意大利蜜蜂(Apis mellifera L.)工蜂咽下腺发育蛋白质组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咽下腺是一对位于工蜂头部的外分泌腺,是合成、分泌蜂王浆的主要腺体。咽下腺分泌的蜂王浆不仅是蜂王、幼虫的主要食物,对蜜蜂的营养和级型分化有至关重要的作用,而且也是一种天然的营养食品和保健品。
     为了提高王浆的产量,我国从原种意大利蜜蜂(原意)(Apis mellfera L.)中成功选育出了王浆高产蜜蜂(浆蜂)(Apis mellfera L.)。作为目前世界上王浆产量最高的蜂种,浆蜂王浆高产的分子机理尚不清楚。浆蜂是从原意选育而来的,两者可以利用蛋白质组进行比较分析。
     本试验采用形态研究和蛋白质组相结合的研究方法,分析了原意和浆蜂工蜂咽下腺的发育过程,建立了工蜂咽下腺发育的蛋白质组图谱。利用MALDI-TOF/MS和MALDI-TOF-TOF/MS对蛋白进行鉴定,表达量分析及生化通路分析,了解咽下腺发育过程中蛋白表达调控的特点。并利用比较蛋白质组的方法分析原意和浆蜂咽下腺发育过程中蛋白质组的差异,探讨浆蜂王浆高产的机理。
     扫描电镜分析结果显示,各日龄浆蜂咽下腺小囊直径均大于原意。6-12日龄的工蜂咽下腺小囊直径最大。
     从1、3、6、12、15和20日龄原意工蜂咽下腺发育图谱上分别检测到175、189、209、190、168和151个蛋白质点。蛋白鉴定和差异蛋白表达量聚类分析结果显示:
     34个蛋白在咽下腺发育前期(1-3日龄)高表达。其中代谢相关类9个,蛋白质生物合成相关类10个,蛋白质折叠相关的6个,发育调节类3个,抗氧化类3个,转运相关1个,细胞骨架类2个。1日龄咽下腺中鉴定出了王浆主蛋白。
     31个蛋白在咽下腺发育中期(6-12日龄)中期高表达。参与蛋白质折叠的有4个,代谢相关的有3个,参与发育调节有2,蛋白质合成相关的1个,抗氧化相关蛋白质2个,骨架蛋白1个,王浆主蛋白18个。
     13个蛋白质在咽下腺发育后期(15-20日龄)高表达,除王浆主蛋白外,主要是葡萄糖氧化酶、α-葡萄糖苷酶和α-淀粉酶。
     浆蜂和原意咽下腺发育比较蛋白质组分析结果显示,参与物质和能量代谢的相关蛋白,参与蛋白质合成、转运、抗氧化的蛋白质,以及用于维持细胞形态和结构的骨架蛋白等蛋白在浆蜂中上调表达的数目均多于原意。王浆主蛋白在浆蜂中上调表达的蛋白数和蛋白丰度都高于原意。Western blot分析结果显示,浆蜂和原意1日龄工蜂的咽下腺中存在王浆蛋白,而且王浆蛋白的量随咽下腺的发育逐渐增多,6-12日龄左右达到顶峰,而后逐渐减少,与图谱分析结果一致。实时荧光定量PCR分析结果显示,王浆主蛋白1、2和3的mRNA在1日龄工蜂的咽下腺中就开始表达。基因表达趋势和蛋白表达趋势有差异。
     研究结果表明,浆蜂工蜂咽下腺细胞分化比原意快,发育比原意迅速,咽下腺小囊变大,咽下腺体积同时也变大。
     意蜂咽下腺分泌王浆的高峰在6-12日龄,1日龄的工蜂咽下腺就可分泌王浆,3日龄咽下腺已具备较强的分泌能力,为保证王浆的分泌活动,咽下腺前期和中期参与碳水化合物代谢和能量生成、蛋白折叠、发育调节、蛋白质合成、抗氧化、细胞骨架和转运等蛋白质高于发育后期,来完成此时的高分泌活动,咽下腺发育后期表达的蛋白主要与蜂蜜转化有关。这首次在蛋白质组水平上阐明了咽下腺的发育机理。
     与原意相比,浆蜂咽下腺不仅产浆量提高,而且王浆主蛋白的丰度也相应提高,这种进化策略是为了给蜜蜂幼虫提供平衡的营养保证幼虫的正常发育。为了实现王浆的高产,咽下腺不仅形态增加,而且细胞内代谢能需求增加,大量能量代谢蛋白质高表达,细胞骨架蛋白质高表达以保证腺体细胞的形态,蛋白质生物合成和折叠蛋白质的高表达既满足腺体发育的需要又满足大量王浆主蛋白的合成和分泌,由于王浆分泌量的增加,通过抗氧化蛋白的高表达来消除代谢产生的活性氧等有害物质的危害,保证腺细胞正常行使生理功能。这是首次从分子水平解释了王浆高产的分子机理。
     对原意咽下腺的功能蛋白质进行蛋白质互做网络分析发现了35个蛋白质在网络中起关键作用,这些关键的节点蛋白,为今后的基因操作如基因敲除、RNA干扰等方法进行分子改良提供靶向蛋白。
The hypopharyngeal gland , sited in the head of the honeybee workers, is a paired of long tuberous organ connected to many acini, can secrete a proteinaceous substance named royal jelly which is fed to larvae, queens and drones and plays a key role in honeybee nutrition and caste differentiation. Royal jelly is becoming more and more popular for its nutritional, health, and pharmacological functions.
     High royal jelly producing bees (RJb) (Apis mellifera L.) which is selected from native Italian bees (ITb) (Apis mellifera L.) for increased royal jelly production in 1980’s, has become the best royal jelly producer in the world. But the mechanism for its high royal jelly production still keeps unclear. To better understanding the characteristic during the development of hypophargngeal gland, the hypopharyngeal gland was studied by the proteomic approach.
     The 1, 3, 6, 12, 15 and 20-days-old honeybee workers were selected in this study according to their age-related function polymorphism. The results of scanning electron microscopy showed that the acini diameters of hypopharyngeal gland of RJb were larger than that of ITb on each development stage, respectively. And the acini diameter both reached the highest level during 6-12 days.
     With the combination of two-dimensional gel electrophoresis, mass spectrometry, and protein engine identification tools that were applied to protein search engines and biological network software, a total of 175, 189, 209, 190, 168 and 151 protein spots were detected in the protein profiles on each development stage of ITb. Proteins were identified by MALDI-TOF/MS and MALDI-TOF-TOF/MS and the differentially expressed proteins were classified based on their biological functions and analyzed with hierarchical cluster software.
     The results showed that, among the 78 differentially expressed proteins, 34 proteins were up-regulated in the early development stage (1-3 days after eclosion), 9 proteins were involved in metabolism of carbohydrate and energy, 10 proteins were related to protein biosynthesis and 6, 3, 3, 1 and 2 proteins were assigned to protein folding, development regulation, antioxidant, transporter, and cytoskeleton, respectively. It was very interesting to identified major royal jelly proteins on 1-day-old hypopharyngeal gland.
     Thirty-one proteins were up-regulated on the medial stage (6-12 days), including 3 proteins involved in metabolism of carbohydrate and energy, 4 proteins related to protein folding, 1 protein for protein biosynthesis, 2 proteins for development regulation, 2 proteins for antioxidant, 1 protein acted as cytoskeleton, and 18 major royal jelly proteins.
     Thirteen proteins were up-regulated in the late stage (15-20 days), including 7 major royal jelly proteins and glucose oxidase,α-glycosidase andα-amylse. The comparative proteomic analysis between RJb and ITb showed that the amounts of proteins showed up-regulated trends in the hypopharyngeal of RJb on each development stage were much higher than that of the ITb, including proteins related to metabolism of carbohydrate and energy, protein biosynthesis, transporter, antioxidant, cytoskeleton, respectively.
     Real-time PCR analysis showed that the mRNA coded for major royal jelly protein 1, 2, 3 were expressed since the eclosion of honeybee workers. The expression trends between protein level and gene level were difference.
     The results indicate that the acini differentiation of RJb is faster than that of ITb, the volume and acini diameter are becoming big during the development of the hypopharyngeal gland.
     The protein abundance analysis certified that the workers can secrete royal jelly since eclosion, the hypopharyngeal glands are becoming more active and reach to the peak level on 6-12 days during the development. In order to ensure the high amounts of secretion, proteins related to metabolism of carbohydrate and energy, protein biosynthesis, development regulation, antioxidant, cytoskeleton and transporter were expressed more in early and medial development period than that of late stage. The proteins up-regulated on the late development stage were enzymes involved in the convertion of honey. This gives an explanation for the development of hypopharyngeal gland in protein level for the first time.
     The comparative proteomic analysis between RJb and ITb indicated that the protein abundance of major royal jelly proteins were higher than that of ITb. So the higher royal jelly production and higher protein abundance of major royal jelly proteins might be an evolution strategy to provide the balance nutrition for the development of larvae. For the purpose of high royal jelly production, proteins involving in energy metabolism and cytoskeleton proteins are in higher expression level for the cell differentiation and growth of hypopharyngeal gland, and proteins related to protein biosynthesis and protein folding are expressed more to ensure the synthesis and secretion of large amounts of major royal jelly proteins and the development of hypopharyngeal gland itself at the same time. Proteins with antioxidant functions are expressed in higher level to protect the gland from the oxidative damage occurred during the metabolism of the gland. For the first time we supply an explanation for the mechanism of high royal jelly production for high royal jelly producing bees from molecular level.
     Biological network analysis of all the identified proteins and differentially regulated proteins showed that 35 proteins were the key node proteins, these key node proteins probably play an important role in the development of hypopharyngeal gland and provide us some target proteins for further genetically manipulation of the hypopharyngeal gland.
引文
1.陈健,李建科.王浆高产蜜蜂(A. m. ligustica)与喀尼鄂拉蜂(A. m. carnica)幼虫期蛋白质组比较[J].中国农业科学, 2008, 41(10): 3292~3299.
    2.陈盛禄,林雪珍,胡福良.浙农大A系意蜂王浆高产试验[J].中国农业科学, 1995, 28 (5) : 89~93.
    3.陈盛禄.中国蜜蜂学.北京:中国农业出版社, 2001: 136~138.
    4.陈世壁,韩胜明,刘福海,刘甫秀.“浆蜂”生产性能考察试验总结[J].中国养蜂, 1992, 1:2~4.
    5.方文富,胡彦鹏.萧山浆蜂与本地意蜂产浆性能的对比研究[J].中国养蜂, 2002, 53(4): 7~8.,
    6.房宇,李建科.王浆高产蜜蜂和原种意大利蜜蜂雄蜂卵期发育蛋白质组分析[J].中国农业科学, 2009, 42(7): 2552~2563.
    7.房宇,李建科.意大利蜜蜂(A. m. ligustica)雄蜂卵期发育蛋白质组分析[J].中国农业科学, 2008, 41(11): 3793~3800.
    8.冯毛,李建科.王浆高产蜜蜂和原种意大利蜜蜂咽下腺发育蛋白质组分析[J].中国农业科学, 2009, 42 (2): 677~687.
    9.高慧娟,余春涛.蜂花粉的化学组成及贮存过程中的变化[J].分析与检测, 2006, 32(12):131~133.
    10.韩胜明,陈世壁,刘福海,刘甫秀.意大利蜜蜂营养腺的形态结构研究[J].昆虫知识, 1996, 33(6): 348~349, 356
    11.胡若洋,冯毛,李建科.不同贮存温度下茶花蜂花粉蛋白质组的初步研究[J].食品科学, 2008, 29: 438~443.
    12.黄文诚,谢代葵,沈基楷,陈世壁.平湖意蜂王浆高产蜂群生产王浆性能的研究[J].中国养蜂, 1989, 1: 3~5.
    13.金水华,潘永根,李新鑫,黄元良,刘建华,姜全清等.平湖意蜂王浆高产性能现状调查.中国蜂业, 2008, 59(3): 21.
    14.李建科,陈盛禄,钟伯雄,苏松坤.西方蜜蜂产浆量的动态遗传研究[J].遗传学报, 2003, 30(6): 547-554.
    15.李建科,李华玮,张兰.王浆高产蜜蜂(Apis mellifera L.)工蜂幼虫发育期蛋白质组分析[J].中国农业科学, 2008, 41(3): 880~889.
    16.林雪珍,陈盛禄,胡福良.咽下腺小囊数及其在意蜂品种鉴别中的应用[J].浙江农业大学学报, 1993, 20 (4) : 379~382.
    17.邵瑞宜,陈巧,鲍秀良,吴琼,陈强.意蜂头部重量与咽下腺重量的相关性[J].福建农学院学报, 1992, 21(1): 101~103.
    18.沈基楷,肖体元.浙农大A系意蜂生产性能考察实验报告[J].中国养蜂, 1993, 1: 4~6.
    19.苏松坤,陈盛禄.意蜂王浆生产性能形态学遗传标记的研究[J].遗传, 2003, 25(6): 677~680.
    20.汪礼国,曾志将,徐崇钧,祝国富.螺旋藻营养添加剂对工蜂王浆腺发育及王浆产量影响的研究[J].蜜蜂杂志, 2001, 11: 6~7. 71
    21.王镜岩,朱圣庚,徐长发.生物化学(第三版).北京:高等教育出版社, 2002, 519~532.
    22.王尉平,蒋滢,张雅娟,汪成富,黄超群.高产王浆西蜂DNA分子中的相关基因标志筛选及其鉴定[J].中国生物化学与分子生物学报, 2002, 18 (2) :161~164.
    23.吴静,李建科.蜜蜂(Apis mellifera L.)幼虫级型分化差异蛋白质组分析[J].中国农业科学, 2010, 43(1): 176~184.
    24.曾志将,席方贵,陆引发,王进,周良观.平湖意蜂与普通意蜂王浆腺的比较[J].中国养蜂, 1993, 6: 13~15.
    25.翟凤国,周福波,付惠.蜂花粉抗疲劳作用的实验研究[J].牡丹江医学院院报, 2004, 23(5): 810.
    26.张兰,李建科,吴黎明.王浆高产蜜蜂(Apis mellifera L.)卵期发育蛋白质组分析[J].中国农业科学, 2007, 40(6): 1276~1287.
    27.郑爱娟,房宇,冯毛,吴静,宋飞飞,李建科.原种意大利蜜蜂(Apis mellifera L.)与其王浆高产品系工蜂蛹期头部发育差异蛋白质组分析[J].中国农业科学, 2010, 43(8): 1703~1715.
    28. Almeida-Muradian L B, Pamplona L C, Coimbra S, Barth O M. Chemical composition and botanical evaluation of died bee pollen pellets. Journal of Food Composition and Analysis, 2005, 18: 105~111.
    29. Alonso J, Santarén J F. Characterization of the Drosophila melanogaster ribosomal proteome. Journal of Proteome Research, 2006, 5: 2025~2032.
    30. Baer B, Eubel H, Taylor N L, O`Toole N, Miller H. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biology, 2009, 10(6): R67 (doi:10.1186/gb-2009-10-6-r67).
    31. Bilikova K, Mirgorodskaya E, Bukovska G, Gobom J, Lehrach H, Simúth J. Towards functional proteomics of minority component of honeybee royal jelly: The effect of post-translational modifications on the antimicrobial activity of apalbumin2. Proteomics, 2009, 9: 2131~2138.
    32. Binder R J. Heat shock protein vaccines: from bench to bedside. International Reviews of Immunology, 2006, 25: 353~375.
    33. Bogaerts A, Baggerman G, Vierstraete E, Schoofs L, Verleyen P. The henolymph proteome of the honeybee: gel-based or gel-free? Proteomics, 209, 9: 3201~3208.
    34. Bonilla E, Medina-Leendertz S, Diaz S. Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Experimental Gerontology, 2002, 37: 629~638.
    35. Chan Q W T, Foster L J. Changes in protein expression during honey bee larval development. Genome Biology, 2008, 9: R156 (doi:10.1186/gb-2008-9-10-r156).
    36. Chan Q W, Howes C G, Foster L J. Quantitative comparison of caste differences in honeybee hemolymph. Molecular & Cellular Proteomics, 2006, 5: 2252~2262.
    37. Chen S L, Li J K, Zhong B X, Su S K. Microsatellite analysis of royal jelly producing traits of Italian Honeybee (Apis mellifera L.). Acta Genetica Sinica, 2005, 32(10): 1037~1044.
    38. Choi K W, Hsu Y C. To Cease or To Proliferate: New insights into TCTP function from aDrosophila Study. Cell Adhesion & Migration, 2007, 1(3): 129~130.
    39. Cockcroft S. Phosphatidylinositol transfer proteins couple lipid transport to phosphoinositide synthesis. Cell & Developmental Biology, 2001, 12(2): 183~191.
    40. Collins A M, Williams V, Evans J D. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Molecular Biology, 2004, 13: 141~146.
    41. Cook L A, Schey K L, Cleator J H, Wilcox M D, Dingus J, Hildebrandt J D. Identification of a region in G protein gamma subunits conserved across species but hypervariable among subunit isoforms. Protein Science, 2001, 10: 2548~2555.
    42. Cooper J A, Sept D. New insights into mechanism and regulation of actin capping protein. International review of cell and molecular biology, 2008, 267: 183~206.
    43. Corona M, Robinson G E. Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Molecular Biology, 2006, 15: 687~701.
    44. Dasso M. Running on Ran: nuclear transport and the mitotic spindle. Cell, 2001, 104: 321~324.
    45. Delalle I, Pfleger C M, Buff E, Lueras P, Hariharan I K. Mutations in the Drosophila orthologs of the F-actin capping proteinα- andβ-subunits cause actin accumulation and subsequent retinal degeneration. Genetics, 2005, 171:1757~1765.
    46. den Boer S P A, Boomsma J J, Baer B. Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. Journal of Insect Physiology, 2009, 55: 538~543.
    47. Deseyn J, Billen J. Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie, 2005, 36(1): 49~57.
    48. Duttaroy A, Bourbeau D, Wang X L, Wang E. Apoptosis rate can be accelerated or decelerated by overexpression or reduction of the level of elongation factor-1α. Experimental Cell Research, 1998, 238: 168~176.
    49. Fang Y, Feng M, Li J K. Royal Jelly Proteome Comparison between A. mellifera ligustica and A. cerana cerana. Journal of proteome research, 2010, 9(5): 2207~2215.
    50. Feng M, Fang Y, Li J K. Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. BMC Genomics, 2009, 10: 645. doi: 10. 1186/1471-2164-10-645.
    51. Ferdinandusse S, Kostopoulos P, Denis S, Rusch H, Overmars H, Dillmann U, et al. Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. The American Journal of Human Genetics, 2006, 78(6): 1046~1052.
    52. Flores-Rozas H, Kelman Z, Dean F B, Pan Z Q, Harper J W, Elledge S J, et al. Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase delta holoenzyme. Proceedings of the National Academy of Sciences USA, 1994, 91: 8655~8659.
    53. Frolov M V, Bircher J A. Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila. Genetics, 1998, 150: 1487~1495.
    54. Garcia L, Saraiva Garcia C H, HCalábria L K, Costa Nunes da Cruz G, Sánchez Puentes A, Báo SN, et al. Proteomic analysis of honey bee brain upon ontogenetic and behavioral development. Journal of Proteome Research, 2009, 8(3): 1464~1473.
    55. Gatt M K, Glover D M. The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis. Journal of Cell Science, 2006, 119(11): 2225~2235.
    56. Graham J M. The Hive and the Honey Bee. Illinois: Dadant & Sons, INC, 1992: 73~101.
    57. Gregorc A, Bowen I D. Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biology International, 1998, 22:137~144.
    58. Gregorc A, Bowen I D. In situ localization of heat-shock and histone proteins in honey-bee (Apis mellifera L.) larvae infected with Paenibacillus larvae. Cell Biology International, 1999, 23: 211~218.
    59. Grewal S S, Li L, Orian A, Eisenman R N, Edgar B A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biology, 2005, 7: 295~302.
    60. Gu L, Hong Y, McCulloch S, Watanabe H, Li G M. ATP-dependent interaction of human mismatch repair proteins and a dual role of PCNA in mismatch repair. Nucleic Acids Research, 1998, 26: 1173~1178.
    61. Hall P A, Kearsey J M, Coates P J, Norman D G, Warbrick E, Cox L S. Characterisation of the interaction between PCNA and Gadd45. Oncogene, 1995, 10: 2427~2433.
    62. Henderson D S, Banga S S, Grigliatti T A, Boyd J B. Mutagen sensitivity and suppression of position effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. The EMBO Journal, 1994, 13: 1450~1459.
    63. Henderson D S, Wiegand U K, Norman D G, Glover D M. Mutual Correction of Faulty PCNA Subunits in Temperature-Sensitive Lethal mus209 Mutants of Drosophila melanogaster. Genetics, 2000, 154: 1721~1733.
    64. Hindges R, Hubscher U. DNA polymerase delta, an essential enzyme for DNA transactions. Biological Chemistry, 1997, 378(5): 345~362.
    65. Hirsch C, Gauss R, Sommer T. Coping with stress: cellular relaxation techniques. Trends in Cell Biology, 2006, 16: 657~663.
    66. Holmes A M, Haber J E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell, 1999, 96: 415~424.
    67. Holmgren A. Thioredoxin and glutaredoxin systems. Journal of Biological Chemistry, 1989, 264: 13963~13966.
    68. Howe S R, Dimick P S, Benton A W. Composition of freshly harvested and commercial royal jelly. Journal of Apiculature Reaearch, 1985, 24: 52~61.
    69. Hsu Y C, Chern J J, Cai Y, Liu M, Choi K W. Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature, 2007, 445(7129): 785~788.
    70. Hsuan J, Cockcroft S. The PITP family of phosphatidylinositol transfer proteins. Genome Biology, 2001, 2 (9): 3011.1~3011.8
    71. Hughes M, Zhang C M, Avis J M, Hutchison C J, Clarke P R. The role of the Ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. Journal of Cell Science, 1998, 111: 3017~3026.
    72. Hummon A B, Richmond T A, Verleyen P, Baggerman G, Huybrechts J, Ewing M A, et al. From the genome to the proteome: uncovering peptides in the Apis Brain. Science, 2006, 27(314): 647~649.
    73. Jacinto A, Wood, W, Woolner S, Hiley C, Turner L, Wilson C, Martinez-Arias A, Martin P. Dynamic analysis of actin cable function during Drosophila dorsal closure. Current Biology, 2002, 12: 1245~1250
    74. Justice M C, Ku T, Hsu M J, Carniol K, Schmatz D, Nielsen J. Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor inhibitor sordarin. Journal of Biological Chemistry, 1999, 274: 4869~4875.
    75. Kadrmas J L, Smith M A, Pronovost S M, Beckerle M C. Characterization of RACK1 function in Drosophila development. Developmental Dynamics, 2007, 36: 2207~2215.
    76. Kaneko Y, Takaki K, Iwami M, Sakrai S. Developmental profile of Annexin IX and its possible role in programmed cell death of the Bombyx mori anterior silk gland. Zoological Science, 2006, 23: 533~542.
    77. Kim H D, Lee J Y, Kim J. Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochemical and Biophysical Research Communication, 2005, 333:110~115.
    78. Kirschner M, Schulze E. Morphogenesis and the control of microtubule dynamics in cells. Journal of Cell Science– Supplement, 1986, 5: 293~310.
    79. Kucharski R, Maleszka R. Evaluation of differential gene expression during behavioral development in the honeybee using microarrays and northern blots. Genome Biology, 2002, 3: 71~79.
    80. kuersten S, Ohno M, Mattaj I W. Nucleocytoplasmic transport: Ran, beta and beyond. Trends in Cell Biology, 2001, 11: 497~503.
    81. Kunieda T, Fujiyuki T, Kucharski R, Foret S, Ament S A, Toth A L, et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology, 2006, 15: 563~576.
    82. Li J K, Chen J, Zhang Z H, Pan Y H. Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. Journal of Agricultural and Food Chemistry, 2008a, 56, 7535~7544
    83. Li J K, Feng M, Zhang L, Zhang Z H, Pan Y H. Proteomics analysis of major royal jelly protein changes under different storage conditions. Journal of proteome research, 2008b, 7 (8): 3339-3353.
    84. Li J K, Feng M, Zhang Z H, Pan Y H. Identification of the proteome complement of hypopharyngeal glands from two strains of honeybees (Apis mellifera). Apidologie, 2007c, 38: 1~16.
    85. Li J K, Li X M, Wang A P. Historical Development of Chinese Apiculture (part 1). American Bee Journal, 2004, 144(2): 129~133.
    86. Li J K, Wang A P. Comprehensive technology for maximizing royal jelly production. American Bee Journal, 2005, 145(8): 661~664.
    87. Li J K, Wang T, Peng W J. Comparative anlysis of the effects of different storage conditions on major royal jelly proteins. Journal of Apicutural Research, 2007a, 46(2): 73~81.
    88. Li J K, Wang T, Zhang Z H, Pan Y H. Proteomic analysis of royal jelly from three strains of western honeybees(Apis mellifera). Journal of Agricultural and Food Chemistry, 2007b, 55: 8411~8422.
    89. Li J K, Zhang L, Feng M, Zhang Z H, Pan Y H. Identification of the proteome composition occurring during the course of embryonic development of bees (Apis mellifera). Insect Molecular Biology, 2009, 18(1): 1~9.
    90. Liscovitch M, Cantley L C. Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Cell, 1995, 81: 659~662.
    91. Ma H B, Cherng S, Yang Y. Expression of heat shock proteins 25, 60, 70 and 90 in rat myocardium following transmyocardial laser revascularization. Researcher 2009, 1: 86~89.
    92. Macara I G. Transport into and out of the nucleus. Microbiology and Molecular Biology Reviews, 2001, 65: 5705~5794.
    93. Marygold S J, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn G H, et al. The ribosomal protein genes and Minute loci of Drosophila Melanogaster. Genome Biology, 2007, 8 (10): R216
    94. Matsumoto Y, Kim K, Bogenhagen D F. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Molecular and Cell Biology, 1994, 14(9): 6187~6197.
    95. McCrady E, Tolin D J. Effects of Ddc cluster lethal alleles on ovary growth, attachment, and egg production in Drosophila. Journal of Experimental Zoology, 1994, 268: 469~476.
    96. Morales C, Wu S, Yang Y, Hao B, Li Z h. Drosophila Glycoprotein 93 is an ortholog of mammalian heat shock protein gp96 (grp94, HSP90b1, HSPC4) and retains disulfide bond-independent chaperone function for tLRs and integrins. The Journal of Immunology, 2009, doi:10.4049.
    97. Moon A, Drubin D G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Molecular Biology of the Cell, 1995, 6:1423~1431.
    98. Mozzherin D J, McConnell M, Fisher P A. Drosophila Replication and Repair Proteins: Proliferating Cell Nuclear Antigen (PCNA). Methods, 1999, 18(3): 401~406.
    99. Nagai T, Inoueb R, Inoueb H, Suzukia H. Scavenging capacities of pollen extracts from cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals and DPPH radicals. Nutririon Research, 2002, 22: 519~526.
    100. Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: translationalmodulation or recruitment for extraribosomal activity? Immunology and Cell Biology, 1999, 77: 197~205.
    101. Nichols A F, Sancar A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acid Research, 1992, 20(13): 2441~2446.
    102. Niki I, Yokokura H, Sudo T, Kato M, Hidaka H. Ca2+? signaling and intracellular Ca2+? binding proteins. Journal of Biochemistry, 1996, 120: 685~698.
    103. Oron E, Mannervl M, Rencus S, Harari-Steinberg O, Neuman-Silberberg S, Segal D, et al. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development, 2002, 129: 4399~4409.
    104. Painter T S, Biesele J J. The fine structure of the hypopharyngeal gland cell of the honey bee during development and secretion. Proceedings of the National Academy of Sciences USA, 1966, (55): 1414~1419.
    105. Peiren N, de Graaf D C, Vanrobaeys F, Danneels E L, Devreese B, Van Beeumen J, et al. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon, 2008, 52: 72~83.
    106. Peiren N, de Graaf D C, Vanrobaeys F, Danneels E L, Devreese B, Van Beeumen J, et al. Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon, 2008, 52: 72~83.
    107. Peiren N, Vanrobaeys F, de Graaf D C, Devreese B, VanBeeumen J, Jacobs F J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochimica et Biophysica Acta, 2005, 1752: 1~5.
    108. Prokopenko S N, He Y, Lu Y, Bellen H J. Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. Genetics, 2000, 156: 1691~1715.
    109. Rush M G, Drivas G, D’Eustachio P. The small nuclear GTPase Ran: how much does it run?. BioEssays, 1996, 18: 103~112.
    110. Sanchez-Madrid F, Vidales F J, Ballesta J P. Effect of phosphorylation on the affinity of acidic proteins from Saccharomyces cerevisiae for the ribosome. European Journal of Biochemistry, 1981, 114: 609~613.
    111. Sano O, Kunikata T, Kohno K, Iwaki K, Ikeda M, Kurimoto M. Characterizaton of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis. Journal of Agricultural and Food Chemistry, 2005, 52: 15~20.
    112. Santon J B, Pellegrini M. Expression of ribosomal proteins during Drosophila early development. Proceedings of National Academy of Sciences USA, 1980, 77, 5649~5653.
    113. Santos K S, Santos L D, Mendes M A, Souza B M, Malaspina O, Palma M S. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect Biochemistry and Molecular Biology, 2005, 35: 85~91.
    114. Scarselli R, Donadio E, Giuffrida M G, Fortunato D, Conti A, Balestreri E, et al. Towards royaljelly proteome. Proteomics, 2005, 5: 769~776.
    115. Scharlaken B, De Graaf D C, Memmi S, Devreese B, Van Beeumen J, Jacobs F J. Differential protein expression in the honey bee head after a bacterial challenge. Archives of Insect Biochemistry and Physiology, 2007, 65(4): 223~237.
    116. Schippers M P, Dukas R, Smith R W, Wang J, Smolen K, McClelland G B. Lifetime performance in foraging honeybees: behaviour and physiology. The Journal of Experimental Biology, 2006, 209: 3828~3836.
    117. Sch?nleben S, Sickmann A, Mueller M J, Reinders J. Proteome analysis of Apis mellifera royal jelly. Analytical and Bioanalytical Chemistry, 2007, 389:1087~1093.
    118. Severson D W, Erickson E H Jr, Williamson J L, Aiken J M. Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia, 1990, 46: 737~739.
    119. Shikama N, Ackermann R, Brack C. Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA, 1994, 91: 4199~4203.
    120. Shivji K K, Kenny M K, Wood R D. Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 1992, 69: 367~374.
    121. Silva De Moraes R L M, Bowen I D. Modes of cell death in the hypopharyngeal gland of the honey bee (Apis mellifera L.). Cell Biology International, 2000, 24(10): 737~743.
    122. Silva-Zacarin E C M, Gregorc A, Silva de Moraes R L M. In situ localization of heat-shock proteins and cell death labeling in the salivary gland of acaricide treated honeybee larvae. Apidologie, 2006, 37: 507~516.
    123. Sohal R S. Oxidative stress hypothesis of aging. Free Radical Biology and Medicine, 2002, 33: 37~44.
    124. Starkey C, Levy L. Identification of differentially expressed genes in T-lymphoid malignancies in an animal model system. International Journal of Cancer, 1995, 62: 325~31.
    125. Stewart M J, Denell R. Mutations in the Drosophila gene encoding ribosomal protein S6 cause tissue overgrowth. Molecular and Cell Biology, 1993, 13: 2524~2535.
    126. Su T T, Parry D H, Donahoe B, Chien C T, O'Farrell P H, Purdy A. Cell cycle roles for two 14-3-3 proteins during Drosophila development. Journal of Cell Science, 2001, 114(19): 3445~3454.
    127. Takeshi F, Katsuhiko I, Katsumab S, Nakanoa R, Shimadab T, Ishikawaa Y. Molecular and functional characterization of an acetyl-CoA acetyltransferase from the adzuki bean borer moth Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology, 2010, 40(1): 74~78.
    128. Tanaka E D, Hartfelder K. The initial stages of oogenesisn and their relation to differential fertility in the honey bee (Apis mellifera) castes. Arthropod Structure & Development, 2004, 33: 431~442.
    129. The honeybee genome sequencing consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443(26): 931-949.
    130. Tolan D R, Hershey J W, Traut R T. Crosslinking of eukaryotic initiation factor eIF3 to the 40Sribosomal subunit from rabbit reticulocytes. Biochimie, 1983, 65: 427~436.
    131. Torres-Ramos C A, Yoder B L, Burgers P M J, Prakash S, Prakash L. Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplication DNA repair. Proceedings of the National Academy of Sciences USA, 1996, 93: 9676~9681.
    132. Trieselmann N, Wilde A. Ran localizes around the microtubule spindle in vivo during mitosis in Drosophila embryos. Current Biology, 2002, 12: 1124~1129.
    133. Tsurimoto T. A multifunctional ring on DNA. Biochimica et Biophysica Acta, 1998, 1443: 23~39.
    134. Tuszynski J A, Carpenter E J, Huzil J T, Malinski W, Luchko T, Luduena R F. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. International Journal of Developmental Biology, 2006, 50: 341~358.
    135. Uno Y, Fujiyuki T, Morioka M, Takeuchi H, Kubo T. Identification of proteins whose expression is up- or down-regulated in the mushroom bodies in the honeybee brain using proteomics. FEBS Letters, 2007, 581: 97~101.
    136. Van Hemert M J, Steensma H Y, van Heusden G P. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays, 2001, 23: 936~946.
    137. Van Heusden G P. 14-3-3 Proteins: Regulators of Numerous Eukaryotic Proteins. IUBMB Life, 2005, 57(9): 623~629.
    138. Verheyen E M, Cooley L. Profilin mutations disrupt multiple actin-dependent processes during Drosophila development. Development, 1994, 120: 717~728.
    139. Vernace V A, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira M E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB Journal, 2007, 21: 2672~2682.
    140. Waga S, Hannon G J, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature, 1994, 369: 574~578.
    141. Warbrick E, Lane D P, Glover D M, Cox L S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Current Biology, 1995, 5: 275~282.
    142. Westermann P, Heumann W, Bommer, U A, Bielka H, Nygard O, Hultin T. Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Letters, 1979, 97: 101~104.
    143. White JW Jr, Subers M H, Schepartz A I. The identification of inhibine, antibacterial factor in honey, as hydrogen peroxide, and its origin in a honey glucose oxidase system. BiochemistryBiophysical Acta, 1963, 73: 57~70.
    144. Wolschin F, Amdam G V. Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Science 2007, 5:10 doi:10.1186/1477-5956-5-10
    145. Wright T R. Phenotypic analysis of the Dopa decarboxylase gene cluster mutants in Drosophila melanogaste. Journal of Heredity, 1996, 87: 175~190.
    146. Yacoub A, Augeri L, Kelley M R, Doetsch P W, Deutsch W A. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. EMBO Joyrnal, 1996, 15:2306~2312.
    147. Yacoub A, Kelley M R, Deutsch W A. Drosophila ribosomal protein P0 contains apurinic/apyrimidinic endonuclease activity. Nucleic Acids Research, 1996, 24: 4298~4303.
    148. Yu F, Cai Y, Kaushik R, Yang X, Chia W. Distinct roles of Galphai and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. The Journal of Cell Biology, 2003, 162: 623~633.
    149. Zimmermann R A. The double life of ribosomal proteins. Cell, 2003, 115: 130~132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700