当归芍药散和调心方对快速老化模型小鼠海马和皮层基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以阿尔茨海默病(Alzheimer's disease,AD)为代表的神经退行性疾病已成为严重危害人类健康的四大杀手疾病之一。而海马和皮层是学习记忆的中枢。本研究采用快速老化模型小鼠海马差异表达cDNA芯片筛选了DSS和TXF对SAMP8海马和皮层基因表达的影响,结果表明,DSS和TXF对SAMP8海马和皮层基因的表达皆具有显著的影响,其影响既有相同之处,又有不同之处。其不同之处与其不同的作用靶点、作用性质和机理具有密切关系;其相同之处则提示二者之间可能存在相同的药理作用环节或靶点。这些基因包括:线粒体功能相关基因18S rRNA、S21和Rn18s;线粒体功能相关基因MTCO1、UQCRFS1和mitochondrial 12S ribosomal RNA;物质转运功能相关基因BNPI、AMF-R和Trim3:信号传导功能相关基因Rps6ka1、Tenc1、DUSP12、Rab26和Map4k6-pending;细胞周期相关基因Fhit和GANP;物质代谢功能相关基因STUB1和UBE2D2;DNA修复功能相关基因ERCC5;转录功能相关基因SSU72和细胞骨架相关基因Dync1h1;核蛋白基因PRR6;免疫功能相关基因Mink;膜蛋白基因Itm2c:神经元分化相关基因Mib等,以及大量未知功能基因和未测序克隆。通过荧光实时定量RT-PCR验证及经数据库检索和文献调研,这些基因中许多与海马和皮层某种功能密切相关,提示这些基因与DSS、TXF改善SAMP8学习记忆或认知功能具有密切关系,因此,有理由认为,在所发现的DSS、TXF反应基因中,可能存在可用于防治AD药物筛选和研究的潜在基因靶标,从而为进一步深入研究AD的发病机制和筛选AD药物的作用靶标提供了条件和手段,打下了良好的基础。
Alzheimer's disease (AD) is one of the most prevalent progressive, neurodegenerative diseases, which primarily affects the elderly population.This paper found many differential expression genes in the hippocampus and cortex of SAMP8 after administrated with DSS and TXF, These genes include: mitochondrial gene, S21 Rn18s and 18S; ribosome gene MT0C1, UQCRFS1 and mitochondrial 12S ribosomal RNA; substance metabolism gene STUB1 and UBE2D2; material transduction gene BNPI, AMF-R and Trim3; and signal transduction gene Rps6kal, Tend, DUSP12, Rab26 and Map4k6-pending; DNA replication gene Fhit and GANP; substance metabolism gene STUB1, UBE2D2; DNA repair gene ERCC5; transcription gene Ssu72; cystoskeleton gene Dynclh1; immune gene Mink; membrane protein gene Itm2c; neuron differentiation gene Mib and lots of function unknown genes and un-sequenced clones. Then, 4 of these genes were identified by QRT-PCR. These genes are closely related with some functions of hippocampus and cortex. It suggests those genes are related with the learning and memory deficient or pathology change in brain of SAMP8. They are potential gene targets of drugs to therapy AD.
引文
1. Sheng Shu-Li. Research Progress on Alzheimer's Disease: Pathogenesis and Medical Therapy. Acta Acad Med Sin, 2004; 26(2): 101-103.
    2. Hyman BT, Damasio H, Damasio AR. Alzheimer's disease. Ann Rev Public Health, 1989; 10: 115-140.
    3. Moos WH, Davis RE, Schwartz RD. Cognition activators. Med Res Rev, 1988; 8: 353-391.
    4. Gottfrise CG. Clinical and neurochemical aspects on diseases with cognitive impairment. Rev Neurosci, 1992; 3: 191-206.
    5.罗焕敏,姚志彬,陈以慈.当归芍药散改良方对老年性痴呆鼠空间学习记忆力的影响.中国老年学杂志,1995;15(5):283-285.
    6.舒斌,马世平,瞿融.当归芍药散对动物学习记忆功能及其单胺递质系统的影响.江苏中医药,2002;23(6):34-35.
    7. Mark P. Mattson, Pathways towards and away from Alzheimer's disease, NATURE, 2004, 430, 631-639.
    8.藤原道弘,当归芍药散对大鼠空间识别和被动回避反射障碍的影响.和汉医学会志,1989;6(3):234.
    9. Nomura Y, Yamanaka Y, Kitamura Y, et al. Senescence-accelerated mouse. Neurochemical studies on aging. Ann NY Acad Sci, 1996; 786: 410-418.
    10.李亚明,张春燕,王健,林水淼.调心方对中、重度老年性痴呆病智力的影响.现代健康 2000.Vol.4.No.7
    11.孙泉,金国琴,张学礼,戴薇薇,赵伟康,林水淼.调心方对氧化损伤型类AD大鼠脑组织兴奋性氨基酸毒性的影响.中国老年学杂志 2003 Vol.7,No.23
    12.洪道俊,裴爱琳,朱粹青.调心方对A β 25235杏仁核注射大鼠脑内细胞周期相关蛋白表达的影响.中国中医基础医学杂志.2003 Vol.9,No.79
    13.周晖,赵伟康.调心方对β A大鼠痴呆模型空间学习记忆障碍和胆碱能系统的影响.中药药理与临床.1998 Vol.4.No.39
    14.周文霞,张永祥.调心方对快速老化模型小鼠海马学习记忆有关基因表达的影响 中国中西医结合杂志 2002 22(8):603-606
    15.聂伟,张永祥.快速老化小鼠-研究衰老及衰老相关疾病的动物模型.中国药现学通报.2000;16(2):132-137.
    16. Takeda T. Senescence accelerated mouse(SAM): a biogerontological resource in aging research. NeurobiolAging, 1999; 20(2): 105-110.
    17. Miyamoto M. Characteristics of memory and behavioral disorders in SAMP8 mice. In: Takeda Ted. The SAM model of senescence. Amsterdam: Excerpta Medica, Elsevier Science??BV, 1994: 61-66.
    18. Miyamoto M. Characteristics of age-related behavioral changes in senescence accelerated mouse SAMP8 and SAMP10. Exp Geront, 1997; 32(1-2): 139-148.
    19. Nomura Y, Kitamura Y, Zhao XH, et al. Neurocbemical studies on aging in SAM brain. In: Takeda T ed. The SAM model of senescence. Amsterdam: Excerpta Medica, Elsevier Science BV, 1994: 83-88.
    20. Ohta H, Nishikawa H, Hirai K, et al. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse. Neuro Lett, 1996; 217: 37-40.
    21. Fodor SPA, Read JL, Pirrung MC, et al. Lightdirected, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251 (4995): 767-773.
    22. Schena M, Shalon D, Davis R, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science, 1995, 270 (5235): 467-470.
    23. Ginsberg SD, Hereby SE, Lee VM, et al. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol. 2000 Jul; 48(1): 77-87.
    24. Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res. 2002 Nov 1; 70(3): 462-73.
    25. Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles ofcholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem Res. 2002 Oct; 27(10): 1035-48.
    26. O'Dormell J, Diaz-Ruiz O, Godbout R., et al. Hippocampal gene expression profiles in young, aged memory-impaired and aged memory-unimpaired Long Evans rats. Soc Neurosci Abstr, 2002, 374.3.
    27. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996 Oct 1; 93(20): 10614-9.
    28. Xiao-Rui Cheng, Wen-Xia Zhou, Yong-Xiang Zhang, Dong-sheng Zhou, Rui-fu Yang, and Ling-Feng Chen. Differential gene expression profiles in the hippocampus of senescence-accelerated mouse, Neurobiology of aging, ⅹⅹ (2006) ⅹⅹⅹ
    29. Anne M. Glazier, Joseph H. Nadeau, Timothy J. Aitman. Finding Genes That Underlie Complex Traits. SCIENCE Vol.298, No.20 2002: 2345-2349.
    30. Jurgen Drews. Drug Discovery: A Historical Perspective. SCIENCE 2000 Vol.287 1960-1964.
    31. Victoria V. Lunyak, Robert Burgess, Gratien G. Prefontaine, et al. Corepressor-Dependent Silencing of Chromosomal Regions Encoding Neuronal Genes. SCIENCE Vol.298 2002: 1747-1752.
    32. William G. Honer, Pathology of presynaptie proteins in Alzheimer's disease: more than??simple loss of terminals, Neurobiology of Aging 24 (2003) 1047-1062.
    33. Carulli JP, Artinger M, Swain PM, et al. High throughput analysis of differential gene expression. J Cell Biochem Suppl. 1998, 30-31: 286-296.
    34. Allan BD, Fai PH. The senescence-accelerated prone mouse (SAMPS): A model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Experimental Gerontology, 2005, 40: 774-783.
    35. Morley JE, Banks WA, Kumar VB, Farr. SA. The SAMP8 mouse as a model for Alzeimer disease: studies from Saint Louis University. International Congress Series, 2004, 1260: 23-28.
    36. Randy S, Vijaya R, John EM. Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Research, 2003, 966: 150-156.
    37. Yang S, Zhang HP, Qiao HF et al. Deterioration in synaptic plasticity of cultured hippocampal neurons of senescence-accelerated mouse prone8. International Congress Series, 2004, 1260: 325-328.
    38. Morley JE, Kumar VB, Bemardo AE et al. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides, 2000, 21: 1761-1767.
    39. Banks WA, Farr SA, Butt Wet al. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J Pharmacol Exp Ther, 2001, 297: 1113-1121.
    40. Poon HF, Castegena A, Farr SA et al. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience, 2004, 126: 915-926.
    41. Poon HF, Farr. SA, Thongboonkerd V et al. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochemistry International, 2005, 46: 159-168.
    42. Y. Fujibayashi, S. Yamamoto, A. Waki, J. Konishi, Y. Yonekura, Increased mitochondrial DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain, Neurosci. Lett. 254 (1998)109-112.
    43. R. Edamatsu, A. Mori, L. Packer, The spin-trap N-tert-a-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse, Biochem. Biophys. Res. Commun. 211 (1995) 847-849.
    44. Fujibayashi Y, Yamamoto S, Waki A, Konishi J, Yonekura Y. Increased mitochondilal DNA deletion in the brain of SAMP8, a mouse model for spontaneous oxidative stress brain. Neurosci Lett 1998 Sep 25; 254(2): 109-12.
    45. Nishikawa T, Takahashi JA, Fujibayashi Y, Fujisawa H, Zhu B, Nishimura Y, Ohnishi K,??Higuchi K, Hashimoto N, Hosokawa M. An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett 1998 Sep 25; 254(2): 69-72.
    46. Minichiello, L.; Calella, A. M.; Medina, D. L.; Bonhoeffer, T.; Klein, R.; Korte, M. Mechanism of TrkB-mediated bippocampal long-term potentiation. Neuron 36: 121-137, 2002.
    47. Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem Res. 2002 Oct; 27(10): 1035-48.
    48. Ronald W. H. Verwer, Karen A. Jansen, Arja A. Sluiter, Chris W. Pool, Wouter Kamphorst, and Dick F. Swaab. Decreased Hippocampal Metabolic Activity in Alzheimer Patients Is Not Reflected in the Immunoreactivity of Cytochrome Oxidase Subunits. Experimental Neurology 163, 440-451 (2000)
    49. Masaomi Miyamoto, Emotional disorders and memory deficits in senescence-accelerated mice, SAMP8 and SAMP10, International Congress Series 1260 (2004) 99-106.
    50. Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, Yatin S, Allen K, Aksenov M, Aksenova M, Carney J. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci 1998 Nov 20; 854: 448-62.
    51. Angenstein F., Greenough W.T., Weiler I.J., Metabotropic glutamate receptor-initiated translocation of protein kinase p90rsk to polyribosomes: a possible factor regulating synaptic protein synthesis. Proc. Natl. Acad. Sci. USA 1998, 95, 15078-15083.
    52. K.E LIU, Brayn Lemon, Paula. The Dual-Specificity Phosphatase Encoded by Vaccinia Virus, VH1, Is Essential for Viral Transcription In Vivo and In Vitro. TRAKTMAN JOURNAL OF VIROLOGY, Dec. 1995, Vol.69, No. 12: 7823-7834
    53. Bharesh K. Chauhan, Nathan A. Reed, Weijia Zhang, Melinda K. Duncan, Manfred W. Kilimann Ⅱ, and Ales Cvekl. Identification of Genes Downstream of Pax6 in the Mouse Lens Using cDNA Microarrays. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2002, Vol.277, No.13: 11539-11548,
    54. G(?)ll(?) G(?)rg(?)n, Tobias A.W. Holderried, David Zahrieh, Donna Neuberg, and John G. Gribben. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Invest. 2005, Vol. 115, No.115: 1797-1805.
    55. El-Husseini A.E., Vincent S.R., Cloning and characterization of a novel RING finger protein that interacts with class Ⅴ myosins. J. Biol. Chem. 1999. 274, 19771-19777
    56. Ohkawa N., Kokura K., Matsu-Ura T., Obinata T., Konishi Y., Tamura T.A., Molecular??cloning and characterization of neural activityrelated RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J. Neurochem. 2001.78,75-87.
    57. S.L. Eastwood, P.J. Harrison. Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophrenia Research 73 (2005) 159- 172
    58. Dairin Kieran, Majid Hafezparast, Stephanie Bohnert, James R.T. Dick, Joanne Martin, Giampietro Schiavo, Elizabeth M.C. Fisher, and Linda Greensmith. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. The Journal of Cell Biology, 2005, Vol.169, No.4:561-567
    59. LaMonte B.H., K.E. Wallace, B.A. Holloway, S.S. Shelly, J. Ascano, M. Tokito, T. Van Winkle, D.S. Howland, and E.L. Holzbaur. 2002. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron. 34:715-727.
    60. Hafezparast, M., R. Klocke, C. Ruhrberg, A. Marquardt, A. Ahmad-Annuar, S. Bowen, G Lalli, A.S. Witherden, H. Hummerich, S. Nicholson, et al. 2003. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science. 300:808-812.
    61. Kazuhiko Kuwahara, Mikoto Yoshida, Eisaku Kondo, Atsuko Sakata, Yuko Watanabe, Eiji Abe, Yoshihiko Kouno, Shinjirou Tomiyasu, Satoru Fujimura, Takeshi Tokuhisa, Hiroshi Kimura, Taichi Ezaki, and Nobuo Sakaguchi. A novel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. BLOOD, 2000 Vol. 95, No. 7:2321-2328
    62. Leopoldo Sarli, Lorena Bottarelli, Cinzia Azzoni, Nicoletta Campanini, Gabriella Di Cola, Giovanni Bader, Domenico Iusco, Carlo Salvemini, Giuseppe Caruso, Enrico Donadei, Silvia Pizzi, Tiziana D' Adda, Costi Renato, Luigi Roncoroni.Abnormal Fhit protein expression and high frequency of microsatellite instability in sporadic colorectal cancer. Cesare Bordi European Journal of Cancer 2004,Vol.40:1581 - 1588
    63. Hideshi Ishii, Koshi Mimori, Andrea Vecchione, Krittaya Sutheesophon, Toshiyoshi Fujiwara, Masaki Mori, and Yusuke Furukawa. Effect of exogenous E2F-1 on the expression of common chromosome fragile site genes, FHIT and WWOX. Biochemical and Biophysical Research Communications. 2004,Vol.316:1088 - 1093
    64. R. Klein, Excitatory Eph receptors and adhesive ephrin ligands, Curr. Opin. Cell Biol. 13 (2001)196-203.
    65. Montserrat Garcia-Closas, Nuria Malats, Francisco X. Real, Robert Welch, Manolis Kogevinas, Nilanjan Chatteijee, Ruth Pfeiffer, Debra Silverman, Mustafa Dosemeci, Adonina??Tardon, Consol Serra, Alfredo Carrato, Reina Garcia-Closas, Gemma Castafio-Vinyals, Stephen Chanock, Meredith Yeager and Nathaniel Rothman. Genetic Variation in the Nucleotide Excision Repair Pathway and Bladder Cancer Risk Cancer Epidemiology Biomarkers & Prevention. 2006,Vol. 15, 536-542, March
    66. J. M. Vila, I. Moreno, M. Monzo, R. Ibeas, J. Moreno, M. Pinuaga, F. Martinez, A. Navarro, E. Pou and J. Sole Monne, XPD, XPA, ERCC1 and XPG/ERCC5 single nucleotide polymorphisms (SNPs) in oxaliplatin-treated colorectal cancer. CRC. 2004,Vol.22, No. 14,3673: 3677
    67. Shanbeh Zienolddiny, Daniele Campa, Helge Lind, David Ryberg, Vidar Skaug, Lodve Stangeland, David H. Phillips, Federico Canzian and Aage Haugen.Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006 Vol.27, No.3:560-567[1] Fodor SPA, Read JL, Pirrung MC, et al. Lightdirected, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251 (4995): 767-773.
    [2] Schena M, Shalon D, Davis R, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science, 1995, 270 (5235): 467-470.
    [3] Andreasen NC. Schizophrenia: the fundamental questions. Brain Res Brain Res Rev. 2000 Mar; 31(2-3): 106-12.
    [4] Tanzi RE, Bertram L. New frontiers in Alzheimer's disease genetics. Neuron. 2001 Oct 25; 32(2): 181-4.
    [5] Debomoy K, Lahiri, Martin R, et al. Current Drug Targets for Alzheimer's disease treatment[J]. Drug Dev Res, 2002, 56: 267-281.
    [6] Donnelly RJ, Friedhoff AJ, Beer B, et al. Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell Mol Neurobiol. 1990 Dec; 10(4): 485-95.
    [7] Marx J. NGF and Alzheimer's: hopes and fears. Science. 1990 Jan 26; 247(4941): 408-10.
    [8] Ginsberg SD, Hemby SE, Lee VM, et al. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol. 2000 Jul; 48(1): 77-87.
    [9] Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res. 2002 Nov 1; 70(3): 462-73.
    [10] Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem Res. 2002 Oct; 27(10): 1035-48.
    [11] Pasinetti GM, Ho L. From cDNA microarrays to high-throughput proteomics. Implications in the search for preventive initiatives to slow the clinical progression of Alzheimer's??disease dementia. Restor Neurol Neurosci. 2001;18(2-3):137-42.
    [12] O'Donnell J, Diaz-Ruiz O, Godbout R, et al. Hippocampal gene expression profiles in young, aged memory-impaired and aged memory-unimpaired Long Evans rats[J]. Soc Neurosci Abstr, 2002,374.3.
    [13] Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996 Oct l;93(20):10614-9.
    [14] Linazasoro, G. Neuroprotection in Parkinson's disease: love story or mission impossible? Expert Rev[J]. Neurotherapeutics. 2002, 2: 403-416.
    [15] Mandel S, Grunblatt E, Riederer P, et al. Neuroprotective strategies in Parkinson's disease : an update on progress. CNS Drugs. 2003;17(10):729-62.
    [16] Grunblatt E, Mandel S, Berkuzki T, et al. Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord. 1999 Jul;14(4):612-8.
    [17] Reznichenko L, Amit T, Youdim MB, et al. Green tea polyphenol (-)-epigalIocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem. 2005 Jun;93(5): 1157-67.
    [18] Grunblatt E, Mandel S, Maor G, et al. Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease using cDNA microarray: effect of R-apomorphine. J Neurochem. 2001 Jul;78(1):1-12.
    [19] DeRisi J, Penland L, Brown PO,et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996 Dec; 14(4) :45 7-60.
    [20] Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999 Oct 15;286(5439):531-7.
    [21] Stam RW, den Boer ML, Meijerink JP, et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood. 2003 Feb 15;101(4): 1270-6. Epub 2002 Oct 24. [22] Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002 Feb;l(1):75-87.
    [23] Lin YM, Furukawa Y, Tsunoda T, et al. Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene. 2002 Jun 13;21(26):4120-8.
    [24] Clarke PA, George ML, Easdale S, et al. Molecular pharmacology of cancer therapy in human colorectal cancer by gene expression profiling. Cancer Res. 2003 Oct 15;63(20):6855-63.
    [25] Baird R, Workman P. Emerging molecular therapies drugs interfering with signal transduction pathways. In Bronchud M, Foote MA, Giaccone G, Olopade O, Workman P,eds. Principles of molecular oncology[J]. Totowa, NJ, USA, Humana Press Inc., 2003. pp. 569 - 606.
    [26] Ljubimova JY, Lakhter AJ, Loksh A, et al. Overexprsssion of alpha4 chain-containinglaminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001 Jul 15;61(14):5601-10.
    [27] Freimann S, Ben-Ami I, Hirsh L, et al. Drug development for ovarian hyper-stimulation and anti-cancer treatment: blocking of gonadotropin signaling for epiregulin and amphiregulin ??biosynthesis. Biochem Pharmacol. 2004 Sep 15;68(6):989-96.
    [28] Kashchak N, Tsaryk R, Stoika R. Bystander effect of normal fibroblasts for macrophages co-cultured with susceptible transformed target cells. Cell Biol Int. 2005 Jan;29(1):41-50.
    [29] Wulfkuhle J, Espina V, Liotta L, et al. Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer. 2004 Nov;40(17):2623-32.
    [30] Taxman DJ, MacKeigan JP, Clements C, et al. Transcriptional profiling of targets for combination therapy of lung carcinoma with paclitaxel and mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Cancer Res. 2003 Aug 15;63(16):5095-104.
    [31] Maxwell PJ, Longley DB, Latif T,et al. Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res. 2003 Aug 1;63(15):4602-6.
    [32] Friedman D, Hu Z, Kolb EA, et al. Ecteinascidin-743 inhibits activated but not constitutive transcription. Cancer Res. 2002 Jun 15;62(12):3377-81.
    [33] Bottone FG Jr, Martinez JM, Collins JB, et al. Gene modulation by the cyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells: possible link to apoptosis. J Biol Chem. 2003 Jul 11;278(28):25790-801. Epub 2003 May 6.
    [34] Clarke PA, George ML, Easdale S, et al. Molecular pharmacology of cancer therapy in human colorectal cancer by gene expression profiling. Cancer Res. 2003 Oct 15;63(20):6855-63.
    [35] Brown VM, Ossadtchi A, Khan AH, et al. Multiplex three-dimensional brain gene expression mapping in a mouse model of Parkinson's disease. Genome Res. 2002 Jun;12(6):868-884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700