysics,1995,33(1995):195-207.
    [19]J. L. Davis, A.P. Annan. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy [J]. Geophysical Prospecting,1988,37(5):531-551.
    [20]J.R. Butnor, M.L. Pruyn, D.C. Shaw. Detecting defects in conifers with ground penetrating radar:applications and challenges[J]. Journal Compilation,2009,39(2009):309-322.
    [21]James R.Wang, Thomas J.Schmugge. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing,1980,18(4):288-295.
    [22]J.Robert Birchak, C. Gerald Gardner. High Dielectric Constant Microwave Probes for Sensing Soil Moisture[J]. Proceedings of the IEEE,1974,62(1):93-99.
    [23]James S. Mellett. Ground penetrating radar application in engineering, environmental management, and geology[J]. Journal of Applied Geophysics,1995,33(1995):157-166.
    [24]Jones S.B., J.M. Wraith. Time domain reflectometry(TDR) measurement principles and applications[J]. Hydrol. Processes,2002,16:141-153.
    [25]Kane S.YEE, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media[J]. IEEE Transition on antennas and propagation,1966, 14(3):302-307.
    [26]Lawrence B. Conyers, Catherine M. Cameron. Ground-penetrating radar techniques and three-dimensional computer mapping in the American Southwest[J]. Journal of Field Archaeology,1998,25(4):417-430.
    [27]Milan Beres, Jr., F.P. Haeni. Application of ground-penetrating-radar methods in hydro-geologic studies[J]. Ground Water,1991,29(3):375-387.
    [28]Maksim Bano, Olivier Loeffler, Jean-Francois Girard Olivier Loeffler. Ground penetrating radar imaging and time-domain modelling of the infiltration of diesel fuel in a sandbox experiment[J]. Applied geophysics 2009,341(2009):846-858.
    [29]M. Carcione, Seriani, Davide Gei. Acoustic and electromagnetic properties of soils saturated with salt water and NAPL[J]. Journal of Applied Geophysics,2003,52(2003):177-191.
    [30]Nectaria Diamanti, Antonios Giannopoulos. Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models[J]. Journal of Applied Geophysics,2009,67 (2009):309-317.
    [31]Nigel J. Cassidy, Tim M. Millington. The application of finite-difference time-domain modeling for the assessment of GPR in magnetically lossy materials[J]. Journal of Applied Geophysics,2009,67(2009):296-308.
    [32]Ning Qiu, Yan-jun Chang, Qing-sheng Liu. An EMD-based interference eliminating technique for pipelines ground penetrating radar monitoring[J]. ASCE,2009:779-786.
    [33]Nakashima Y., Zhou H., Sato M. Estimation of groundwater level by GPR in an area with multiple ambiguous reflections[J] Journal of Applied Geophysics,2001,47(5):241-249.
    [34]Olivier Loeffler, Maksim Bano. Ground Penetrating Radar Measurements in a Controlled Vadose Zone:Influence of the Water Content[J]. Reproduced from Vadose Zone Journal,2004,3:1082-1092.
    [35]R. de Franco, G. Biella, L. Tosi. Monitoring the saltwater intrusion by time lapse electrical resistivity tomograghy:The Chioggia test site[J]. Journal of Applied Geophysics,2009, 69(2009):117-130.
    [36]Rosemary Knight, Ana Abad. Rock/water interaction in dielectric properties:experiments with hydrophobic sandstones[J]. Geophysics,1995,60(2):431-436.
    [37]Robinson, D.A., Gardner, C.M., Evans, J., Cooper, J.D. The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency reponse model. Hydrol. Earth Sys.Sci.2,83-92,1998.
    [38]Seje Carlsten, Sam Johansson, Ander Worman. Radar techniques for indicating internal erosion in embankment dams[J]. Journal of Applied Geophysics,1995,33(1995):143-156.
    [39]S.O. Nelson. Density-permittivity relationships for powdered and granular materials[J]. IEEE Transactions on Instrumentation and Measurement,2005,54(5):2033-2041.
    [40]Tiao Lu, Wei Cai, Pingwen Zhang. Discontinuous galerkin time-domain method for GPR simulation in dispersive media[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(1):72-80.
    [41]W.F. Brown. Dielectrics[J]. Encyclopedia of Physics,1956,17.
    [42]Wyseure, G.C.L., Mojid, M.A., Malik, M.A., Measurement of volumetric water content by TDR in saline soils. Eur. J. Soil Sci.48,347-354,1997.
    [43]Xingxin Xu, Jin Wu, Jinyin Shen. Case study:Application of GPR to detection of hidden dangers to underwater hydraulic strucres[J]. ASCE,2006,132(1):12-20.
    [44]陈林,宋海斌.海底天然气渗漏的地球物理特征及识别方法[J].地球物理学进展,2005,20(4):1067~1073.
    [45]崔升,沈晓冬,蔡永明.纳米氧化铟锡掺杂的有机玻璃电导率及复介电常数的研究[J].兵器材料科学与工程,2004,27(3):37-43.
    [46]程志平.电法勘探教程[M].北京:冶金工业出版社,2007.
    [47]杜军.盾构隧道壁后注浆探测图像识别及沉降控制研究[D].上海:同济大学,2006.
    [48]冯德山,戴前伟.探地雷达时域多分辨法(MRTD)三维正演模拟[J].地球物理学进展,2008,23(5):1621~1625.
    [49]冯德山,戴前伟.高速公路路面厚度探地雷达检测[J].地球物理学进展,2008,23(1):289~294.
    [50]葛双成,张莎,梁国钱.海塘工程安全检测技术及应用实例[J].水利水电科技进展,2007,27(1):64-69.
    [51]葛双成,张莎,李强.探地雷达在海塘堤脚淘空损伤检测中的应用试验及分析[J].地球物理学进展,2007,22(3):989~993.
    [52]候晓冬,郭秀军,贾永刚.基于探地雷达回拨信号获取污染土壤中污染物含量的研究进展[J].地球物理学进展,2008,23(3):962~968.
    [53]何瑞珍,胡振琪,王金.利用探地雷达检测突然质量的研究进展[J].地球物理学进展,2009,24(4):1483~1492.
    [54]罗彬红,孙学军,徐学勇.爆破挤淤法在深厚淤泥软基处理中的应用[J].土工基础,2007,21(6):11-13.
    [55]刘斌,李术才,李树忱.复信号分析技术在地质雷达预报岩溶裂隙水中的应用研究[J].岩土力学,2009,30(7):2191~2196.
    [56]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [57]李剑浩.混合物介电常数的新公式[J].地球物理学报,1989,32(6):716~720.
    [58]李术才,李树忱,张庆松.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217~226.
    [59]梁志刚.土的电磁特性及同轴电缆电磁波反射技术研究[D].杭州:浙江大学,2005.
    [60]黎霞,高燕希,宁黎磊.隧道衬砌介电常数试验与理论分析[J].中国公路学报,2008,21(5):70~74.
    [61]吕小武.探地雷达在路面基厚度检测中的应用研究[J].公路与运,2009,133:135~139.
    [62]邱东玲,杨桂朋,周辉.补偿吸收衰减的地质雷达数据叠前便宜方法[J].吉林大学学报,2007,37(1):158~164.
    [63]孙维清,胡新兆,蔡成国.隧底溶洞地球物理方法检测[J].西部探矿工程,2008,1:164~167.
    [64]吴波鸿,白雪冰,孔祥春.探地雷达在隧道衬砌质量检测中的应用[J].物探与化探,2008,32(2):229~231.
    [65]王春辉,李四新,黄玲.探地雷达方法测量近地表含水量模拟研究[J].地球物理学进展,2009,24(2):737~741.
    [66]吴丰收,曾昭发,王德库.沥青心墙压实度的探地雷达探测研究[J].地球物理学进展,2009,24(2):742~749.
    [67]王林,王勇.地质雷达在长坞岭隧道施工中的总和应用[J].公路隧道,2008,61(1):39~40.
    [68]薛建,曾昭发,王者江.隧道掘进中掌子面前方岩石结构的超前预报[J].长春科技大学学报,2000,30(1):87~91.
    [69]肖明顺.探地雷达数值模拟的吸收边界条件研究[J].工程地球物理学报,2008,5(3):315-320.
    [70]夏照华,李晓峰.地质雷达在探测地下溶洞中的应用[J].西部探矿工程,2005,104(1):91~92.
    [71]徐立勤,曹伟.电磁场与电磁波理论[M].科学出版社,北京,2005.
    [72]殷勇,朱大奎,关洪军,唐文武.应用探地雷达方法对海南岛博鳌海岸沙坝的研究[J].海洋地质与第四纪地质,2002,22(3):119-128.
    [73]中华人民共和国行业标准,JTJ/T258-98爆炸法处理水下地基和基础技术规程[S].北京:中国建筑工业出版社,1998.
    [74]张鸿飞,程效军,高攀.隧道衬砌空洞探地雷达图谱正演模拟研究[J].岩土力学, 2009,30(9):2810~2815.
    [75]周奇才,李炳杰,郑宇轩.基于GPRMax2D的探地雷达数图像正演模拟[J].工程地球物理学报,2008,5(4):396-342.
    [76]莊尚翰.应用地质雷达数值分析模拟多重性孔洞讯号之研究[硕士学位论文][D].台湾:云林科技大学,2005.
    [77]曾昭发,李四新,王者江.探地雷达方法原理及应用[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700