FOXP3~+调节性T细胞在胃癌组织中的浸润及对胃癌根治术后患者生存的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究肿瘤浸润淋巴细胞(Tumour-infiltrating lymphocytes, TILs)尤其是FOXP3+调节性T细胞(regulatory T cells, Tregs)在胃癌组织及淋巴结中的浸润情况,并探讨二者对胃癌患者根治术后生存的影响。
     材料与方法:将135例于1999-2005期间在复旦大学附属中山医院行D2根治术胃癌患者的肿瘤组织和正常胃组织制成组织芯片,N1站淋巴结制成病理切片,利用免疫组化的方法,观察不同组织中CD4+、CD8+和FOXP3+ T细胞的浸润情况。利用中位值分组,应用多种统计学方法分析以上3种淋巴细胞与胃癌临床病理特点及患者D2根治术后生存之间的关系。
     结果:胃癌肿瘤组织中FOXP3+ T细胞等3种TILs数目明显高于正常组织(配对差值非参检验,p值均小于0.01);肿瘤内FOXP3+ T细胞浸润多的患者预后较差(Cox多因素生存分析HR=2.598,p=0.004),FOXP3+ T细胞浸润多的患者一年、两年、三年和四年生存率分别是82.6%、65.2%、60.4%和55.6%,而FOXP3+T细胞浸润少的患者一年、两年、三年和四年的生存率分别是83.3%、81.8%、77.3%和77.3%(Logrank检验p=0.009);淋巴结内FOXP3+ T细胞的浸润数目与淋巴结转移负相关(卡方检验,p=0.043),但对预后无明显影响(Logrank检验p=0.257)。肿瘤内、肿瘤旁和淋巴结内CD4+、CD8+T细胞的浸润以及FOXP3+/CD8+、FOXP3+/CD4+与胃癌患者预后没有显著关系。
     结论:胃癌肿瘤组织中FOXP3+ T细胞等3种TILs明显高于正常胃组织,其中FOXP3+ T细胞浸润增多升高提示患者预后较差。直接清除FOXP3+ T细胞或抑制FOXP3+ T细胞的功能,可能会延长胃癌术后生存。
Purpose
     The aim of the present study was to investigate the expression and the prognostic value of tumor-infiltrated lymphocytes (TILs), especially the prognostic value of Foxp3+ regulatory T cells (Tregs) in gastric cancer patients after radical resection.
     Patients and Methods
     From 135 patients, who underwent R0 resections with extended lymph nodes dissection (D2) between 1999 and 2005 at Zhongshan Hospital of Fudan Uniersity, CD4+, CD8+ and Foxp3+ TILs were assessed by immunohistochemistry in tissue microarrays and N1 regional lymph nodes sections containing gastric cancer. Prognostic effects of low or high-density TIL subsets were evaluated by Cox regression and Kaplan-Meier analysis using median values as cutoff.
     Results
     The frequency of CD4+, CD8+ or FOXP3+ TILs in tumor sites was significantly higher than that in normal tissues (Wilcoxon Test, p<0.01). It was found that CD4+, CD8+ TILs FOXP3+/CD8+ ratio and FOXP3+/CD4+ ratio were not associated with overall survival (OS). In the tumor sites, high Tregs density was an independent factor for worse OS (Multivariate analysis HR 2.598,p=0.004). One-year, two-year, three-year and four-year OS rates were 82.6%,65.2%,60.4% and 55.6% for the group with intratumoral high Tregs density, compared with 83.3%,81.8%,77.3% and 77.3% for the group with intratumoral low density (Logrank-test p=0.009). Although the infiltration of Foxp3+ Tregs in N1 regional lymph nodes was associated with lymph nodes metastasis (p=0.043), it wasn't associated with prognosis (Logrank-test p=0.257).
     Conclusions
     Intratumoral high Foxp3+ Tregs density was an independent predictor for the prognosis of gastric cancer. It can be inferred that deletion of Tregs may be an effective immunotherapy to prolong survival after surgery.
引文
[1]Seliger B, Maeurer M J, Ferrone S. Antigen-processing machinery breakdown and tumor growth [J]. Immunol Today,2000,21(9):455-64.
    [2]Marincola F M, Jaffee E M, Hicklin D J, et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance [J]. Adv Immunol,2000,74; 181-273.
    [3]Nomura T, Sakaguchi S. Naturally arising CD25+CD4+ regulatory T cells in tumor immunity [J]. Curr Top Microbiol Immunol,2005,293:287-302.
    [4]Yang Z Z, Novak a J, Stenson M J, et al. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma [J]. Blood,2006,107(9):3639-46.
    [5]Nicholl M, Lodge A, Brown I, et al. Restored immune response to an MHC-II-Restricted antigen in tumor-bearing hosts after elimination of regulatory T cells [J]. J Pediatr Surg,2004,39(6):941-6..
    [6]Viguier M, Lemaitre F, Verola O, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells [J]. J Immunol,2004,173(2):1444-53.
    [7]Curiel T J, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival [J]. Nat Med,2004,10(9):942-9.
    [8]Kruger-Krasagakes S, Krasagakis K, Garbe C, et al. Expression of interleukin 10 in human melanoma [J]. Br J Cancer,1994,70(6):1182-5.
    [9]Peng Y, Laouar Y, Li M O, et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes [J]. Proc Natl Acad Sci U S A,2004,101(13):4572-7.
    [10]Halvorsen T B, Seim E. Association between invasiveness, inflammatory reaction, desmoplasia and survival in colorectal cancer [J]. J Clin Pathol,1989,42(2): 162-6.
    [11]Wada Y, Nakashima O, Kutami R, et al. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration [J]. Hepatology,1998,27(2): 407-14.
    [12]Nakano O, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity [J]. Cancer Res,2001,61(13): 5132-6.
    [13]Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer [J]. Cancer Res,1998,58(16): 3491-4.
    [14]Grabenbauer G G, Lahmer G, Distel L, et al. Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma [J]. Clin Cancer Res,2006,12(11 Pt 1):3355-60.
    [15]Zou W. Regulatory T cells, tumour immunity and immunotherapy [J]. Nat Rev Immunol,2006,6(4):295-307.
    [16]Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses [J]. Annu Rev Immunol, 2004,22:531-62.
    [17]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases [J]. J Immunol,1995,155(3):1151-64.
    [18]Fontenot J D, Gavin M A, Rudensky a Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nat Immunol,2003,4(4):330-6.
    [19]Kryczek I, Liu R, Wang G, et al. FOXP3 defines regulatory T cells in human tumor and autoimmune disease [J]. Cancer Res,2009,69(9):3995-4000.
    [20]Wang H Y, Lee D A, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands:implications for immunotherapy [J]. Immunity,2004,20(1): 107-18.
    [21]Wang H Y, Peng G, Guo Z, et al. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells [J]. J Immunol,2005,174(5):2661-70.
    [22]Weiner H L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells [J]. Immunol Rev,2001,182:207-14.
    [23]Endharti a T, Rifa I M, Shi Z, et al. Cutting edge:CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells [J]. J Immunol,2005,175(11):7093-7.
    [24]Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma [J]. Cancer Res,2005,65(12):5020-6.
    [25]Shao L, Jacobs a R, Johnson V V, et al. Activation of CD8+ regulatory T cells by human placental trophoblasts [J]. J Immunol,2005,174(12):7539-47.
    [26]Terabe M, Berzofsky J A. Immunoregulatory T cells in tumor immunity [J]. Curr Opin Immunol,2004,16(2):157-62.
    [27]Yu P, Lee Y, Liu W, et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors [J]. J Exp Med,2005, 201(5):779-91.
    [28]Woo E Y, Chu C S, Goletz T J, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer [J]. Cancer Res,2001,61(12):4766-72.
    [29]Liyanage U K, Moore T T, Joo H G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma [J]. J Immunol,2002,169(5):2756-61.
    [30]Ormandy L A, Hillemann T, Wedemeyer H, et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma [J]. Cancer Res,2005,65(6):2457-64.
    [31]Wolf D, Wolf a M, Rumpold H, et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer [J]. Clin Cancer Res,2005,11(23):8326-31.
    [32]Sato E, Olson S H, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer [J]. Proc Natl Acad Sci U S A,2005,102(51):18538-43.
    [33]Gao Q, Qiu S J, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection [J]. J Clin Oncol,2007,25(18):2586-93.
    [34]Suzuki H, Chikazawa N, Tasaka T, et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer [J]. Cancer Immunol Immunother,2010,59(5):653-61.
    [35]Kawaida H, Kono K, Takahashi A, et al. Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer [J]. J Surg Res,2005,124(1):151-7.
    [36]Perrone G, Ruffini P A, Catalano V, et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer [J]. Eur J Cancer,2008,44(13):1875-82.
    [37]Mizukami Y, Kono K, Kawaguchi Y, et al. Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer [J]. Br J Cancer,2008,98(1):148-53.
    [38]Li J F, Chu Y W, Wang G M, et al. The prognostic value of peritumoral regulatory T cells and its correlation with intratumoral cyclooxygenase-2 expression in clear cell renal cell carcinoma [J]. BJU Int,2009,103(3):399-405.
    [39]Ichihara F, Kono K, Takahashi A, et al. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers [J]. Clin Cancer Res,2003,9(12):4404-8.
    [40]Walker L S, Chodos A, Eggena M, et al. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo [J]. J Exp Med,2003,198(2):249-58.
    [41]Sharma S, Yang S C, Zhu L, et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer [J]. Cancer Res,2005,65(12):5211-20.
    [42]Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance [J]. Nat Rev Cancer,2005,5(4):263-74.
    [43]Valzasina B, Piconese S, Guiducci C, et al. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent [J]. Cancer Res,2006,66(8):4488-95.
    [44]Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer [J]. Int J Cancer,2008,122(10):2286-93.
    [45]Chen M L, Pittet M J, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo [J]. Proc Natl Acad Sci U S A,2005,102(2):419-24.
    [46]Ji H B, Liao G, Faubion W A, et al. Cutting edge:the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression [J]. J Immunol,2004,172(10):5823-7.
    [47]Munn D H, Sharma M D, Mellor a L. Ligation of B7-1/B7-2 by human CD4+T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells [J]. J Immunol, 2004,172(7):4100-10.
    [48]Terness P, Bauer T M, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites [J]. J Exp Med,2002,196(4):447-57.
    [49]Grossman W J, Verbsky J W, Barchet W, et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death [J]. Immunity,2004,21(4): 589-601.
    [50]Gondek D C, Lu L F, Quezada S A, et al. Cutting edge:contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism [J]. J Immunol,2005,174(4):1783-6.
    [51]Zheng Y, Chaudhry A, Kas A, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses [J]. Nature,2009, 458(7236):351-6.
    [52]Yuan X L, Chen L, Li M X, et al. Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner [J]. Clin Immunol,134(3):277-88.
    [53]Chiou S H, Sheu B C, Chang W C, et al. Current concepts of tumor-infiltrating lymphocytes in human malignancies [J]. J Reprod Immunol,2005,67(1-2):35-50.
    [54]Yu P, Fu Y X. Tumor-infiltrating T lymphocytes:friends or foes? [J]. Lab Invest, 2006,86(3):231-45.
    [55]Van Beek J, Zur Hausen A, Snel S N, et al. Morphological evidence of an activated cytotoxic T-cell infiltrate in EBV-positive gastric carcinoma preventing lymph node metastases [J]. Am J Surg Pathol,2006,30(1):59-65.
    [56]Schumacher K, Haensch W, Roefzaad C, et al. Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas [J]. Cancer Res, 2001,61(10):3932-6.
    [57]Shen L S, Wang J, Shen D F, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression [J]. Clin Immunol,2009,131(1):109-18.
    [58]Frey D M, Droeser R A, Viehl C T, et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients [J]. Int J Cancer,2009,126(11):2635-43.
    [59]Matsuura K, Yamaguchi Y, Osaki A, et al. FOXP3 expression of micrometastasis-positive sentinel nodes in breast cancer patients [J]. Oncol Rep,2009, 22(5):1181-7.
    [60]Gavin M A, Torgerson T R, Houston E, et al. Single-cell analysis of normal and FOXP3-mutant human T cells:FOXP3 expression without regulatory T cell development [J]. Proc Natl Acad Sci U S A,2006,103(17):6659-64.
    [61]Allan S E, Crome S Q, Crellin N K, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production [J]. Int Immunol, 2007,19(4):345-54.
    [62]Tran D Q, Ramsey H, Shevach E M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype [J]. Blood,2007, 110(8):2983-90.
    [1]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases [J]. J Immunol,1995,155(3):1151-64.
    [2]Fontenot J D, Gavin M A, Rudensky a Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nat Immunol,2003,4(4):330-6.
    [3]Gavin M A, Torgerson T R, Houston E, et al. Single-cell analysis of normal and FOXP3-mutant human T cells:FOXP3 expression without regulatory T cell development [J]. Proc Natl Acad Sci U S A,2006,103(17):6659-64.
    [4]Allan S E, Crome S Q, Crellin N K, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production [J]. Int Immunol, 2007,19(4):345-54.
    [5]Tran D Q, Ramsey H, Shevach E M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype [J]. Blood,2007, 110(8):2983-90.
    [6]Kryczek I, Liu R, Wang G, et al. FOXP3 defines regulatory T cells in human tumor and autoimmune disease [J]. Cancer Res,2009,69(9):3995-4000.
    [7]Watanabe N, Wang Y H, Lee H K, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus [J]. Nature,2005, 436(7054):1181-5.
    [8]Wang H Y, Lee D A, Peng G, et al. Tumor-specific human CD4+ regulatory T cells and their ligands:implications for immunotherapy [J]. Immunity,2004,20(1):107-18.
    [9]Wang H Y, Peng G, Guo Z, et al. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells [J]. J Immunol,2005,174(5):2661-70.
    [10]Roncarolo M G, Gregori S, Battaglia M, et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans [J]. Immunol Rev,2006,212:28-50.
    [11]Weiner H L. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells [J]. Immunol Rev,2001,182:207-14.
    [12]Kawaida H, Kono K, Takahashi A, et al. Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer [J]. J Surg Res,2005,124(1):151-7.
    [13]Endharti a T, Rifa I M, Shi Z, et al. Cutting edge:CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells [J]. J Immunol,2005,175(11):7093-7.
    [14]Wei S, Kryczek I, Zou L, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma [J]. Cancer Res,2005,65(12):5020-6.
    [15]Shao L, Jacobs a R, Johnson V V, et al. Activation of CD8+ regulatory T cells by human placental trophoblasts [J]. J Immunol,2005,174(12):7539-47.
    [16]Piccirillo C A, Shevach E M. Cutting edge:control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells [J]. J Immunol,2001,167(3):1137-40.
    [17]Seo N, Hayakawa S, Takigawa M, et al. Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity [J]. Immunology,2001,103(4):449-57.
    [18]Walker L S, Chodos A, Eggena M, et al. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo [J]. J Exp Med,2003,198(2):249-58.
    [19]Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells [J]. J Exp Med,2003, 198(2):235-47.
    [20]Sharma S, Yang S C, Zhu L, et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer [J]. Cancer Res,2005,65(12):5211-20.
    [21]Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance [J]. Nat Rev Cancer,2005,5(4):263-74.
    [22]Valzasina B, Piconese S, Guiducci C, et al. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25- lymphocytes is thymus and proliferation independent [J]. Cancer Res,2006,66(8):4488-95.
    [23]Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer [J]. Int J Cancer,2008,122(10):2286-93.
    [24]Chen M L, Pittet M J, Gorelik L, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo [J]. Proc Natl Acad Sci U S A,2005,102(2):419-24.
    [25]Schramm C, Huber S, Protschka M, et al. TGFbeta regulates the CD4+CD25+ T-cell pool and the expression of Foxp3 in vivo [J]. Int Immunol,2004,16(9):1241-9.
    [26]Setoguchi R, Hori S, Takahashi T, et al. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization [J]. J Exp Med,2005,201(5):723-35.
    [27]Ji H B, Liao G, Faubion W A, et al. Cutting edge:the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression [J]. J Immunol,2004,172(10):5823-7.
    [28]Munn D H, Sharma M D, Mellor a L. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells [J]. J Immunol, 2004,172(7):4100-10.
    [29]Terness P, Bauer T M, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites [J]. J Exp Med,2002,196(4):447-57.
    [30]Munn D H, Sharma M D, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase [J]. Immunity,2005,22(5):633-42.
    [31]Munn D H, Sharma M D, Hou D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes [J]. J Clin Invest,2004,114(2):280-90.
    [32]Grossman W J, Verbsky J W, Barchet W, et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death [J]. Immunity,2004,21(4): 589-601.
    [33]Gondek D C, Lu L F, Quezada S A, et al. Cutting edge:contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism [J]. J Immunol,2005,174(4):1783-6.
    [34]Zheng Y, Chaudhry A, Kas A, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses [J]. Nature,2009, 458(7236):351-6.
    [35]Steitz J, Bruck J, Lenz J, et al. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma [J]. Cancer Res,2001,61(24):8643-6.
    [36]Maker a V, Attia P, Rosenberg S A. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade [J]. J Immunol,2005,175(11):7746-54.
    [37]Reuben J M, Lee B N, Li C, et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma [J]. Cancer,2006,106(11):2437-44.
    [38]Ko K, Yamazaki S, Nakamura K, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells [J]. J Exp Med,2005,202(7):885-91.
    [39]Mahnke K, Schonfeld K, Fondel S, et al. Depletion of CD4+CD25+ human regulatory T cells in vivo:kinetics of Treg depletion and alterations in immune functions in vivo and in vitro [J]. Int J Cancer,2007,120(12):2723-33.
    [40]Attia P, Maker a V, Haworth L R, et al. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma [J]. J Immunother,2005,28(6):582-92.
    [41]Nair S, Boczkowski D, Fassnacht M, et al. Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity [J]. Cancer Res,2007, 67(1):371-80.
    [42]Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells [J]. Science,2003,299(5609):1033-6.
    [43]Sutmuller R P, Den Brok M H, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells [J]. J Clin Invest,2006,116(2):485-94.
    [44]Valzasina B, Guiducci C, Dislich H, et al. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR [J]. Blood,2005,105(7):2845-51.
    [45]Piconese S, Valzasina B, Colombo M P. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection [J]. J Exp Med,2008,205(4): 825-39.
    [46]Zhou P, Zheng X, Zhang H, et al. B7 blockade alters the balance between regulatory T cells and tumor-reactive T cells for immunotherapy of cancer [J]. Clin Cancer Res,2009,15(3):960-70.
    [47]Ghiringhelli F, Larmonier N, Schmitt E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative [J]. Eur J Immunol,2004,34(2): 336-44.
    [48]Lutsiak M E, Semnani R T, De Pascalis R, et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide [J]. Blood,2005,105(7):2862-8.
    [49]Liu J Y, Wu Y, Zhang X S, et al. Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine [J]. Cancer Immunol Immunother,2007,56(10):1597-604.
    [50]Ghiringhelli F, Menard C, Puig P E, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients [J]. Cancer Immunol Immunother,2007, 56(5):641-8.
    [51]Audia S, Nicolas A, Cathelin D, et al. Increase of CD4+ CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ T lymphocytes [J]. Clin Exp Immunol,2007,150(3):523-30.
    [52]Chu Y, Wang L X, Yang G, et al. Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma [J]. J Immunother,2006,29(4):367-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700