非对称狄氏型的Beurling-Deny公式与半狄氏型理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狄氏型(Dirichlet form)理论在经典位势分析与随机分析之间架起了一座桥梁,在位势论,马氏过程,Malliavin分析,量子场论等许多领域有着广泛的应用。对称狄氏型的Beurling-Deny公式在对称狄氏型与对称马氏过程理论里起到了重要作用,比如在考虑对称马氏过程的绝对连续性时,此公式就扮演了重要角色。它使我们更好地了解狄氏型的解析结构,这些解析结构与马氏过程的样本轨道性质有密切联系。虽然有一些数学家试图把公式推广到非对称情形,但迄今Beurling-Deny公式仍然只适用于对称情形。不论是从理论上,还是应用上考察非对称狄氏型的Beurling-Deny公式都有其重要性。本文讨论了非对称狄氏型与半狄氏型的分解问题,给出了一些结构性结果,这些结果可以看作是经典Beurling-Deny公式的推广,也可以看作是Lévy-Khintchine公式或者更广一点是Courrége定理在狄氏型或者半狄氏型框架下的推广;并讨论了一些相关问题。
     首先我们讨论了正则非对称狄氏型的Beurling-Deny公式,我们证明可以构造E上与拓扑相容的距离ρ使得对任意a>0,任意u,v∈C_0(E)∩D(ε),我们有唯一的分解:
     第三章我们为后面的讨论半狄氏型的分解准备一些位势论的工具,主要讨论了正则半狄氏型的有限能量积分测度。
     第四章我们讨论了与正则半狄氏型相联系的Hunt过程的一些分析,得到了例外集与ε-例外集的等价性,ε-拟连续函数与q.e.精连续函数的等价性。得到了正则半狄氏型在开集上的部分仍是正则半狄氏型。
     第五章我们讨论了半狄氏型的局部紧化与拟同胚,得到了与狄氏型框架下完全类似的结果。
     本文最后一章讨论了拟正则半狄氏型的分解问题。在§6.1节我们建立了一个拟正则半狄氏型空间的积分表现定理(定理6.1.1),此定理在后面讨论拟正则
    
    非对称狄氏型的Beurling一Deny公式与半狄氏型理论
    半狄氏型的Be盯lin牙Deny分解时起到关键作用。互6.2节我们讨论了正则半狄氏
    型的Beurling一Deny分解.利用虽6.1与吞6.2的结果以及第五章讨论的拟正则半狄
    氏型的拟同胚,我们得到了拟正则半狄氏型的分解(定理6.3.1):对于v任D(句
    及二任几(v),有
    :(二,。)一/_.2(二(、)一。(x))。(、),(:二,己、)+关锐(X):(二)、(己x).
     J万K石\dJ名
    另外,通过引进一个拟相容距离p,我们得到对于一个特殊核D(句。里所有元
    素“,v及:>0,我们有(见定理6.3.6)
    £(一,一£”,‘(一,+关(二,,)。二、二,‘:。(二,,)>。,2(·(、,一(·,,·(、,了(“一“、,
     +尤·(X)·(·)、(d·).
    关键词:非对称狄氏型,半狄氏型,Beurling一Deny公式,L‘vy一Khintehine公
    式,Courr乙ge定理,S.P.V.可积,左强局部性,反vy过程,Hun七过程,扫除
    函数,有限能量积分测度,£一拟连续,q.e.精连续,半狄氏型的部分,局部紧
    化,拟同胚,拟支撑,积分表现定理,拟相容距离,核,特殊核,£一q.e.Lipschitz
    函数。
The theory of Dirichlet forms provides a bridge between classical potential theory and stochastic analysis. It has applications in potential theory, Markov processes, Malliavin analysis, quantum field theory, etc. The Beurling-Deny formula of symmetric Dirichlet forms plays an important role in the theory of symmtric Dirichlet forms and symmetric Markov processes. It provides a structure result of the forms which corresponds to the sample path behavior of the corresponding processes. Although, there have been some attempts for the extension of Beurling-Deny formula to non-symmetric case, but up to now it is still available only in symmetric case. This paper discuss the decompositions of non-symmetric Dirichlet forms and semi-Dirichlet forms. We give some structure results which can be regarded as an extension of the classical Beurling-Deny formula, and can also be regarded as an extension of Levy-Khintchine formula or more generally, an extension of Courrege's Theorem in Dirichlet forms or semi-Dirichlet forms setting. We also discuss some related problems.At first, we discuss the Beurling-Deny formula of regular (non-symmetric) Dirichlet forms. We construct a compatible metric p on E such that for any we have the following decomposition:In chapter 3 we prepare some potential tools for the discussions of the decomposition of semi-Dirichlet forms. In this chapter we mainly discuss the measures of finite energy integral with respect to a regular semi-Dirichelt forms.In chapter 4 we study futher some properties of regular semi-Dirichlet forms
    
    and its relation with associated Hunt process. We obtain the equivalence of exceptional sets and ε-exceptional sets, the equivalence of ε-quasi-continuous functions and q.e.-finely continuous functions. We prove that the part of a regular semi-Dirichlet form on an open set is also a regular semi-Dirichlet form, analogous to the case of regular Dirichlet forms.In chapter 5 we discuss the local compactification and quasi-homeomorphism of semi-Dirichlet forms , and get similar results as in Dirichlet forms setting.In final chapter of this paper we study the decompositions of quasi-regular semi-Dirichlet forms. In section 6.1 we establish an integral representation theorem for quasi-regular semi-Dirichlet spaces (cf, Theorem 6.1.1), which plays a key role in the discussion of the Beurling-Deny decompositions of quasi-regular semi-Dirichle forms. In section 6.2 we discuss the Beurling-Deny decompositions of regular semi-Dirichlet forms. By the results in section 6.1, 6.2 and quasi-homeomorphism of quasi-regular semi-Dirichlet forms discussed in chapter 5, we show that for any and we have (cf, Theorem 6.3.1)Moreover, we construct a quasi-compatible metric such that for all u, v in a special core and we have (cf, Theorem 6.3.6)
引文
[AFRS 95] Albeverio S., Fan R. Z., Rockner M., Stannat W.: A remark on coercive forms and associated semigroups, Operator Theory: Advances and applications, 78, 1-8, 1995.
    [AM 91] Albeverio S., Ma Z. M.: A general correspondence between Dirichlet forms and right processes, Bull. Amer. Math. Soc, 26, 245-252, 1991.
    [AMR 92] Albeverio S., Ma Z. M. and Rockner M.: A Beurling-Deny type structure theorem for Dirichlet forms on general state space, In: Memorial Volume for R.H0egh- Krohn, Vol.1, Ideals and Methods in Math. Anal. Stochastics and Appl. (eds. Albeverio S., Fenstad J. E., Holden H. and Lindstr0m T. ), Cambridge Univ. Press, Cambridge, 1992.
    [AMR 95] Albeverio S., Ma Z. M. and Rockner M.: Characterization of (non-symmetric) semi-Dirichlet forms associated with Hunt processes, Random Oper. and Stoch. Equ., 3(2), 161-179, 1995.
    [ARZ 93] Albeverio S., Rockner M. and Zhang T.-S.: Girsanov transform for symmetric diffusions with infinite dimensional state space, Annals of Probability, 2(21), 961- 978, 1993.
    [An 72] Ancona A.: Theorie du potentiel dans les espaces fonctionnels a forme coercive, Lecture Notes University Paris VI, 1972.
    [An 75] Ancona A.: Sur les espaces de Dirichlet: principes, fonctions de Green, J. Maths pures et appl., 54, 75-124, 1975.
    [Ap 02] Applebaum D.: Levy Processes and Stochastic Calculus-Part 1, Preprint, 2002.
    [Be 96] Bertoin J.: Levy Processes, Cambridge University Press, 1996.
    [BD 59] Beurling A. and Deny J.: Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., 45, 208-215, 1959.
    [B171] Bliedtner J.: Dirichlet forms on regular functional spaces. In: Seminar on Potential Theorey II, Lecture Notes in Math. 226, 15-62, Springer-Verlag, Berlin-Heidelberg- New York, 1971.
    [Bl-G 68] Blumenthal R.M. and Getoor R. K.: Markov processes and potential theory, Aca- demic Press, New York and London, 1968.
    [BH 91] Bouleau N. and Hirsch F.: Dirichlet forms and analysis on Wiener space. Berlin- New York: de Gruyter, 1991
    [Ca-Me 75] Carrillo-Menendez S.: Processus de Markov associe a une forme de Dirichlet non symetrique, Z. Wahrsch. verw. Geb., 33, 139-154, 1975.
    [CFTYZ 04] Chen Z.-Q, Fitzsimmons P.J., Takeda M., Ying J.-G. and Zhang T.-S.: Absolute continuity of symmetric Markov processes, to appear in Ann. Probab.
    [CMR 94] Chen Z.-Q., Ma Z. M. and Rockner M.: Quasi-homeomorphism of Dirichlet forms, Nagoya Math. J. , 136, 1-15, 1994.
    
    [CZ 02] Chen Z. -Q. and Zhang T. -S.: Girsanov and Feynman-Kac transfomations for symmetric Markov processes, Ann. I. H. Poincare-PR, 4(38), 475-505, 2002.
    [CZ 94] Chen Z. -Q. and Zhao Z.: Switched diffusion processes and systems of elliptic equations: a Dirichlet space approach, Proc. Royal Soc. Edinburgh, 124A, 673- 701, 1994.
    [CT 78] Chow Y. S. and Teicher H.: Probbility Theory: Independence, Interchaneablity, Martingales, Springer-Verlag, 1978.
    [Ch 82] Chung K. L.: Lectures from Markov processes to Brownian motion, Springer- Verlag, 1982.
    [Coh 80] Cohn D. L.: Measure Theory, Birkhuser, 1980.
    [Cou 66] Courrège PH.: Sur la forme intégro-différentielle des opérateurs de C_K~∞ dans C satisfaisant au principe du maximum, Sém. Théorie du Potentiel, Exposé, 2, 38, 1965/1966.
    [D 96] Dong Z.: Some New Results on Dirichlet Forms and Constructions of General Markov Processes, Ph D Dissertation, Beijing, PRC, 1996.
    [DM 93] Dong Z. and Ma Z. M.: An integral representation theorem for quasi-regular Dirichlet spaces, Chinese Sci. Bull., 38, 1355-1358, 1993.
    [DMS 97] Dong Z., Ma Z. M., Sun W.: A note on Beurling-Deny formulae in infinite dimensional spaces, ACTA Mathematicae Applicatae Sinica, 13(4), 353-361, 1997.
    [Fa 92] Fan R. Z.: Beurling-Deny Formulae on Banach Spaces, Acta Mathematica Scientia, 12, 79-84, 1992.
    [Fi 97] Fitzsimmons P. J.: Absolute continuity of symmetric diffusions, Annals of Probability, 1(25), 230-258, 1997.
    [Fi 01] Fitzsimmons P. J.: On the quasi-regularity of semi-Dirichlet forms, Potential Analysis, 15(3), 151-182, 2001.
    [Fu 71] Fukushima M.: Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc., 162, 185-224, 1971.
    [Fu 80] Fukushima M.: Dirichlet forms and Markov processes, Amsterdam-Oxford-New York: North Holland, 1980.
    [Fu 82] Fukushima M.: On absolute continuity of multidimensional symmetrialbe diffusions, Functional Analysis. in Markov processes, Lecture Notes in Math., 923, 146-176, Springer, Berlin, 1982.
    [FOT 94] Fukushima M., Oshima Y., Takeda M.: Dirichlet forms and symmetric Markov processes, de Gruyter, 1994.
    [Ga 00] 高国士:拓扑空间论,科学出版社,2000。
    [G0 95] 龚光鲁:随机微分方程引论,北京大学出版社,1995。
    [Ha 74] Halmos P. R.: Measure theory, Springer-Verlag, 1974.
    [HWY 95] 何声武,汪嘉冈,严加安:半鞅与随机分析,科学出版社,1995。
    [HM 04a] Hu Z. C. and Ma Z. M.: Beurling-Deny formula of non-symmetric Dirichlet forms, Preprint.
    [H
    
    [HM 04b] Hu Z. C. and Ma Z. M.: Beurling-Deny formula of semi-Dirichlet forms, C. R. Acad. Sci. Paris. 338(7), 521-526, 2004.
    [HM 04c] Hu Z. C. and Ma Z. M.: Extension of Lévy-Khintchine formula in semi-Dirichlet forms setting, Preprint.
    [Hu 88] 黄志远:随机分析学基础,武汉大学出版社,1988.
    [Hu-Y 97] 黄志远,严加安:无穷维随机分析引论,科学出版社,1997.
    [Ja 96] Jacob N.: Pseudo-Differential operators and Markov processes, Akademie Verlag, 1996.
    [Ja 01] Jacob N.: Pseudo-Differential operators and Markov processes: 1, Fourier Analysis and Semigroups, World Scientific, 2001.
    [Ja-S 98] Jacob N. and Schilling R. L.: An analytic proof of the Lévy-Khintchine formula on R~n, Publ. Math. Debrecen, 53, 69-89, 1998.
    [Ja-S 00] Jacob N. and Schilling R. L.: Fractional derivatives, non-symmetric and time- dependent Dirichlet forms, and the drift form, Z. Analysis Anwendungen., 19, 801-830, 2000.
    [JKMRS 98] Jost J., Kendall W., Mosco U., Rckner M. and Sturm K.: New Directions in Dirichelt Forms, American Mathematical Society and International Press, 1998.
    [Ki 87] Kim J. H.: Stochastic calculus related to non-symmetric Dirichlet forms, Osaka J. Math., 24, 331-371, 1987.
    [Ku 98] Kuwae K.: Functional calculus for Dirichlet forms, Osaka J. Math., 35, 683-715, 1998.
    [MOR 95] Ma Z. M., Overbeck L. and Rckner M.: Markov processes associated with semi-Dirichlet forms, Osaka J. Math., 32, 97-119, 1995.
    [MR 92] Ma Z. M., Rckner M.: Introduction to the theory of(non-symmetric) Dirichlet forms, Springer-verlag, Berlin-Heidelberg-New York, 1992.
    [MR 95] Ma Z. M., Rckner M.: Markov processes associated with positivity preserving coercive forms, Osaka J. Math., 47, 817-840, 1995.
    [Os 87] Oshima Y.: On absolute continuity of two symmetric diffusion processes, Lecture Notes in Math., 1250, 184-194, Springer, Berlin, 1987.
    [Os 88] Oshima Y.: Lectures on Dirichlet forms, Preprint Erlangen, 1988.
    [QG 97] 钱敏平,龚光鲁:随机过程论,北京大学出版社,1997.
    [Re-S 72] Reed M., Simon B.: Methods of modern mathematical physics Ⅰ. Functional Analysis. New York-San Francisco-London: Academic Press 1972.
    [Ru 73] Rudin W.: Functional analysis, McGraw-Hill Book Company, 1973.
    [Sa 99] Sato K.: Lévy processes and infinitely divisible distributions, Cambridge University Press, 1999.
    [Sc 99] Schmuland B.: A course on infinite Dimensional Dirichlet forms, Preprint Academic Sinica, Beijing, 1999.
    
    [Sh 88] Sharpe M. T.: General theory of Markov processes, New York: Academic Press, 1988.
    [Si 74] Silverstein M. L.: Symmetric Markov processes, Lecture Notes in Math., 426, Berlin-Heidelberg-New York: Springer, 1974.
    [Si 78] Silverstein M. L.: Application of the sector condition to the classification of sub-Markovian semigroups, Trans. Amer. Math. Soc., 244, 103-146, 1978.
    [St 94] Stannat W.: Generalized Dirichlet forms and associated Markov processes, C. R. Acad. Sci. Paris, 319, 1063-1068, 1994.
    [St 99] Stannat W.: The Theory of Generalized Dirichlet Forms and Its Applications in Analysis and Stochastics, Memoirs of Amer. Math. Soc., 678, 1999.
    [Su 97] Sun W.: The Convergence Theory of Dirichlet Forms and some Topics Concerning Generalized Dirichlet Forms, Ph D Dissertation, Beijing, PRC, 1997.
    [Su 00] Sun W.: Quasi-Homeomorphism and Measures of Finite Energy Integrals of Generalized Dirichlet Forms, Acta Mathematica Sinica, English Series, 16. 325-336, 2000.
    [W 86] 王寿仁:概率论基础与随机过程,科学出版社,1986.
    [Ya 98] 严加安:测度论讲义,科学出版社,1998.
    [Yi-J 03] 应坚刚,金蒙伟:随机过程基础,待出版。
    [Yo 99] Yosida K.: Functional Analysis(Sixth Edition), Springer-Verlag, 1999.
    [ZG 90] 张恭庆,郭懋正:泛函分析讲义(下册),北京大学出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700