几种自相似高斯随机系统的分析及相关问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文旨在研究几种自相似高斯随机系统的分析及相关问题,全文共分七章。
     第一章主要介绍分数布朗运动,次分数布朗运动,双分数布朗运动的基本概念及相关性质。给出了问题产生的背景、研究现状以及本学位论文研究所需要的预备知识。
     第二章利用Malliavin分析的技巧发展了次分数布朗运动SH,H>1/2的随机积分。第一节介绍了次分数布朗运动的Malliavin分析,第二节给出了对称积分存在的充分条件,建立了对称积分与散度积分之间的关系(定理2.1),得到了散度积分的Lp最大值不等式(定理2.2)和1/H变差(定理2.3),推导了积分过程的It6公式(定理2.4),最后得到了一维次分数布朗运动关于C2函数的It6公式(定理2.5),然后将研究结果推广到多维次分数布朗运动情形(定理2.6,定理2.7)。
     第三章主要研究指数H∈(1/2,1)的次分数布朗运动SH的随机分析,得到在不同条件下的It6公式。第一节得到了含有赋权局部时LH(x,t)的Tanaka公式(定理3.1),第二节证明了如果函数f是有界p(1≤p<(2H)/(1-H))变差的,那么积分∫R f(x) LH(dx,t)有意义(命题3.4)。作为一个应用,证明了对任意绝对连续函数F(x)=F(0)+∫0x f(y)dy,其中函数f是有界p(1≤p<(2H)/(1-H))变差的且是左连续的,有Bouleau-Yor公式(定理3.3)成立,第三节研究了f(SH)和SH的赋权二次协变差[f(SH),SH](W):其中极限依概率一致成立,x(?)f(x)是一个确定的函数。证明了如果函数f是有界p(1≤p<(2-H)/(1-H))变差的,那么赋权二次协变差[f(SH),SH](W)存在且有Bouleau-Yor等式(定理3.4)
     第四章主要研究次分数布朗运动和双分数布朗运动的相遇局部时和相交局部时,得到了它们的存在性,光滑性,正则性等。第一节介绍了随机变量的光滑性,第二节证明了次分数布朗运动满足局部非确定性(定理4.1),第三节研究了指标分别为H1,H2的两个相互独立的次分数布朗运动的相遇局部时的存在性(定理4.2),利用初等方法给出了相遇局部时在Meyer-Watanabe意义下是光滑的充要条件(定理4.4),第四节得到了Rd,d≥2上指标均为H∈(0,1)的两个独立次分数布朗运动的相交局部时在L2中存在的充要条件(定理4.5)以及它在Meyer-Watanabe意义下是光滑的充要条件(定理4.6),最后研究了相交局部时的正则性(定理4.7),第五节主要利用初等方法得到了两个相互独立且指标不同的双分数布朗运动的相遇局部时在Meyer-Watanabe意义下是光滑的充要条件(定理4.8),改进了Jiang-Wang[47](也可参见Yan et al[48])中的相应结果,同时也研究了指标相同的两个相互独立双分数布朗运动的相交局部时在Meyer-Watanabe意义下是光滑的充要条件(定理4.9)。
     第五章主要研究次分数布朗运动的一些相关过程。第一节研究了随机过程Xt:=∑id=1∫0t(Ss1)/(Rs)dSsi,d≥1的一些性质(自相似性(命题5.1和命题5.7),短相依性(定理5.1和定理5.3)等),其中H≥1/2,Rt=(?)是次分数Bessel过程,给出了随机过程Zt的Wiener混沌展开(定理5.2)以及随机过程Rt的积分表现(命题5.6)等,第二节研究了次分数布朗运动驱动的积分泛函Xt(j):=Aj(t,StH)-∫0t Lj(s,SsH)dSsH的p-变差,其中H≥1/2,)(?)j(t,x),j=1,2分别是SH在x点的局部时与赋权局部时,找到了一个仅依赖于H的常数pH使得当p>pH时,Xt(j)的p-变差等于零(定理5.7)。
     第六章首先构造了一簇连续随机过程(In∈(f)t)∈>0:证明了(In∈(f)t)∈>0依有限维分布收敛到关于次分数布朗运动的多重Wiener-Ito积分过程(InH,e(f1[0,t](?)n))t∈[0,1](定理6.1,定理6.2,定理6.3),其中被积函数f∈|H|(?)n,η∈(t)=∫0tθ∈(x)dx是Donsker或Stroock逼近。其次研究了与次分数布朗运动相关的两个极限定理(定理6.5和定理6.6)等.
     第七章利用双分数布朗运动的Malliavin分析技巧研究了当n→∞时序列的渐近行为,其中BH1,K1和BH2,K2是两个独立的双分数布朗运动,K是一个核函数,带宽参数α满足关于H1,K1和H2,K2的一些假设,证明了它的极限分布是包含双分数布朗运动BH1,K1局部时的一个混合正态分布(定理7.3),研究了向量(Sn,(Gt)t≥0)的收敛性(定理7.6),其中(Gt)t≥0是与BH1,K1独立的随机过程且满足一些附加条件。
This dissertation aims to study the stochastic calculus for some self-similar Gaussian sys-tems and related topics. It consists of seven chapters.
     In Chapter 1, we introduce some preliminary concepts and necessary properties about fractional Brownian motion, subfractional Brownian motion (sub-fBm in short) and bifractional Brownian motion(bi-fBm in short).
     In Chapter 2, we develop a stochastic calculus for the sub-fBm SH,H>1/2using the tech-niques of the Malliavin calculus. In Section 2.1 we present Malliavin calculus for sub-fBm. In Section 2.2, we gives sufficient conditions for the existence of the symmetric integral and establish the relationship between the symmetric integral and the divergence integral(Theorem 2.1), we establish estimates in LP maximal inequalities(Theorem 2.2) and 1/H variation (Theo-rem 2.3) for the stochastic integral and derive an Ito s formula for integral processes(Theorem 2.4), we also derive an Ito formula for sub-fBm(Theorem 2.5) and extend Ito's formula to the multidimensional case (Theorem 2.6, Theorem 2.7).
     In Chapter 3, we consider stochastic calculus connected with sub-fBm SH with H∈(1/2,1) and narrow the focus to obtain various versions of Ito's formula. In Section 3.1 the Tanaka formula (Theorem 3.1) is obtained and it involves the so-called weighted local time LH(x, t). In Section 3.2, we show that the integral∫R f(x)LH(dx, t) is well-defined provided f∈Wp with 1≤p<(2H)/(1-H)(Proposition 3.4). As an application we show that Bouleau-Yor's formula holds for all absolutely continuous function F(x)=F(0)+∫0x f(y)dy, where the derivative f∈Wp be a left continuous function with 1≤p<(2H)/(1-H). In Section 3.3, we study the weighted quadratic covariation [f(SH), SH](W) of f(SH) and SH defined by for t≥0, where the limit is uniform in probability and x(?) f(x) is a deterministic function. We show that the weighted quadratic covariation [f(SH),SH](W) exists and if f∈WP with 1≤p<(2H)/(1-H) (Theorem 3.4).
     In Chapter 4, we consider the collision local time and intersection local time of sub-fBm and bi-fBm and obtain the existence, smoothness and regularity of local time. In Section 4.1, we introduce the definition of smooth of random variation, In Section 4.2, we obtain the local nondeterminism of sub-fBm(Theorem 4.1). In Section 4.3, we study the collision local time of two independent sub-fBms SHi, i=1,2 with respective indices Hi∈(0,1) and obtain the existence(Theorem 4.2) and by an elementary method we show that it is smooth in the sense of Meyer and Watanabe if and only if min{H1, H2}<1/3 (Theorem 4.4). In Section 4.3, we study the intersection local time of two independent d-dimensional sub-fBms SH and SH with indices H∈(0,1), and we show that the intersection local time exists in L2 if and only if Hd<2 (Theorem 4.5) and give the necessary and sufficient conditions for which it is smooth in the sense of the Meyer-Watanabe(Theorem 4.6). As a related problem, we give also the regularity of the intersection local time process(Theorem 4.7). In Section 4.4, we use an elementary method to prove the necessary and sufficient conditions of the smooth of the collision local time process for two independent bi-fBms BHi,Ki,i=1,2 with respective indices Hi∈(0,1), Ki∈(0,1] (Theorem4.8), the results extend and improve the corresponding theorems in Jiang-Wang [47](also Yan et al [48]). At last, we study the intersection local time of two independent bi-fBms BH'K and BH'K with same indices H∈(0,1), K∈(0,1], we show that it is smooth in the sense of the Meyer-Watanabe if and only if HK<2/3 (Theorem 4.9).
     In Chapter 5, we consider some related process of sub-fBm. In Section 5.1, we study some properties (Proposition 5.1, Proposition 5.7, Theorem 5.1, Theorem 5.3) of the process X of the form Xt:=(?)≥1 where H>1/2, Rt= (?) is the sub-fractional Bessel process, we obtain the chaos expansion of Zt(Theorem 5.2) and give an integral representation for sub-fractional Bessel processes(Proposition 5.6). In Section 5.2, we show that there exists a constant pH such that p-variation of the process Aj(t, StH)-∫0t Lj(s, SsH)dSsH (j=1,2) equals to 0 if p>pH, where Lj,j=1,2, are the local time and weighted local time of SH, respectively(Theorem 5.7).
     In Chapter 6, we prove the family (In∈(f))∈>0 defined by converges in law to the multiple Wiener-Ito integrals (InH,e(f1[0,t](?)n))t∈[0,1] with respect to the sub-fBm, for the integrand f∈|H|(?)n, whereη∈(t)=∫0tθ∈(x)dx are Donsker and Stroock approximations (Theorem 6.1, Theorem 6.2, Theorem 6.3). The limit theorems associated to the sub-fBm SH are also discussed (Theorem 6.5, Theorem 6.6).
     In chapter 7, we use the techniques of the Malliavin calculus with respect to the bi-fBm to study the asymptotic behavior as n→∞of the sequence where BH1,K1 and BH2,K2 are two independent bi-fBms, K is a kernel function and the band-width parameterαsatisfies certain hypotheses in terms of H1, K1 and H2, K2. We prove its lim-iting distribution is a mixed normal law involving the local time of the bi-fBm BH1,K1 (Theorem 7.3), we also study the convergence of the vector (Sn, (Gt)t≥0), where (Gt)t≥0 is a stochastic process independent from BH1,K1 and satisfies some additional conditions(Theorem 7.6).
引文
[1]Ito K. Stochastic integral. Proc. Imp. Acad. Tokyo.20 (1944),519-524.
    [2]Kunita H, and Watanabe S. On square integrable martingales. Nagoya Math. J.30 (1967), 209-245.
    [3]Tanaka H. Note on continuous additive functionals of Brownian motion. Z. Wahrschein-lichkeutstheorie und Verw. Gebiete.1 (1963),251-257.
    [4]Meyer P A. Quantum for Probabilists. Lecture Notes in Mathmatics,1538, Springer, Hei-delberg,1993.
    [5]Wang A. Generalized Ito's formula and additive functionals of Brownian motion. Z. Wahrscheinlichkeutstheorie und Verw. Gebiete.41 (1977),153-159.
    [6]Follmer H, Protter Ph and Shiryayev A N. Quadratic covariation and an extension of Ito's formula. Bernoulli.1 (1995),149-169.
    [7]Russo F and Vallois P. Ito formula for C1-functions of semimartingales. Probab. Theory Rel. Fields.104 (1996),27-41.
    [8]Moret S and Nualart D. Quadratic covariation and Itos formula for smooth nondegenerate martingales. J. Theor. Probab.13 (2000),193-224.
    [9]Bouleau N and Yor M. Sur la variation quadratique des temps locaux de certaines semi-martingales. C. R. Acad. Sci. Paris Ser. I Math.292 (1981),491-494.
    [10]Eisenbaum N. Integration with respect to local time. Potential Anal.13 (2000),303-328.
    [11]Eisenbaum N. Local time-space stochastic calculus for Levy processes. Stoch. Proc. Appl. 116 (2006),757-778.
    [12]Eisenbaum N. Local time-space calculus for reversible semimartingale. Sem. Probab.40 (2006),137-146.
    [13]Ghomrasni R and Peskir G. Local time-space calculus and extensions of Ito's formula. Progress in Probab.55 (2003),177-192.
    [14]Feng C and Zhao H. Two-parameter p, q-variation paths and integration of local times. Potential Anal.25(2006),165-204.
    [15]Yang X and Yan L. Some remarks on local time-space calculus. Stat. Prob. Lett.77 (2007), 1600-1607.
    [16]Yan L, Liu J and Yang X. Integration with respect to fractional local time with Hurst index 1/2    [17]Peskir G. A change-of-variable formula with local time on curves. J. Theoret. Probab.18 (2005),499-535.
    [18]Elworthy K, Truman A and Zhao H. Stochastic elementary formula and asymptotics with caustics (Ⅰ) One-dimensional linear heat equations. Seminaire de Probab. XL, Lecture Notes in Maths.1899 (2007),117-136.
    [19]Hurst H E. Long-term storage capacity in reservoirs. Trans. Amer. Soc. Civil Eng.116 (1951),400-410.
    [20]Hurst H E. Methods of using long-term storage in reservoirs. Proc.Inst. Civil Eng.1 (1956),519-590.
    [21]Mandelbrot B B and Van Ness J. Fractional Brownian motions, fractional noises and applications. SIAM Review.10 (1968),422-437.
    [22]Mishura Y S. Stochastic Calculus for fBm and Related Processes. Lect. Notes in Math. 1929 (2008).
    [23]Biagini F, Hu Y,(?)ksendal B and Zhang T. Stochastic calculus for fractional Brownian motion and applications. Springer, Berlin,2008.
    [24]Revuz D and Yor M. Continuous martingales and Brownian motion. Springer, New York, 1999.
    [25]Protter E Ph. Stochastic Integration and Differential Equations. Springer-Verlag, New York,2005.
    [26]Biagini F, Hu Y,(?)sendal B, Sulem A. A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Process. Appl.100 (2002),233-253.
    [27]Gradinaru M, Russo F and Vallois F. Generalized covariations, local time and Stratonovich Itos formula for fBm with Hurst index H≥1/4. Ann. Probab.31 (2003),1772-820.
    [28]Gradinaru M, Nourdin I, Russo F and Vallois P. m-order integrals and generalized Ito's formula; the case of a fBm with any Hurst index. Ann. Inst. H. Poincare Probab. Statist. 41 (2005),781-806.
    [29]Hu Y. Integral transformations and anticipative calculus for fBms. Memoirs Amer. Math. Soc. Vol.175 (2005), No.825.
    [30]Nualart D and Taqqu M S. Wick-Ito formula for Gaussian processes. Stoch. Anal. Appl. 24 (2006),599-614.
    [31]Duncan T E, Hu Y and Duncan B P. Stochastic calculus for fractional Brownian motion I Theory. SIAM J. Control Optim.38 (2000),582-612.
    [32]Alos E and Nualart D. Stochastic integration with respect to fractional Brownia motion. Stochastics and Stochastics Reports.75 (2003),129-152.
    [33]Alos E, Leon J A and Nualart D. Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Taiwan. J. Math.5 (2001),609-632.
    [34]Hu Y, Zhou X. Stochastic control for linear systems driven by fractional noises. SIAM J. Control Optim.43 (2005),2245-2277.
    [35]Hu Y,(?)kesendal B and Salopek D M. Weighted local time for fBm and applications to finance. Stoch. Anal. Appl.23 (2005),15-30.
    [36]Yan L, Liu J and Lu Y. The weighted quadratic covariation for fractional Brownian motion with Hurst index greater than 1/2. (2009) submitted.
    [37]Yan L, Chen C and Liu J. The weighted quadratic covariation for fractional Brownian motion with Hurst index less than 1/2. (2009) preprint.
    [38]Houdre C and Villa J. An example of infinite dimensional quasi-helix. Stoch. models.336 (2003),195-201.
    [39]Russo F and Tudor C A. On the bifractional Brownian motion. Stoc. Proc. Appl.5 (2006), 830-856.
    [40]Kruk I, Russo F and Tudor C A. Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal.249 (2007),92-142.
    [41]Tudor C A and Xiao Y. Sample path properties of bifractional brownian motion. Bernoulli. 13 (2007),1023-1052.
    [42]Es-sebaiy K and Tudor C A. Multidimensional bifractional Brownian motion:Ito and Tanaka formulas. Stochastics and Dynamics.7 (2007),366-388.
    [43]Bojdecki T, Gorostiza L and Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times. Statist. Probab. lett.69 (2004),405-419.
    [44]Bojdecki T, Gorostiza L and Talarczyk A. Some extension of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Elect. Comm. in Probab. 12(2007),161-172.
    [45]Yan L, Liu J and Bian C. Integration with respect to local time of bifractional Brownian motion with HK>1/2. (2009) Preprint.
    [46]Yan L, Liu J and Jing G. Quadratic covariation and Ito formula for a bifractional Brownian motion. (2008) preprint.
    [47]Jiang Y and Wang Y. Self-intersection local times and collision local times of bifractional Brownian motions. Science in China Series A:Mathematics.52 (2009),1905-1919.
    [48]Yan L, Liu J and Chen C. On the collision local time of bifractional Brownian motions. Stochastic and Dynamics.9 (2009),479-491.
    [49]Lei P and Nualart D. A decomposition of the bifractional Brownian motion and some applications. Statist. Probab. Lett.79 (2009),619-624.
    [50]Tudor C. Some properties of the sub-fractional brownian motion. Stochastic.79 (2007), 431-448.
    [51]Tudor C. Inner product spaces of integrands associated to subfractional Brownian motion. Statist. Probab. Lett.78 (2008),2201-2209.
    [52]Tudor C. Some aspects of stochastic calculus for the sub-fractional Brownian motion. Ann. Univ. Bucuresti, Mathematica. (2008)199-230.
    [53]Tudor C. On the Wiener integral with respect to a subfractional Brownia motion on an interval. J. Math. Anal. Appl. 351 (2009),456-468.
    [54]Tudor C, Tudor M. Power variation of multiple fractional integral. Central European journal of Mathematics.5(2007):358-372.
    [55]Tudor C. Multiple sub-fractional integrals and some approximations. Appl. Anal.87 (2008),311-323.
    [56]Bardina X, Bascompte D. Weak convergence towards two independent Gaussian process from a unique poisson process. Collect. Math.61(2010),191-204.
    [57]Bojdecki T, Gorostiza L and Talarczyk A. Limit theorems for occupation time fluctu-ations of branching systems Ⅰ:Long-range dependence. Stoch. Proc. Appl.116 (2006), 1-18.
    [58]Bojdecki T, Gorostiza L G and Talarczyk A. Fractional Brownian density process and its self-intersection local time of order k. J. Theor. Probab.69(5) (2004),717-739.
    [59]Liu J, Li L and Yan L. Sub-fractional model for credit risk pricing. Inter. J. Non. Sci. Num. Sim.11(2010),231-236.
    [60]Ruiz de Chavez J, Tudor C. A decomposition of sub-fractional Brownian motion. Math. Reports.61 (2009),67-74.
    [61]Tudor M. A strong approximation for double subfractional integrals. Appl. Anal.86 (2007),1037-1048.
    [62]Shen G, Chen C and Yan L. Remarks on sub-fractional Bessel processes. to appear in Acta Mathematica Scientia Ser. B (2011).
    [63]申广君,何坤,闫理坦.次分数布朗运动的几点注记.山东大学学报理学版.2011,46(3):102-108.
    [64]Yan L, Shen G and He K. Ito's formula for a sub-fractional Brownian motion. Commun. Stoch. Anal.5 (2011),135-159.
    [65]Yan L, Shen G. On the collision local time of subfractional Brownian motion. Statist. Probab. Lett.80 (2010),296-308.
    [66]Samorodnitsky G, andTaqqu M S. Stable Non-Gaussian Random Processes. Chapman, Hall, New York,1994.
    [67]Norros I, Valkeila E, Virtamo J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli.5(4) (1999),571-587.
    [68]Carmona P, Coutin L and Montseny G. Approximation of some Gaussian processes. Stat. Inference Stoch. Process.3 (2000),161-171.
    [69]Lin S J. Stochastic analysis of fractional Brownian motion. Stochastics and Stochastics Reports.55 (1995),121-140.
    [70]Dai W, Heyde C C. Ito formula with respect to fractional Brownian motion and its appli-cations. J. Appl. Math. Stoch. Anal.9 (1996),439-448.
    [71]Decreusefond L and Ustunel A S. Stochastic analysis of the fractional Brownian motion. Potential Anal.10(1998),177-214.
    [72]Nualart D. Malliavin Calculus and Related Topics. Springer, New York,2006.
    [73]Zahle M. Integration with respect to fractal functions and stochastic calculus. I. Probab. Theor. Related Fields.111(3) (1998),333-374.
    [74]Ruzmaikina A A. Stieltjes integrals of Holder continuous functions with applications to fractional Brownian motion. J. Statist. Phys.100(5-6) (2000),1049-1069.
    [75]Russo F and Vallois P. Elements of Stochastic Calculus via Regularization. Seminaire de Probabilites. XL (2007),147-185.
    [76]Lyons T J. Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett.1(4) (1994),451-464.
    [77]Coutin L and Qian Z. Stochastic analysis, rough paths analysis and fractional Brownian motions. Probab. Theory and Rel. Fields.122 (2002),108-140.
    [78]Cheridito P and Nualart D. Stochastic integral of divergence type with respect to the frac-tional Brownian motion with Hurst parameter 1/2. Ann. Inst. H. Poincare-PR.41 (2005), 1049-1081.
    [79]Russo F and Vallois P. Forward, backward and symmetric stochastic integration. Probab. Theory Rel. Fields.97(3)(1993),403-421.
    [80]Berman S M. Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math.J.23(1973),69-94.
    [81]Shen G and Yan L. The stochastic integral with respect to the sub-fractional Brownian motion with H>1/2.J. Math. Sci.:Adv. Appl.6 (2010),219-239.
    [82]Russo F and Vallois P. Stochastic calculus with respect to a continuous finite quadratic variation process. Stochastics and Stochastics Reports.70 (2000),1-40.
    [83]Alos E, Mazet O and Nualart D. Stochastic calculus with respect to Gaussian processes. Ann. Probab.29 (2001),766-801.
    [84]Skorohod A V. On a generalization of a stochastic integral. Theory Probab. Appl. 20(1975),219-233.
    [85]Guerra J M E, Nualart D. The 1/H variation of the divergence integral with respect to the fractional Brownian motion for H>1/2 and fractional Bessel processes. Stochastic Process. Appl.115 (2005),91-115.
    [86]Geman D and Horowitz J. Occupation densities. Ann. Probab.8 (1980),1-67.
    [87]Eddahbi M, Lacayo R, Sole J L, Vives J and Tudor C A. Regularity of local time for the d-dimensional fBm with N-parameters. Stochastic. Anal. Appl.23 (2005),383-400.
    [88]Coutin L, Nualart D and Tudor C A. Tanaka formula for the fractional Brownian motion. Stochastic Process. Appl.94 (2001),301-315.
    [89]Dudley R M and Norvaisa R. An Introduction To p-Variation and Young Integrals. Lecture Notes, MaPhySto 1998.
    [90]Young L C. An Inequality of Holder type, Connected with Stieltjes Integration. Acta Math. 67(1936),251-282.
    [91]Gradinaru M and Nourdin I. Approximation at first and second order of m-order integrals of the fractional Brownian motion and of certain semimartingales. Electron. J. Probab.8 (2003),1-26.
    [92]Gradinaru M and Nourdin I. Milstein's type schemes for fractional SDEs. Ann. Inst. H. Poincare Probab. Statist.45 (2009),1085-1098.
    [93]Shen G and Yan L. Smoothness for the collision local times of bifractional Brownian motions. to appear in Science China Mathematics. (2011).
    [94]Marcus M and Rosen J. Markov Processes, Gaussian Processes and Local Times. Cam-bridge University Press, Cambridge,2006.
    [95]Wolpert R. Wiener path Intersections and local time. J. Funct. Anal.30 (1978),329-340.
    [96]Geman D, Horowitz J and Rosen J. A local time analysis of intersections of Brownian paths in the plane. Ann. Probab.12 (1984),86-107.
    [97]Berman S M. Self-intersections and local nondeterminism of Gaussian processes. Ann. Probab.19(1991),160-191.
    [98]Hu Y. On the self-intersection local time of Brownian motion-via chaos expansion. Publ. Mat.40(1996),337-350.
    [99]Imkeller P, Perez-Abreu V and Vives J. Chaos expansion of double intersection local time of Brownian motion in Rd and renormalization. Stoch. Proc. Appl.56 (1995),1-34.
    [100]Jiang Y and Wang Y. On the collision local time of fractional brownian motion. Chin. Ann. Math.28 (2007),311-320.
    [101]Rosen J. The intersection local time of fractional Brownian motion in the plane. J. Mul-tivar. Anal.23 (1987),37-46.
    [102]Nualart D, Vives J. Chaos expansion and local times. Publ. Mat.36(2) (2002),827-836.
    [103]Hu Y. Self-intersection local time of fractional Brownian motions-via chaos expansion. Journal of Mathematics of Kyoto University.41 (2001),233-250.
    [104]Hu Y, and Nualart D. Renormalized self-intersection local time for fractinal Brownian motion. Ann. Probab.33 (2005),948-983.
    [105]Xiao Y, Zhang T. Local time of fractional Brownian sheets. Probab. Theory Relat. Fields. 124 (2002),948-983.
    [106]Watanabe S. Stochachastic Differential equation and Malliavin Calculus. Tata Institute of Fundamental Research, Spring, New York,1984.
    [107]Pitt L D. Local times for Gaussian vector fields. Indiana Univ. Math.J.27 (1978),309-330.
    [108]Csorgo M, Lin Z Y and Shao Q M. On moduli of continuity for local times of Gaussian processes. Stochastic Process. Appl.58(1995),1-21.
    [109]Cuzick J. Multiple points of a Gaussian vector field. Z. Wahrsch. Verw. Gebiete.61 (1982),431-436.
    [110]Cuzick J. Local nondeterminism and the zeros of Gaussian processes. Ann. Probab. 6(1978),72-84.
    [111]Xiao Y. Strong local nondeterminism and the sample path properties of Gaussian random fields. In:Asymptotic Theory in Probability and Statistics with Applications(Tze Leung Lai, Qiman Shao, Lianfen Qian, editors). pp.136-176, Higher Education Press, Beijing. 2007.
    [112]Xiao Y. Properties of local nondeterminism of Gaussian and stable random fields and their application. Ann. Fac. Sci. Toulouse Math. XV (2006),157-193.
    [113]Pitman E J G. On the behavior of the characteristic function of a probability sidtribution in the neighbourhood of the origin. J. Australian Math. Soc. Series A 8(1968),422-443.
    [114]Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge University Press, Cambridge,1987.
    [115]Cuzick J and Dupreez J. Joint continuity of Gaussian local time, Ann.Probab.10 (1982), 810-817.
    [116]Levy P. Le mouvement brownien plan. Amer. J. Math.62 (1940),487-550.
    [117]De Faria M, Hida T, Streit L and Watanabe H. Intersection local times as generalized white noise functionals. Acta Appl. Math.46 (1997),351-362.
    [118]Albeverio S, JoAo Oliveira M and Streit L. Intersection local times of independent Brow-nian motions as generalized White noise functionals. Acta Appl. Math.69 (2001),221-241.
    [119]Nualart D and Ortiz-Latorre S. Intersection local time for two independent fractional Brownian motions. J. Theor. Probab.20(2007),759-757.
    [120]Wu D and Xiao Y. Regularity of intersection local times of fractional Brownian motions. J. Theor. Probab.23 (2010),972-1001.
    [121]Symanzik K. Euclidean quantum field theory, in R. Jost (ed.), Local Quantum Theory. Academic Press, New York,1969.
    [122]Wolpert R. Local time and a particle picture for Euclidean field theory. J. Funct. Anal. 30(1978),341-357.
    [123]Albeverio S, Fenstad J E, Hφegh-Krohn R and Lindstrφm T. Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic Press, New York,1986.
    [124]Stoll A. Invariance principle for Brownian local time and polymer measures. Math. Scand.64(1989),133-160.
    [125]Albeverio S, Hu Y, Rockner M and Zhou X. Stochastic quantization of the two dimen-sional polymer measure. Appl. Math. Optim.40 (1999),341-354.
    [126]Doukhan P, Oppenheim G, Taqqu M S. Theory and Applications of Long Range Depen-dence. Birkhauser, Boston,2003.
    [127]Tudor C. prediction and linear filtering with sub-fractional Brownian motion. (2007) Preprint.
    [128]Varadhan S R S. Appendix to Euclidean quantum field theory, by K. Symanzik. In:Jost, R. (ed.) Local Quantum Theory. Academic Press, New York,1969.
    [129]Chen C, Yan L. Remarks on the intersection local time of fractional Brownian motions. Statist. Probab. Lett. (In press 2011) doi:10.1016/j.spl.2011.01.021.
    [130]An L, Yan L. Smoothness for the collision local time of fractional Brownian motion. (2009) Preprint.
    [131]Liu J and Yan L. Intersection local time of two independent bi-fractional Brownian mo-tions. to appear in Chinese Quarterly Journal of Mathematics (2011).
    [132]Shen G and Yan L. Remarks on an integral functional driven by sub-fractional Brownian motion. J. Korean. Stat. Soc.(In press 2011) doi:10.1016/j.jkss.2010.12.004.
    [133]Pitman J and Yor M. Bessel processes and infinitely divisible laws. Lecture Notes in Math.851 (1981).
    [134]Yor M. Some Aspects of Brownian Motion. Part Ⅱ:Some recent martingale problems, Birkhauser, Basel 1997.
    [135]Hu Y and Nualart D. Some processes associated with fractional Bessel processes. J. Theoret. Probab.18 (2005),377-397.
    [136]Rogers C G and Walsh J B. A(t,Bt) is not a semimartingale. Seminar on stochastic processes. Progress in Probability.24(1990),457-482.
    [137]Rogers C G and Walsh J B. Local time and stochastic area integrals. Ann. Probab.19 (1991),457-482.
    [138]Yan L, Yang X, and Lu Y. p-variation of an integral functional driven by fractional Brow-nian motion. Statist. Probab. Lett.78(2008),1148-1157.
    [139]Rosen J. Derivative of self-intersection local time. Lect. Notes Math.1857(2005),263-281.
    [140]Avram F. Weak convergence of the variations, iterated integrals and Doleans-Dade ex-ponentials of sequences of semimartingales. Ann. Probab.16 (1988),246-250.
    [141]Bardina X and Jolis M. Weak convergence to the multiple Stratonovich integrals. Stochastic process. Appl.90 (2000),277-300.
    [142]SoleJ L, Utzet F. Stratonovich integral and trace. Stochastics Stochastics Rep.29 (2) (1990),203-220.
    [143]Bardina X, Jolis M and Tudor C A. On the convergence to the multiple Wiener-Ito inte-grals. Bull. Sci. Math.133 (2009),257-271.
    [144]Stroock D. Topics in Stochastic Differential Equations (Tata Institute of Fundamental Research, Bombay.) Springer, Berlin,1982.
    [145]Dzhaparide K and Van Zanten H. A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields.103 (2004),39-55.
    [146]Samko S G, Kilbas A A, Mariachev O I. Fractional integrals and derivatives. Gordon and Breach Science,1993.
    [147]Delgado R and Jolis M. Weak approximation for a class of Gaussian processes. J. Appl. Probab.37 (2000),400-407.
    [148]Bardina X, Es-Sebaiy K and Tudor C A. Approximation of the finite demensional distri-butions of multiple fractional integrals. J. Math. Anal. Appl.369 (2010),694-711.
    [149]Bourguin Sand Tudor C A. Asymptotic theory for fractional regression models via Malli-avin calculus. J Theor Probab. DOI 10.1007/s10959-010-0302-y.
    [150]Karlsen H A and Tjostheim D. Nonparametric estimation in null recurrent time series. Ann. Statistics.29 (2001),372-416.
    [151]Karlsen H A, Mykklebust T and Tjostheim D. Nonparametric estimation in a nonlinear cointegrated model. Ann. Statistics.35 (2007),252-299.
    [152]Schienle M. "Nonparametric Nonstationary Regression." Unpublished Ph.D. Thesis, University of Mannheim,2008.
    [153]Wang Q and Phillips P C B. Asymptotic Theory for the local time density estimation and nonparametric cointegrated regression. Econometric Theory.25 (2009),710-738.
    [154]Wang Q and Phillips P C B. Structural Nonparametric cointegrating regression. Econo-metrica.77 (2009),1901-1948.
    [155]Nualart D, Vives J. Smoothness of Brownian local times and related functionals. Poten-tial Anal.1(3) (1992),257-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700