取向胶原基材料的制备及影响因素的考察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶原作为来源丰富的生物大分子,可以从许多机体组织中进行分离提纯,去除端肽后的胶原可以消除其抗原性,并可用于加工制备成具有良好生物相容性的生物材料。胶原作为细胞外基质的主要成分,广泛存在于哺乳动物的大部分组织和器官中,起支持和保护作用。同时,胶原作为具有生理活性的生物大分子,可参与机体内的多项生理过程,诸如细胞的黏附、增殖、迁移和分化,细胞的信号传导,以及组织的构建和再生等。
     胶原在机体多种组织器官中具有取向分布的特点,其取向与组织器官的结构、生物力学性能及生理功能密切相关。组织内胶原纤维取向的破坏会导致组织结构的变化,使其失去原有的生物力学性能,从而影响其正常的生理功能。目前,在修复损伤组织时,为了保持胶原纤维的取向完整性,实现损伤组织更好的修复并与周围组织能更好的融合,已经成为生物材料、组织工程和再生医学研究的方向之一。本研究重点是在体外构建具有明确取向结构的植入材料。
     本论文基于对胶原基材料取向构建研究进展的综述,分析了构建过程中影响胶原纤维取向的因素,研究了胶原纤维的形成和风力辅助取向机制,并在制备取向胶原基材料的基础上开展了生物矿化的研究,为胶原基材料的制备、研究和应用提供新的思路和方法。
     1、胶原纤维形成机理的研究
     选用sigma牛腱Ⅰ型胶原制备胶原溶胀液,首先,对组装前的胶原溶胀液进行表征,红外、紫外、圆二色谱和DSC结果表明,在选定的实验浓度、实验温度范围内,胶原能保持稳定的三螺旋结构。随后,对胶原在PBS缓冲液作用下的自组装过程进行了研究,粒径、紫外和ITC结果表明,胶原的自组装是一个多阶段的复杂过程,原子力显微镜观察结果显示,胶原在PBS缓冲液作用下可以自组装形成具有典型横纹结构的胶原纤维。研究中发现,胶原的自组装过程受浓度、温度、pH值和离子强度等条件的影响,所形成的胶原纤维尺寸及横纹结构会发生变化。
     2、胶原基材料取向制备的研究
     搭建可控制气流强度、方向、温度的实验装置,考察基底材料表面性质、温度、浓度、气流强度、气流方向、气流作用时间对胶原材料取向的影响,探索气流作用影响下胶原材料的取向机制。通过扫描电镜和原子力显微镜的观察以及利用MATLAB编程分析,本实验所制备的胶原材料胶原纤维具有较好的取向度,同时保持了横纹结构的完整性。
     3、胶原生物矿化机制的研究
     模拟生物矿化过程,仿生制备胶原矿化材料并进行表征。用扫描电镜和透射电镜观察发现,胶原可以发生一定程度的矿化,形成具有一定分布规律的晶体。选区电子衍射和X射线衍射表征显示,所形成的矿化晶体主要为多晶形态的羟基磷灰石。红外结果显示,在矿化过程中胶原的结构维持相对稳定,没有发生明显的变性。通过原子力显微镜的观察以及利用MATLAB编程分析,本实验所制备的矿化胶原材料中,胶原纤维具有较好的取向度,同时保持了横纹结构的完整性。
As a biomacromolecules, collagen has a rich source in various of tissues which can be separated and purified from these tissues. Removing the telopeptide with antigenicity, collagen can be processed to prepare biomaterials with excellent biocompatibility. Collagen is the predominant component of extracellular matrices existing in all multicellular animals, which can not only maintain structural integrity of tissues and organs, but also participate physiological processes in endosomatic, such as cell adhesion, proliferation, migration and differentiation, signal transduction of cells, tissue construction and regeneration, and so on.
     In many tissues and organs, collagen fibers aligned with a special orientation. The orientation of collagen fibers determined the construction features of these tissues and organs, and then affect their biomechanics, performed as a basis for the tissues and organs to execute their physiologic function. The destroy of collagen fiber orientation can result in the destroy of tissue structure, making it lose the intrinsical biomechanics property and influencing the normal physiologic function. At present, when repairing the destroyed tissues, how to maintain the orientation of collagen fibers and realize the reconstruction and fusion of these tissues, has become one of the research directions in biomaterials, tissue engineering and regenerative medicine fields. The main thread is to construct implant materials with the same orientation of target tissue in vitro.
     In this thesis, we reviewed the research evolution of the construction of collagen materials with special orientation and analysised some of the influence factors which affect the orientation in the build process of collagen materials. We researched the mechanism of collagen fibers formation and orientation, and carried out biomineralizaion of collagen materials on this basis.
     1. Research on collagen fiber formation mechanism
     We chose sigma type I collagen from tendon of bovine to prepare collagen solution. First we investigated the physical and chemical properties of collagen. IR, UV, CD and DSC results showed that the characteristic triple helix structure of collagen remain intact with chosen experimental concentration and temperature. Then we investigated the self-assembly of collagen in presence of PBS buffer. The DLS, UV and ITC results showed that the self-assembly of collagen is a complex multistep process. AFM results showed that collagen can assembled into fibers with typical D-period under the effect of PBS buffer. In this research we found that the self-assembly process of collagen could be affected by concentration, temperature, pH, ionic strength and some other factors, the dimension and D-period of collagen fibers changed with the factors above.
     2. Research on collagen fibers orientation
     We built an experimental facility which can control the air strength, direction and temperature. With this facility we investigated the influence of surface property of substrate material, temperature, concentration, air strength, air direction and air action time on the orientation of collagen fibers, and explored the mechanism of collagen fibers orientation with the effect of air flow. SEM and AFM results showed that in the collagen materials prepared in this research, the collagen fibers aligned in a determinate orientation and the D-period is integral.
     3. Research on collagen biomineralization
     We simulated the biomineralization of collagen to prepare materials and then carried out representation on them. SEM and AFM results showed that in these materials, collagen could be mineralized in a certain degree and formed crystals distributed regularly. SAED and XRD results showed the crystals were mainly polycrystal hydroxyapatite. IR results showed collagen structure remain stable during the mineralization.
引文
[1]Martin RB, Lau ST, Mathews PV, Gibson VA, Stover SM. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods [J]. J Biomech,1996,29(12):1515-1521.
    [2]Wagermaier W, Gupta H. S and Gourrier A. Spiral twisting of fiber orientation inside bone lamellae [J]. Biointerphases,2006,1(1):1-5.
    [3]Shinar H, Navon G. Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure [J]. NMR Biomed,2006,19(7):877-893.
    [4]Elliott DH. Structure and function of mammalian tendon. [J]. Biol Rev Camb Philos. Soc 1965,40:392-421.
    [5]Weiner S, Traub W. Bone structure:from angstroms to microns. [J]. FASEB.1992, 6(3):879-885.
    [6]Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE. Corneal collagen fibril structure in three dimensions:structural insights into fibril assembly, mechanical properties, and tissue organization. [J]. Proc Natl Acad Sci USA.2001,98(13): 7307-7312.
    [7]Sasaki K, Yasui T, Tohno Y, and Araki T. Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic- generation light [J]. Opt Quant Electon,2005,37:1397-1408.
    [8]Engelmayr GC Jr, Papworth GD, Watkins SC, Mayer JE Jr, Sacks MS. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures[J]. J. Biomech,2006,39(10):1819-1831.
    [9]Ingber DE, Mow VC, Butler D, Niklason L, Huard J,Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G. Tissue engineering and developmental biology:going biomimetic. [J]. Tissue Eng.2006,12:3265.
    [10]Verhaegen PD, van Zuijlen PP, Pennings NM, van Marle J, Niessen FB, van der Horst CM, Middelkoop E. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin:An objective histopathological analysis[J].Wound Repair Regen,2009,17(5):649-656.
    [11]Zeugolis DI, Paul RG, Attenburrow G. Engineering extruded collagen fibers for biomedical applications. [J]. Appl Polym Sci,2008,108:2886-2894.
    [12]Gigante A, Cesari E, Busilacchi A, Manzotti S, Kyriakidou K, Greco F, Di Primio R, Mattioli-Belmonte M. Collagen I membranes for tendon repair:effect of collagen fiber orientation on cell behavior [J]. J Orthop Res,2009,27(6):826-832.
    [13]Kadler KE, Baldock C, Bella J, Boot-Handford RP. Collagens at a glance. [J]. Cell Sci.2007,120(Pt 12):1955-1958.
    [14]Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. [J]. Biochem.1996,316(Pt 1):1-11.
    [15]Abbott A. Cell culture:biology's new dimension. [J]. Nature.2003,424(6951):870-872.
    [16]Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. [J]. Science.2001,294(5547):1708-1712.
    [17]Kadler K. Matrix loading:assembly of extracellular matrix collagen fi brils during embryogenesis. [J]. Birth Defects Res Part C.2004,72(1):1-11.
    [18]Cai W, Kwok SW, Taulane JP, et al. Metal-assisted assembly and stabilization of collagen-like triple helices. [J]. Am Chem Soc.2004,126(46):15030-15031.
    [19]Di Lullo GA, Sweeney SM, Korkko J, et al. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human type I collagen. [J]. Biol Chem.2002,277(6):4223-4231.
    [20]王镜岩,朱圣庚,徐长法.生物化学[M].高等教育出版社,2002.
    [21]蒋挺大,张春萍.胶原[M].北京:化学工业出版社,2001.
    [22]Fields GB, Prockop DJ. Perspectives on the synthesis and applicationg of triple-helical collagen-model peptides. [J]. Biopolymers.1996,40(4):345-357.
    [23]Xu Y, Gurusiddappa S,Rich RL, et al. Multiple binding sites in collagen type I for the integrins alphal betal and alpha2 betal. [J]. Biol chem.2000,275(50):38981-38989.
    [24]Frank S, Boudko S, Mizuno K, et al. Collagen triple helix formation can be nucleated at either end. [J]. Biol Chem.2003,278(10):7747-7750.
    [25]Gross J. Studies on the formation of collagen. Ⅱ. The influence of growth rate on neutral salt extracts of guinea pig dermis. [J]. Exp Med.1958,107:265-277.
    [26]Gross J. Studies on the formation of collagen. Ⅰ. Properties and fractionation of neutral salt extracts of normal guinea pig connective tissue. [J]. Exp Med.1958,107: 247-263.
    [27]Gross J, Highberger JH, Schmitt FO. Collagen structures considered as states of aggregation of a kinetic unit. The tropocollagen particle. [J]. Proc Natl Acad Sci USA. 1954,40:679-688.
    [28]Highberger JH, Gross J, Schmitt FO. The interaction of mucoprotein with soluble collagen:an electron microscope study. [J]. Proc Natl Acad Sci USA.1951,37:286-291.
    [29]Chapman J. [A], in 'Connective Tissue Matrix', D. W. L Hukins. [C]. Macmillan, London,1984L:89-132.
    [30]Wood GC. The formation of fibrils from collagen solutions 1. The effect of experimental conditions:kinetic and electron-microscope studies [J]. Biol Chem.1960, 75:598.
    [31]Cassel J M, Mandelkern L, Roberts DE. [J]. Am Leathet Chemists Assoc.1962,57: 556.
    [32]Comper WD, Veis A. The mechanism of nucleation for in vitro collagen fibril formation. [J]. Biopolymers.1977,16:2113.
    [33]Williams BR, Gelman RA, Poppke DC, Piez KA. Collagen fibril formation optimal in vitro conditions and preliminary kinetic results [J]. Biol Chem.1978,253:6578.
    [34]Gelman RA, Williams BR, Piez KA. Collagen fibril formation evidence for a multistep process. [J]. Biol Chem.1979,254:180.
    [35]Gelman RA, Piez KA. [J]. Biol Chem.1980,255:8098.
    [36]Silver FH, Langley KH, Trelstad RL. Type I Collagen Fibrillogenesis:Initiation via Reversible Linear and Lateral Growth Steps. [J]. Biopolymers.1979,18:2523.
    [37]Silver FH. Type I Collagen Fibrillogenesis in Vitro:Additional evidence for the assembly mechanism. [J]. Biol Chem.1981,256:4973.
    [38]Holmes DF, Chapman JA. Biochem Biophys Res Commun.1979,87:993.
    [39]Chapman JA, Holmes DF, Meek KM, Rattew CJ. [A]. in "Structural Aspects of Recognition and Assembly in Biological Macromolecules', Balaban M, Sussman JL, Traub W, Yonath A. International Science Services. [C]. Rehovat and Philadelphia 1981: 387-401.
    [40]Gelse K, Poschl E, Aigner T. Collagens—structure, function, and biosynthesis. [J]. Advanced Drug Delivery Reviews.2003,55:1531-1546.
    [41]Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. [J]. Biochem.1996,316:1-11.
    [42]Hulmes DJ. Building collagen molecules, fibrils, and supra fibrillar structures. [J]. Struct Biol.2002,137:2-10.
    [43]Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. The in situ supermolecular structure of type I collagen. [J]. Structure (Camb).2001,9:1061-1069.
    [44]Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M. Hierarchical structures in fibrillar collagens. [J]. Micron.2002,33:587-596.
    [45]Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. [J]. FEBS Lett.1986,206:262-266.
    [46]Andrzej Steplewski, Vera Hintze, Andrzej Fertala. Molecular basis of organization of collagen fibrils. [J]. Journal of Structural Biology.2007,157:297-307.
    [47]Vamsi KY, David VS, Ramana MP. Nanoscale measurements of the assembly of collagen to fibrils. [J]. International Journal of Biological Macromolecules.2010,46: 458-464.
    [48]Kadler KE, Hojima Y, Prockop DJ. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. [J]. Biol Chem.1987,262(15):696-701.
    [49]Parkinson J, Kadler KE, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion-limited aggregation. [J]. Mol Biol.1995,247:823-831.
    [50]Leikin S, Rau DC, Parsegian VA. Temperature-favored assembly of collagen is driven by hydrophilic not hydrophobic interactions. [J]. Nat Struct Biol.1995,2: 205-210.
    [51]Klug WS, Cummings MR. Genes and proteins. [A]. In Concepts of Genetics,5th ed. Prentice-Hall, Upper Saddle River, New Jersey,1997.
    [52]Chen S, Hirota N, Okuda M, Takeguchi M, Kobayashi H, Hanagata N, Ikoma T. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. [J]. Acta Biomaterialia.2011,7: 644-652.
    [53]Kamihira M, Naito A, Tuzi S, Nosaka AY, Saito H. Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR [J]. Protein Sci.2000,9:867-877.
    [54]Muller DJ, Amrein M, Engel A. Adsorption of Biological Molecules to a Solid Support for Scanning Probe Microscopy [J]. Struct. Biol.1997,119:172-188.
    [55]Besseau L, Giraud Guille MM. Stabilization of fluid cholesteric phases of collagen to ordered gelated marices. [J]. Journal of Molecular Biology.1995,251:197-202.
    [56]Bruns R. Supramolecular structure of polymorphic collagen fibrils. [J]. Cell Biol. 1976,68:521-538.
    [57]Chapman JA, Hulmes DJS. Electron microscopy of the collagen fibril. [A]. In: Ruggeri A, Motta PM. Ultrastructure of the Connective Tissue Matrix. [C]. Martinus Nijhoff, The Hague,1984:1-33.
    [58]Mallinger R, Kulnig W, Boeck P. Symmetrically banded collagen fibrils:bservation on a new cross striation pattern in vivo. [J]. Anat. Rec.1992,232:45-51.
    [59]Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M. Hierarchical structures in fibrillar collagens. [J]. Micron.2002,33:587-596.
    [60]Wood GC, Keech MK. The Formation of Fibrils from Collagen Solutions. [J]. Biochem.1960,75:588-598.
    [61]Dong MD, Xu SL, Bunger MH, Birkedal H, Besenbacher F. Temporal Assembly of Collagen Type Ⅱ Studied by Atomic Force Microscopy. [J]. Advanced Engineering Materials.2007,9:1129-1133.
    [62]Hattori S, Adachi E, Ebihara T, Shirai T, Someki I, Irie S. Alkali-Treated Collagen Retained the Triple Helical Conformation and the Ligand Activity for the Cell Adhesion via a2pl Integrin. [J]. The Journal of Biochemistry.1999,125:676-684.
    [63]Edwina SL, Claire MA, Gerald GF. Designing a tubular matrix of oriented collagen fibrils for tissue engineering. [J]. Acta Biomaterialia.2011,7:2448-2456.
    [64]Jiang FZ, Horber H, Howard J, Muller DJ. Assembly of collagen into microribbons: effects of pH and electrolytes. [J]. Journal of Structural Biology.2004,148:268-278.
    [65]David LC, Eric KH, Frederick HS. [J]. Assembly of type I collagen:fusion of fibril subunits and the influence of fibril diameter on mechanical properties. [J]. Matrix Biology.2000,19:409-420.
    [66]Gelman RA, Poppke DC, Piez KA. Collagen fibril formation in vitro. The role of the nonhelical terminal regions. [J]. Biol Chem.1979,254(22):11741-11745.
    [67]Alchert K, Streller U, Pompe T, Herold N, Grimmer M, Werner C. In vitro reconstitution of fibrillar collagen type I assemblies at reactive polymer surfaces. [J]. Biomacromolecules.2004,5(4):1340-1350.
    [68]王碧,王坤余,贾冬英等.胶原蛋白及多肽的黏度特性.[J].中国皮革.2003,32(11):22-25.
    [69]史向阳,吴世康,孙曹民.荧光探针法研究胶原蛋白的水溶液聚集状态.[J].高分子学报.1998,4:406-411.
    [70]Trus BL, Piez KA. Molecular packing of collagen:three-dimensional analysis of electrostatic interactions. [J]. Mol. Biol.1976,108:705-732.
    [71]Hulmes DJ, Miller A, Parry DA, Piez KA, Woodhead-Galloway J. Analysis of the primary structure of collagen for the origins of molecular packing. [J]. Mol. Biol.1973, 79:137-148.
    [72]Kadler KE, Hojima Y, Prockop DJ. Assembly of type I collagen fibrils de novo.Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. [J]. Biol Chem.1988,263:10517-10523.
    [73]George A, Veis A. FTIR in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro. [J]. Biochemistry.1991, 30:2372-2377.
    [74]Veis A, George A. Fundamentals of interstitial collagen self-assembly. [A]. In: Yurchenco PD, Birk DE, Mecham RP. Extracellular matrix assembly and function. [C]. San Diego:Academic Press; 1994:15-45.
    [75]严金龙,孙汝东,柏云杉,聂福礼,王肇福.明胶的粘度行为和谱学特征.皮革化工,1999,16(6):1-3,7.
    [76]Wood GC, Keech MK. The Formation of Fibrils from Collagen Solutions. [J]. Biochem.1960,75:588-598.
    [77]Karl EK, David FH, John AT, John AC. Collagen fibril formation. [J]. Biochem. 1996,316:1-11.
    [78]David AC, Carlos Hung, Clemens MF, Daniel JM. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. [J]. Journal of Structural Biology.2006,154:232-245.
    [79]Karl EK, David FH, John AT, John AC. Collagen fibril formation. [J]. Biochem. 1996,316:1111.
    [80]Chvapil M. Fibrous Proteins. [A]. in:Parry DAD, Creamer LK. Scientific, Industrial and Medical Aspects. [C].1979, Academic Press, London, vol.1:247-269.
    [81]Elsdale T, Bard J.Collagen Substrata for Studies on Cell Behavior [J]. Cell Biol. 1972,54:626-637.
    [82]Jim Torbet, Marie-Claire Ronziere. Magnetic alignment of collagen during self-assembly. [J]. Biochem.1984,219:1057-1059.
    [83]Holmes DF, Gilpin CJ, Baldock C, Ziese U, Koster AJ, Kadler KE. Corneal collagen fibril structure in three dimensions:structural insights into fibril assembly, mechanical properties, and tissue organization. [J]. Proc Natl Acad Sci USA.2001,98:7307-7312.
    [84]Scott JE. Supramolecular organization of extracellular-matrix glycosaminoglycans, in vitro and in the tissues. [J]. Faseb.1992,6:2639-2645.
    [85]Elsdale T, Bard J. Collagen substrata for studies on cell behavior. [J]. Cell Biol. 1972,54:626-637.
    [86]Matthews JA, et al. Electrospinning of collagen nanofibers. [J]. Biomacromolecules. 2002,3(2):232-238.
    [87]Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. Electrospinning collagen and elastin:preliminary vascular tissue engineering. [J]. Front Biosci.2004,9:1422-1432.
    [88]Wilson DL, et al. Surface organization and nanopatterning of collagen by dip-pen nanolithography. [J]. Proc Natl Acad Sci USA.2001,98(24):13660-13664.
    [89]Faraj KA, van Kuppevelt TH, Daamen WF. Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. [J]. Tissue Eng 2007,13(10): 2387-2394.
    [90]Torbet J, Malbouyres M, Builles N, Justin V, et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. [J]. Biomaterials.2007,28:4268-4276.
    [91]Eguchi Y, Ogiue-Ikeda M, Ueno S. Control of orientation of rat Schwann cells using an 8-T static magnetic field. [J]. Neurosci Lett.2003,13:130-132.
    [92]Kotani H, Iwasaka M, Curtis A, Ueno S. Magnetic orientation of collagen and bone mixture. [J]. Appl Phys.2000,87:6191-6193.
    [93]Hirose H, Nakahara T, Miyakoshi J. Orientation of human glioblastoma cells embedded in type I collagen, caused by exposure to a 10 T static magnetic field. [J]. Neurosci Lett.2003,338:88-90.
    [94]Wu C, Sassa K, Iwai K, Asai S. Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field. [J]. Mater Lett.2007,61: 1567-1571.
    [95]Chen S, Hirota N, Okuda M, Takeguchi M, Kobayashi H, Hanagata N, Ikoma T. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields. [J]. Acta Biomaterialia.2011,7: 644-652.
    [96]Nima Saeidi, Edward AS, Jeffrey WR. Dynamic shear-influenced collagen self-assembly. [J]. Biomaterials.2009,30:6581-6592.
    [97]Babette Lanfer, Uwe Freudenberg, Ralf Zimmermann, Dimitar Stamov, Vincent Korber, Carsten Werner. Aligned fibrillar collagen matrices obtained by shear flow deposition. [J]. Biomaterials.2008,29:3888-3895.
    [98]Lee P, et al. Microfluidic alignment of collagen fibers for in vitro cell culture. [J]. Biomed Microdevices.2006,8(1):35-41.
    [99]Guo C, Kaufman LJ. Flow and magnetic field induced collagen alignment. [J]. Biomaterials.2007,8(6):1105-1114.
    [100]Nima Saeidi, Edward AS, Ramin Zareian, Jeffrey WR Production of highly aligned collagen lamellae by combining shear force and thin film confinement. [J]. Acta Biomaterialia.2011,7:2437-2447.
    [101]Eastoe JE, Eastoe B. The organic constituents of mammalian compact bone. [J]. Biochem.1954,57:453-459.
    [102]Currey JD. Role of collagen and other organics in the mechanical properties of bone. [J]. Osteoporos Int.2003,9(14):S29-36.
    [103]Currey JD, Zioupos P, Davies P, Casinos A. Mechanical properties of nacre and highly mineralized bone. [J]. Proc R Soc London B 2001,268:107-111.
    [104]Fisher LW, Termine JD. Non-collagenous proteins influencing the local mechanism of calcification. [J]. Clin Orthop.1985,200:362.
    [105]Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. [J].Angew Chem Int Ed.2002,41:3130-3146.
    [106]Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. [J]. Clin Orthop Rel Res.1998,346: 26-37.
    [107]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replace-ment implants. [J]. Mater Res.1998,13(1): 94-117.
    [108]Ducheyne P, Qiu Q. Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function. [J]. Biomaterials.1999,20:2287-303.
    [109]Green D, Walsh D, Mann S, Oreffo ROC. The potential of biomimesis in bone tissue engineering:lessons from the design and synthesis of invertebrate skeletons. [J]. Bone.2002,30(6):810-815.
    [110]Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. [J]. Mater Res.1998,13(1): 94-117.
    [111]Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. [J]. Biomaterials.2000,21:2347-2359.
    [112]LeGeros RZ, LeGeros JP, Daculsi G, Kijkowska R. Calcium phosphate biomaterials:preparation, properties and biodegradation. [A]. In:Encyclopedic handbook of biomaterials and bioengineering, Part A:materials vol. Ⅱ. Wise DL, Trantolo DJ, Altobelli DE, Yaszemski MJ, Gresser JD, Schwartz ER. [C]. New York, USA:Marcel Dekker,1995,1429-1463.
    [113]Asashina I, Watanabe M, Sakurai N, Mori M, Enomoto S. Repair of bone defect in primate mandibule using a bone morphogenetic protein (BMP)-hydroxyapatite-collagen composite. [J]. Med Dent Sci.1997,44:63-70.
    [114]Reddi AH. Morphogenesis and tissue engineering of bone and cartilage:inductive signals, stem cells, and biomimetic materials. [J]. Tissue Eng.2000,6(4):351-359.
    [115]Verde-Carvallo G, Guarino A, Gonzalez G. Mineralization of Hydroxyapatite over Collagen Type I. [J]. European Cells and Materials.2004,7(2):58-59.
    [116]Stupp SI, Mejicano GC, Hanson JA. Organoapatites:materials for artificial bone. II. Hardening reactions and properties. [J]. Biomed Mater Res.1993,27:289-299.
    [117]Doi Y, Horiguchi T, Moriwaki Y, Kitago H, Kajimoto T, Iwayama Y. Formation of apatite—collagen complexes. [J]. Biomed Mater Res.1996,31:43.
    [118]Wang RZ, Cui FZ, Lu HB, Wen HB, Ma CL, Li HD. Synthesis of nanophase hydroxyapatite/collagen composite. [J]. Mater Sci Lett.1995,14:490.
    [119]Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. [J]. Mater Sci Eng R Rep.2007,57(1-6):1-27.
    [120]Jeremy M. Holzwarth, Peter X. Ma. Biomimetic nanofibrous scaffolds for bone tissue engineering. [J]. Biomaterials.2011,32:9622-9629.
    [121]Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. [J]. Biomaterials 1996,17(2):137-146.
    [122]Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. [J]. Biochem. 1997,121:317-324.
    [123]Lu JX, Flautre B, Aselme K, Hardouin P, Gallur A, Descamps B, Thierry B. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. [J]. Mat Sci:Mater Med.1999,10:111-120.
    [124]Anselme K. Osteoblast adhesion on biomaterials. [J]. Biomaterials.2000,21: 667-681.
    [125]Rodrigues CVM, Serricella P, Linhares ABR, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL, Farina M. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. [J]. Biomaterials.2003,24:4987-4997.
    [126]Matthew J. Olszta, Xingguo Cheng, Sang Soo Jee, et al. Bone structure and formation:A new perspective. [J]. Materials Science and Engineerign.2007,58:77-116.
    [127]Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, et al. Bone structure and formation:a new perspective. [J]. Mater Sci Eng R Rep.2007,58(3-5): 77-116.
    [128]Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. [J]. Chem Rev.2008,108:4551-4627.
    [129]Olszta M, Gajjeraman S, Kaufman M, Gower L. Nanofibrous calcite synthesized via a solution-precursor-solid (SPS) mechanism. [J]. Chem Mater 2004,16(12): 2355-2362.
    [130]Cheng X, Gower LB. Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process. [J]. Biotechnol Prog.2006,22(1): 141-149.
    [131]Amos FF, Dai L, RK KhanSR, Gower LB. Mechanism of formation of concentrically laminated spherules:implication to Randall's plaque and stone formation. [J]. Urol Res.2009,37(1):11-17.
    [132]Amos FF, Olszta MJ, Khan SR, Gower LB. Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. [A]. In:Konigsberger E, Konigsberger L. Biomineralization-medical aspects of solubility. [C]. West Sussex:John Wiley & Sons, Ltd.; 2006,125-217.
    [133]Amos FF, Sharbaugh DM, Talham DR, Gower LB, Fricke M, Volkmer D. Formation of single-crystalline aragonite tablets/films via an amorphous precursor. [J]. Langmuir.2006,23:1988-1994.
    [134]Kim YY, Gower LB. Patterning inorganic (CaCO3) thin films via a polymer- induced-liquid-precursor (PILP) process. [J]. Langmuir.2007,23(9):4862-4870.
    [135]Saito T, Arsenault AL, Yamauchi M, Kuboki Y, Crenshaw MA. Mineral induction by immobilized phosphoproteins. [J]. Bone.1997,21:305-311.
    [136]Gajjeraman S, Narayanan K, Hao J, Qin C, George A. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. [J]. Biol Chem.2007,282:1193-1204.
    [137]Weiner S. Biomineralization:a structural perspective. [J]. Struct Biol.2008,163: 229-234.
    [138]Hao J, Ramachandran A, George A. Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. [J]. Histochem Cytochem.2009,57: 227-237.
    [139]George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. [J]. Chem Rev.2008,108:4670-4693.
    [140]Zhang TH, Liu XY. How does a transient amorphous precursor template crystallization. [J]. Am Chem Soc.2007,129:13520-13526.
    [141]Tsuji T, Onuma K, Yamamoto A, Iijima M, Shiba K. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed arti ficial proteins. [J]. Proc Natl Acad Sci USA.2008,105:16866-16870.
    [142]Jens-Hilmar Bradt, Michael Mertig, Angelika Teresiak, Wolfgang Pompe. Biomimetic Mineralization of Collagen by Combined Fibril Assembly and Calcium Phosphate Formation. [J]. Chem Mater.1999,11:2694-2701.
    [143]Giraud Guille, et al.. Liquid crystalline assemblies of collagen in bone and in vitro systems. [J]. Journal of Biomechanics.2003,36:1571-1579.
    [144]Glimcher MJ. The nature of the mineral phase in bone:Biological and clinical applications. [A]. In:Avioli LV, Krane SM. Metabolic bone disease and related disorders. [C]. Academic press, London,1998,23-50.
    [145]Weiner S, Traub W. Bone structure from angstroms to microns. [J]. The FASEB Journal.1992,6:879-885.
    [146]Sidney Lees. Mineralization of Type Ⅰ Collagen. [J]. Biophysical Journal Volume. 2003,7(85):204-207.
    [147]Zhang W, Liao SS, and Cui FZ. Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen. [J]. Chem. Mater.2003,15:3221-3226.
    [148]Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. [J]. FEBS Lett.1986,206:262.
    [149]Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. [J]. Struct Biol.1993,110:39.
    [150]Cui FZ, Wen HB, Su XW, Zhu XD. Microstructures of external periosteal callus of repaired femoral fracture in children. [J]. Struct Biol.1996,117:204.
    [151]Goldberg HA, Warner KJ, Li MC, Hunter GK. Binding of Bone Sialoprotein, Osteopontin and Synthetic Polypeptides to Hydroxyapatite. [J]. Connect.Tissue Res. 2001,42(1),25-37.
    [152]Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins:role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. [J]. Biochem.1994,302,175-179.
    [153]Saito T, Arsenault AL, Yamauchi M, Kuboki Y, Crenshaw MA. Mineral induction by immobilized phosphoproteins. [J]. Bone.1997,21(4):305-311.
    [154]Boskey AL. Biomineralization:Conflicts, Challenges,and Opportunities. [J]. Cell Biochem.1998,30-31,83-91.
    [155]Gower LB, Odom DJ. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. [J]. Cryst Growth.2000,210(4):719-734.
    [156]Dai L, Douglas EP, Gower LB. Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase. [J]. Non-Cryst Solids.2008,354: 1845-1854.
    [157]Termine JD, Posner AS. Calcium phosphate formation in vitro:Ⅰ. Factors affecting initial phase separation. [J]. Arch Biochem Biophys.1970,140:307.
    [158]Termine JD, Peckauskas RA, Posner AS. Calcium phosphate formation in vitro:Ⅱ. Effects of environment on amorphous-crystalline transformation. [J]. Arch Biochem Biophys.1970,140:318.
    [159]Bradt JH, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fi bril assembly and calcium phos-phate formation. [J]. Chem Mater.2009, 11,2694-2701.
    [160]Gelinsky M, Lenhard S, Simon P, Born R, Domaschke H, W Pompe. Influence of Osteocalcin on in vitro Mineralization of Collagen Type I.8th ICCBMT, Banff, Alberta, Canada.2004, October 17-22.
    [161]Kiyoshi Yamauchi, Tatsuya Goda, Nobuyuki Takeuchi, H. Einaga, Toshizumi Tanabe. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. [J]. Biomaterials.2004,25:5481-5489.
    [162]Fabio Nudelman, Koen Pieterse, Anne George, Paul H. H. Bomans, Heiner Friedrich, Laura J. Brylka, Peter A. J. Hilbers, Gijsbertus de With, Nico A. J. M. Sommerdijk. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. [J]. Nature Materials.
    [163]Banks E, Nakajima S, Shapiro LC, Tilevitz O. Fibrous apatite grown on modified collagen. [J]. Science.1977,198:1164-1166.
    [164]Doi Y, Horiguchi T, Moriwaki Y, Kitago H, Kajimoto T, Iwayama Y. Formation of apatite-collagen complexes. [J]. Biomed Mater Res.1996,31:43-49.
    [165]Breulmann M, Davis SA, Mann S, Hentze HP, Antonietti M. Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. [J]. Adv Mater.2000,12:502-507.
    [166]Falini G, Albeck G, WeinerS, AddadiL. Control of a ragoniteor calcite polymorphism by mollusk macromolecules. [J]. Science.1996,271:67-69.
    [167]Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D,Stucky GD, Chmelka BF. Cooperative organization of inorganic-surfactant and biomimetic assemblies. [J]. Science.1995,267:1138-1143.
    [168]Heywood BR, Mann S. Template-directed nucleation and growth of inorganic materials. [J]. Adv Mater.1994,6:9-20.
    [169]Sato K, Kumagai Y, Tanaka J. Apatite formation on organic monolayers in simulated body environment. [J]. Biomed Mater Res.2000,50:16-20.
    [170]Li P, Bakker D, van Blitterswijk CA. The bone-bonding polymer Polyactives 80/20 induces hydroxycarbonate apatite formation in vitro. [J]. Biomed Mater Res.1997,34: 79-86.
    [171]Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, NakamuraT, YamamotoT. Apatite coating on organic polymers by a biomimetic process. [J]. Am Ceram Soc.1994, 77:2805-2808.
    [172]Rhee SH, Tanaka J. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. [J]. Biomaterials.1999,20:2155-2160.
    [173]Zhang R, Ma PX. Porous poly(1-lactic acid)/apatite composites created by biomimetic process. [J]. Biomed Mater Res.1999,45:285-293.
    [174]Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. [J]. Biomed Mater Res. 2000,50:50-58.
    [175]Chen G, Ushida T, Tateishi T. Poly(dl-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates. [J]. Biomed Mater Res. 2001,57:8-14.
    [176]Taguchi T, Muraoka Y, Matsuyama H, Kishida A, Akashi M. Apatite coating on hydrophilic polymer-grafted poly(ethylene)-films using an alternate soaking process. [J]. Biomaterials.2001,22:53-58.
    [177]Al-Munajjed AA, O'Brien FJ. Influence of a novel calcium-phosphate coating on the mechanical properties of highly porous collagen scaffolds for bone repair. [J]. Mech. Behav.Biomed. Mater.2009,2:138-146.
    [178]Al-Munajjed AA, Plunkett NA, Gleeson JP, Weber T, Jungreuthmayer C, Levingstone T, Hammer J, O'Brien FJ. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. [J]. Biomed. Mater. Res.2009,90B:584-591
    [179]Cunniffe GM, Dickson GR, Partap S, Stanton KT, O'Brien FJ. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. [J]. Mater Sci Mater Med.2010,21:2293-2298.
    [180]Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ. Design of a multiphase osteo-chondral scaffold. Ⅱ. Fabrication of a mineralized collagen-glycosaminoglycan scaffold. [J]. Biomed Mater Res.2010,92A:1066-1077.
    [181]Jones GL, Walton R, Czernuszka J, Griffiths SL, Haj AJE, Cartmell SH. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds. [J]. Biomed Mater Res.2010,94A:1244-1250.
    [182]Lyons FG, Al-Munajjed AA, Kieran SM, Toner ME, Murphy CM, Duffy G.P, O'Brien FJ. The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. [J]. Biomaterials.2010,31:9232-9243.
    [183]Wahl DA, Sachlos E, Liu C, Czernuszka JT,2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. [J]. Mater Sci Mater Med. 2007,18:201-209.
    [184]Yunoki S, Ikoma T, Tsuchiya A, Monkawa A, Ohta K, Sotome S, Shinomiya K, Tanaka J. Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. [J]. Biomed Mater Res.2007,80B:166-173.
    [185]Harley BA, Leung JH, Silva ECCM, Gibson LJ. Mechanical characterization of collagen-glycosaminoglycan scaffolds. [J]. Acta Biomater.2007,3:463-474.
    [186]O' Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. [J]. Biomaterials.2004,25: 1077-1086.
    [187]O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. [J]. Biomaterials.2005,26:433-441.
    [188]Schoof H, Apel J, Heschel I, Rau G. Control of the structure and size in freeze-dried collagen sponges. [J]. Biomed Mater Res.2001,58B:352-357.
    [189]Tierney CM, Haugh MG, Liedl J, Mulcahy F, Hayes B, O'Brien FJ. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. [J]. Mech Behav Biomed Mater.2009,2:202-209.
    [190]Yunoki S, Ikoma T, Tanaka J. Development of collagen condensation method to improve mechanical strength of tissue engineering scaffolds. [J]. Mater Char.2010,61: 907-911.
    [191]Robert J. Kane, Ryan K. Roeder. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds. [J]. Mech Behav Biomed Mater.2012,7:41-49.
    [192]Yan Liu, Young-Kyung Kim, Lin Dai, Nan Li, Sara O. Khan, David H. Pashley, Franklin R. Tay. Hierarchical and non-hierarchical mineralisation of collagen. [J]. Biomaterials.2011,32:1291-1300.
    [1]Wood GC. The formation of fibrils from collagen solutions 1. The effect of experimental conditions:kinetic and electron-microscope studies. [J]. Biochem.1960,75: 598.
    [2]Cassel JM, Mandelkern L, Roberts D.E.J. Am. Leathet. The kinetics of the heat precipitation of collagen. [J]. Chemists Assoc.1962,57:556.
    [3]Comper WD, Veis A. The mechanism of nucleation for in vitro collagen fibril formation. [J]. Biopolymers.1977,16:2113.
    [4]Kadler KE, Hojima Y, Prockop DJ. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. [J]. Biol Chem.1987,262(15):696-701.
    [5]Parkinson J, Kadler KE, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion-limited aggregation. [J]. Mol Biol.1995,247:823-831.
    [6]Bruns, R. Supramolecular structure of polymorphic collagen fibrils. [J]. Cell Biol. 1976,68:521-538.
    [7]Chapman JA, Hulmes DJS. Electron microscopy of the collagen fibril. [A]. In: Ruggeri A, Motta PM. Ultrastructure of the Connective Tissue Matrix. [C]. Martinus Nijhoff, The Hague,1984,1-33.
    [8]Mallinger R, Kulnig W, Boeck P. Symmetrically banded collagen fibrils:bservation on a new cross striation pattern in vivo. [J]. Anat Rec.1992,232:45-51.
    [9]Payne KJ, Veis A. Fourier transform IR Spectroscopy of collagen and gelatin solutiongs:deconvolution of the amide I band for conformational studies. [J]. Biopolymers.1988,27(11):1749-1760.
    [10]Ganim Z, Chung HS, Smith AW, et al. Amide I two-dimensional infrared spectroscopy of proteins. [J]. Acc Chem Res.2008,41(3):432-411.
    [11]Manning MC. Use of infrared spectroscopy to monitor protein structure and stability. [J]. Expert Rev Proteomics.2005,2(5):731-743.
    [12]Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. [J]. Biomaterials.2002,23(24):4811-4818.
    [13]Plepis AM, Goissis G, Das-Gupta DK. Dielectric and pyroelectric characterization of anionic and native collagen. [J]. Polymer Engineering and Science.1996,36(24): 2932-2938.
    [14]John T. Pelton, Larry R. Mclean. Spectroscopic methods for analysis of protein secondary structure. [J]. Anal Biochem.2000,277(2):167-176.
    [15]Nagal T, Suzukin. Preparation and partial characterization of collagen from paper nautilus(Argonauta argo, Linnaeus) outer skin. [J]. Food Chemistry.2002,76:149-153.
    [16]Hodges JA, Raines RT. Stereoelectronic effects on collagen stability:the dichotomy of 4-fluoroproline diastereomers. [J]. Am Chem Soc.2003,125(31):9262-9263.
    [17]Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. [J]. Nat Protoc.2006,1(6):2527-2535.
    [18]Leikina E, Mertts MV, Kuznetsova N, et al. Type I collagen is thermally unstable at body temperature. [J]. Proc Natl Acad Sci USA.2002,99(3):1314-1318.
    [19]Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. [J]. Curr Protein Pept Sci.2000,1(4):349-384.
    [20]Ottl J, Battistuta R, Pieper M, et al. Design and synthesis of heterotrimeric collagen peptides with a built-in cystine-knot. Models for collagen catablism by matrix-metalloproteases. [J]. FEBS Lett.1996,398(1):31-36.
    [21]Gathima NN, Suresh R, Rao JR, et al. Effect of UV irradiation on stabilized collagen: role of chromium(Ⅲ). [J]. Colloids Surf B Biointerfaces.2008,62(1):11-16.
    [22]Peter L. Privalov, Anatoly I. Dragan, Micr ocalorimetry of biological macromolecules. [J]. Biophysical Chemistry.2007,126:16-24.
    [23]Lindman S, Lynch I, Thulin E, et al. Systematic investigation of the thermodynamics of HAS absorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. effdcts of particle size and hydrophobicity. [J]. Nano Lett.2007, 7(4):914-920.
    [24]Frederick H. Silver. Type I Collagen Fibrillogenesis in Vitro. Additional evidence for the assembly mechanism. [J]. The Journal of Biological Chemistry.1981,256(10): 4973-4977.
    [25]Fengzhi Jiang, Heinrich Horber, Jonathon Howard, Daniel J. Mulle. Assembly of collagen into microribbons:effects of pH and electrolytes. [J]. Journal of Structural Biology.2004,148:268-278.
    [26]David A. Cisneros, Carlos Hung, Clemens M. Franz, Daniel J. Muller. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. [J]. Journal of Structural Biology.2006,154:232-245.
    [1]Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration [J]. Tissue Eng,2002,8(2):295-308.
    [2]Ruiz-Magaz V, Hernandez-Alfaro F, Diaz-Carandell A, Biosca-G6mez-de-Tejada MJ. Acellular dermal matrix in soft tissue reconstruction prior to bone grafting, a case report [J]. Med Oral Patol Oral Cir Bucal,2009,15(1):e61-4.
    [3]张金明,崔永言,徐路生,黄红军,何涛.应用异体脱细胞尿道基质修复尿道缺损[J].中华实验外科杂志,2005,22(3):364-365.
    [4]Chvapil M. in:Parry DAD, Creamer LK. Fibrous Proteins:Scientific,Industrial and Medical Aspects. [C] Academic Press, London.1979, vol.1:247-269.
    [5]Elsdale T, Bard J. [J]. Cell Biol.1972,54:626-637.
    [6]Gerardo-Nava J, Fuhrmann T, Klinkhammer K, Seiler N, Mey J, Klee D, Moller M, Dalton PD, Brook GA. Human neural cell interactions with orientated electrospun nanofibers in vitro. [J]. Nanomedicine (Lond),2009,4(1):11-30.
    [7]Liu Y, Franco A, Huang L, Gersappe D, Clark RA, Rafailovich MH. Control of cell migration in two and three dimensions using substrate morphology. [J]. Exp Cell Res. 2009,315(15):2544-2557.
    [8]Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation [J]. Tissue Eng.2007,13(8):1845-1866.
    [9]Jim Torbet, Marie-Claire Ronziere.[J]. Biochem.1984,219:1057-1059.
    [10]朱虹.数字图像处理基础.[M].北京:科学出版社,2005:186-199.
    [11]张永春,丁志荣,王善元,初丽辉.图像检测非织造材料纤维取向的主因素探讨.[J].纺织学报.2011,32(11):23-27.
    [1]何春耒,王大平,马经野.骨组织工程支架材料的种类及发展趋势[J].中国组织工程研究与临床康复.2009,73(25):4905-4908.
    [2]黄兆龙,张伟,崔福斋.胶原调制磷酸钙矿化成核位点的红外光谱研究.[J].光谱学与光谱分析.2004,24(5):539-542.
    [3]Atul S. Deshpande, Elia Beniash. Bioinspired Synthesis of Mineralized Collagen Fibrils. [J]. Crystal Growth and Design.2008,8(8):3084-3090.
    [4]Zhang W, Liao SS, Cui FZ. Hierarchical Self-Assembly of Nano-Fibrils in Mineralized Collagen. [J]. Chem. Mater.2003,15:3221-3226.
    [5]Young Kyung Kim, Li-sha Gu, Thomas E. Bryan, Jong R. Kim, Liang Chen, Yan Liu, James C. Yoon, Lorenzo Breschi, David H. Pashley, Franklin R. Tay. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. [J]. Biomaterials.2010,31:6618-6627.
    [6]Yan Liu, Young-Kyung Kim, Lin Dai, Nan Li, Sara O. Khan, David H. Pashley, Franklin R. Tay. Hierarchical and non-hierarchical mineralisation of collagen. [J]. Biomaterials.2011,32:1291-1300.
    [7]Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, et al. Bone structure and formation:a new perspective. [J]. Mater Sci Eng R Rep.2007,58(3-5):77-116.
    [8]Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues:Identification of possible apatite nucleation sites on type I collagen. [J]. Cells Tissues Organs.2009,189:20-24.
    [9]Matthew J. Olszta, Xingguo Cheng, Sang Soo Jee, Rajendra Kumar, Yi-Yeoun Kim, Michael J. Kaufman, Elliot P. Douglas, Laurie B. Gower. Bone structure and formation: A new perspective. [J]. Materials Science and Engineering.2007,58:77-116.
    [10]Glimcher MJ, Muir H. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. [J]. Phil Trans R Soc. 1984, B304:479-508.
    [11]Landis WJ, Song MJ, Leith A, Mcewen L, Mcewen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction. [J]. Struct Biol. 1993,110:39-54.
    [12]Mahamid J, et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to bone in zebrafish fin rays. [J]. Proc Natl Acad Sci USA.2010,107:6316-6321.
    [13]Traub W, Arad T, Weiner S. Origin of mineral crystal-growth in collagen fibrils. [J]. Matrix.1992,12:251-255.
    [14]Qiqing Zhang, Kangde Yao, Lingrong Liu, Zhang Yan, Hongyi Yang. Study on properties of collagen and modification of collagen materials. [A]. In:98 Workshop on Tissue Engineering, Tianjin, China, Oct.5-7,1998:133.
    [15]Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites. [J]. Biomaterials.2002,23:2553-2559.
    [16]LeGeros RZ. Calcium phosphate in oral biology and medicine. NewYork:Karger; 1991.
    [17]Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. [J]. Materials.2009,2:399-498.
    [18]Lowenstam HA, Weiner S. On Biomineralization. [M]. New York:Oxford University Press,1989.
    [19]Glimcher MJ. The nature of the mineral phase in bone:biological and clinical implications. [A]. In:Avioli LV, Krane SM. Metabolic bone disease and clinically related disorders. [C]. San Diego, CA:Academic Press.1998:23-50.
    [20]Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. [J]. Biomaterials.2001,22(13):1705-1711.
    [21]Murugan R, Ramakrishna S. Crystallographic study of hydroxyapatite bioceramics derived from various sources.[J]. Cryst Growth Des 2005,5(1):111-112.
    [22]Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, et al. Bone structure and formation:a new perspective. Mater Sci Eng R Rep.2007,58(3-5):77-116.
    [23]Weiner S, Traub W. Organization of crystals in bone. [A]. In:Suga S, Nakahara H. Mechanisms and phylogeny of mineralization in biological systems. [C]. New York: Springer-Verlag.1991:247-253.
    [24]Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. [J]. Struct Biol. 1993,110:39-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700