肌肽对脑缺血性兴奋性损伤的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组胺是一种体内广泛存在的神经递质和神经调质。它在许多中枢神经活动中起着重要的调节作用,如觉醒-睡眠、痛觉、神经内分泌调节、饮水摄食调节、体温调节、运动以及学习记忆等。同时有研究表明组胺可能参与了脑缺血的过程,它对缺血过程中由于NMDA受体过度激活而引起的神经元损伤具有保护作用。大鼠脑缺血后给予组胺的前体物质组氨酸,能够减轻大鼠纹状体部位神经元的损伤。相反,α-fluoromethylhistidine(α-FMH),一种不可逆的组氨酸脱羧酶的抑制剂,能显著性地增加大鼠海马CA1区锥体神经元的坏死。课题组的前期研究发现组胺在原代培养的皮层神经元上具有明显的抗兴奋性损伤的神经保护作用。然而,组胺本身是一种炎症介质,可能会引起一些炎症反应;同时它也不能通透血脑屏障,这些都限制了组胺在临床上成药的可能性。因此,寻找一些既具有组胺样的神经保护功能,又能避免组胺的不良作用的药物,对临床上防治脑缺血具有重要的意义。
     肌肽(β-丙氨酸-L-组氨酸)在一个世纪前就被前苏联学者Gulewitsch和Amiradzibi从牛肉提取物中检测到。肌肽在生物体内的分布比较广泛,如骨骼肌、脑、心脏、肾脏等。肌肽具有广泛的生物学作用,如抗氧化、清除自由基、调节生理pH值、抗炎症、抗糖基化,在嗅球区还可能起着神经递质的功能。但是迄今为止,肌肽在脑内的生理功能还是不很清楚。
     另一方面,有报道肌肽能在肌肽酶和组氨酸脱羧酶的作用下代谢生成组胺,同时也能通过组胺的H_1受体起到一个神经保护作用。鉴于肌肽和组胺之间的这种关系,我们首次提出在脑内是否存在肌肽-组氨酸-组胺这样一条代谢通路?肌肽能否通过这样一条代谢通路从而代替组胺,成为一个在临床上治疗脑缺血的有效药物?所以本课题探讨了肌肽对NMDA诱导的分化的PC12细胞兴奋性损伤以及组氨酸脱羧酶基因敲除小鼠的永久性局灶性脑缺血的作用,试图阐明肌肽的保护作用及其与组胺的相关性。
     1肌肽对NMDA诱导的分化的PC12细胞兴奋性损伤的保护作用及其机制
     MTT实验结果显示肌肽预处理能显著降低由NMDA诱导PC12细胞的死亡率;Hoechst 33342和PI的核双染实验同时也显示了肌肽能明显降低NMDA诱导的PC12细胞的凋亡和坏死。肌肽预处理能显著降低胞外谷氨酸的含量,同时能提高PC12细胞内组氨酸脱羧酶的活力,显著提高胞内胞外肌肽、组氨酸、组胺的含量。进一步研究发现,肌肽的这种保护作用能被对组氨酸脱羧酶的选择性且不可逆的抑制剂α-FMH所逆转;同时这种保护作用也能够被组胺H_1受体拮抗剂吡拉明(pyrilamine)和组胺H_3受体拮抗剂thioperamide所逆转。Thioperamide逆转肌肽的保护作用可能与它能逆转肌肽对谷氨酸的抑制作用相关。因此,研究提示在PC12细胞内存在肌肽-组氨酸-组胺这条代谢通路,肌肽对NMDA诱导的PC12细胞损伤的保护机制主要是通过肌肽-组氨酸-组胺这条代谢通路和H_1/H_3受体介导的,此外还可能与其抑制谷氨酸水平的作用有关。本研究显示肌肽可能是一种潜在的抗兴奋性损伤的药物。
     2肌肽对小鼠永久性局灶性脑缺血的保护作用及其机制
     在NGF诱导分化的PC12细胞兴奋性损伤模型上我们发现了肌肽的保护作用通过了肌肽-组氨酸-组胺这条代谢通路。那么,肌肽及这条代谢通路在整体动物的脑缺血模型中是否也有作用?为了进一步验证肌肽及其代谢通路的作用,我们利用组氨酸脱羧酶基因敲除(缺乏组胺的合成酶,即阻断组氨酸-组胺代谢通路,长期缺乏组胺)小鼠及它的野生型小鼠来观察肌肽在永久性局灶性脑缺血中的作用及这条代谢通路在其中的作用。于术前30 min腹腔内给与肌肽750 mg/kg均能使组氨酸脱羧酶基因敲除小鼠和它的野生型小鼠的神经功能得到改善,梗死体积减少;肌肽的这种保护作用在两种小鼠上没有统计学差异。肌肽能使小鼠脑内谷氨酸的水平降低,并能维持小鼠缺血后脑内谷氨酸转运体GLT-1的表达。在原代培养的皮层星形胶质细胞进行体外缺糖缺氧(oxygen-glucose deprivation,OGD)模拟在体缺血的实验模型中同样证实了肌肽对谷氨酸释放(或再摄取)及其GLT-1的表达具有调节作用。另外,在星形胶质细胞上肌肽能抑制OGD导致的线粒体内活性氧自由基(ROS)的大量生成和线粒体膜电势的丧失。肌肽还能降低鱼藤酮诱导的星形胶质细胞线粒体内ROS生成,抑制GLT-1的表达下调。我们的结果表明无论组氨酸脱羧酶基因敲除与否都不影响肌肽对小鼠永久性局灶性脑缺血的保护作用。因此,肌肽对小鼠在体脑缺血的保护作用可能不是通过组胺,而是与它能有效地调节星形胶质细胞上的谷氨酸转运体GLT-1和降低谷氨酸水平的作用相关。
     总之,本课题发现了肌肽-组氨酸-组胺这条代谢通路的存在,并且在分化的PC12细胞的兴奋性损伤模型上起到保护作用。肌肽对小鼠的在体永久性局灶性脑缺血具有神经保护功能,但是没有涉及到肌肽-组氨酸-组胺这条代谢通路,而是通过了有效的调节星形胶质细胞上GLT-1的表达,降低缺血后脑内的兴奋性损伤,从而起到脑保护作用。
Histamine is one of the most widely distributed neurotransmitter or neuromodulator in the central nervous system and controls a variety of neurobiological functions and behavioral responses including sleep-wake cycle,nociception,water consumption,food,motor activity and learning and memory.Histamine is involved in ischemic pathogenesis,and has a protective effect on the delayed neuronal death mediated by N-methyl-D-aspartate(NMDA) receptors.Postischemic loading with histidine,a precursor of histamine,decreases the amount of neuronal damage in the rat striatum.Histamine depletion withα-fluoromethylhistidine(α-FMH),an irreversible inhibitor of histidine decarboxylase(HDC),significantly increases the number of necrotic pyramidal cells in hippocampal CA1 region in rats subjected to cerebral ischemia.Histamine also protects against NMDA-induced necrosis in cultured cortical neurons.However,histamine itself cannot cross the blood-brain barrier and it is involved in brain inflammation.Therefore,specific histamine related compounds which have histamine-like effect but without the side-effect may have the potential clinical uses in preventing and treating cerebral ischemia.
     Carnosine(β-alanyl-L-histidine),first identified by Gulewitsch and Amiradzibi from Liebig's meat extract nearly a century ago and it occurs in innervated tissues including the animal and human brain and can easily enter the central nervous system from the periphery.There are many theories about its biological functions,such as anti-inflammatory agent,free radical scavenger,and protein glycosylation inhibitor,and may serve as a neurotransmitter in the olfactory bulb.However,so far,the physiological functions of carnosine in the brain remain obscure,and a unifying concept has not yet emerged.
     On the other hand,previous studies have suggested that carnosine can be metabolically transformed into histamine by carnosinase and histidine decarboxylase enzyme that exist in the brain and exerts its protective action through histamine H_1 receptor.Given the relationship between carnosine and histamine,carnosine is proposed as a new histaminergic drug that can replace histamine and avoid inflammation in clinical therapeutics.Therefore,our present studies concentrate on the effects of carnosine and the carnosine-histidine-histamine metabolic pathway on NMDA induced neurotoxicity in differentiated PC12 cells and focal cerebral ischemia in histidine decarboxylase knock-out(HDC-KO) mice.
     1 Neuroprotective effect of carnosine on NMDA-induced neurotoxicity in differentiated PC12 cells
     Pretreatment with carnosine increased the viability and decreased the number of apoptotic and necrotic cells in NMDA induced injury in differentiated PC12 cells measured by MTT and Hoechst 33342 and propidium iodide(PI) double staining assays. Carnosine also can reduce the extracellular glutamate level and increase HDC activity and the intracellular and extracellular contents of carnosine,histidine and histamine detected by high-performance liquid chromatography(HPLC).The protection by carnosine was reversed byα-fluoromethylhistidine,a selective and irreversible inhibitor of histidine decarboxylase(HDC).Pyrilamine and thioperamide,selective central histamine H_1 and H_3 antagonists also significantly reversed the protection of carnosine. Further,the inhibition of glutamate release by carnosine was reversed by thioperamide. Therefore,the protective mechanism of carnosine may not only involve the carnosine-histidine-histamine pathway,but also H1/H3 receptors and the effective inhibition of glutamate release.This study indicates that carnosine may be an endogenous protective factor and calls for its further study as a new antiexcitotoxic agent.
     2 Role of carnosine in permanent focal cerebral ischemia in HDC-KO mice Since camosine can protect against excitotoxicity in differentiated PC12 cells through a histaminergic pathway,in this study,we used HDC-KO and the corresponding wild type(WT) mice to elucidate whether histaminergic or other mechanisms are involved in.the effects of carnosine on permanent middle cerebral artery occlusion(pMCAO).The results showed that carnosine significantly improved neurological function and decreased infarct size both in HDC-KO and its WT mice,to the same extent.Carnosine decreased the glutamate levels,and preserved the expression of glutamate transporter-1(GLT-1) but not glutamate/aspartate transporter(GLAST) in astrocytes exposed to ischemia in vivo and in vitro.It suppressed the dissipation of mitochondrial membrane potentil(△Ψm) and generation of mitochondrial ROS induced by OGD in astrocytes.Furthermore,carnosine also decreased the mitochondrial ROS level and reversed the decrease of GLT-1 induced by rotenone,an inhibitor of mitochondrial complex I.Our study suggests that carnosine is neuroprotective in pMCAO in HDC-KO and WT mice and its mechanism of action may not be mediated by the histaminergic pathway,but by the effective regulation the expression of GLT-1 in astrocytes due to improving the moitochondrial function.
     In conclusion,our study demonstrates that there exists carnosine-histidine-histamine pathway in differentiated PC12 cells and it plays a protective roles in NMDA induced excitotoxicity.Carnosine exerts a neuroprotective effect on pMCAO induced injuries in HDC-KO and its WT mice and its action may not involve the histaminergic pathway,but through reducing glutamate excitotoxicity by reversing the GLT-1 decrease in astrocytes.
引文
[1]Gao,J.,Duan,B.,Wang,D.G.,Deng,X.H.,Zhang,G.Y.,Xu,L.,Xu,T.L.,Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death,Neuron,2005,48:635-646.
    [2]Ohta,K.,Graf,R.,Rosner,G.,Heiss,W.D.,Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats,Stroke,2001,32:535-543.
    [3]Lewen,A.,Matz,P.,Chan,P.H.,Free radical pathways in CNS injury,J Neurotrauma,2000,17:871-890.
    [4]Nita,D.A.,Nita,V.,Spulber,S.,Moldovan,M.,Popa,D.P.,Zagrean,A.M.,Zagrean,L.,Oxidative damage following cerebral ischemia depends on reperfusion-a biochemical study in rat,J Cell Mol Med,2001,5:163-170.
    [5]Dirnagl,U.,Iadecola,C,Moskowitz,M.A.,Pathobiology of ischaemic stroke:an integrated view,Trends Neurosci,1999,22:391-397.
    [6]Hoyte,L.,Barber,P.A.,Buchan,A.M.,Hill,M.D.,The rise and fall of NMDA antagonists for ischemic stroke,Curr Mol Med,2004,4:131-136.
    [7]Ikonomidou,C,Turski,L.,Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?,Lancet Neurol,2002,1:383-386.
    [8]Lipton,S.A.,Paradigm shift in neuroprotection by NMDA receptor blockade:memantine and beyond,Nat Rev Drug Discov,2006,5:160-170.
    [9]Miyamoto,Y.,Yamada,K.,Noda,Y.,Mori,H.,Mishina,M.,Nabeshima,T.,Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilonl subunit,J Neurosci,2001,21:750-757.
    [10]Moriguchi,S.,Marszalec,W.,Zhao,X.,Yeh,J.Z.,Narahashi,T.,Mechanism of action of galantamine on N-mefhyl-D-aspartate receptors in rat cortical neurons,J Pharmacol Exp Ther,2004,310:933-942.
    [11]Haas,H.,Panula,P.,The role of histamine and the tuberomamillary nucleus in the nervous system,Nat Rev Neurosci,2003,4:121-130.
    [12]Hu,W.,Xu,L.,Pan,J.,Zheng,X.,Chen,Z.,Effect of cerebral ischemia on brain mast cells in rats,Brain Res,2004,1019:275-280.
    [13]Brown,R.E.,Stevens,D.R.,Haas,H.L.,The physiology of brain histamine,Prog Neurobiol,2001,63:637-672.
    [14]Diaz-Trelles,R.,Novelli,A.,Vega,J.A.,Marini,A.,Fernandez-Sanchez,M.T.,Antihistamine terfenadine potentiates NMDA receptor-mediated calcium influx,oxygen radical formation,and neuronal death,Brain Res,2000,880:17-27.
    [15]Hamami,G.,Adachi,N.,Liu,K.,Arai,T.,Alleviation of ischemic neuronal damage by histamine H2 receptor stimulation in the rat striatum,Eur J Pharmacol,2004,484:167-173.
    [16]Boldyrev,A.A.,Dupin,A.M.,Bunin,A.,Babizhaev,M.A.,Severin,S.E.,The antioxidative properties of camosine,a natural histidine containing dipeptide,Biochem Int,1987,15:1105-1113.
    [17]Bonfanti,L.,Peretto,P.,De Marchis,S.,Fasolo,A.,Carnosine-related dipeptides in the mammalian brain,Prog Neurobiol,1999,59:333-353.
    [18]Crush,K.G.,Camosine and related substances in animal tissues,Comp Biochem Physiol,1970,34:3-30.
    [19]Bakardjiev,A.,Bauer,K.,Biosynthesis,release,and uptake of camosine in primary cultures,Biochemistry (Mosc),2000,65:779-782.
    [20]Dieck,S.T.,Heuer,H.,Ehrchen,J.,Otto,C,Bauer,K.,The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta-Ala-Lys-Nepsilon-AMCA in astrocytes,Glia,1999,25:10-20.
    [21]Dringen,R.,Hamprecht,B.,Broer,S.,The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures,J Neurochem,1998,71:388-393.
    [22]Boldyrev,A.A.,Problems and perspectives in studying the biological role of camosine,Biochemistry (Mosc),2000,65:751-756.
    [23]Teuscher,N.S.,Shen,H.,Shu,C,Xiang,J.,Keep,R.F.,Smith,D.E.,Camosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice,J Neurochem,2004,89:375-382.
    [24]Dobrota,D.,Fedorova,T.,Stvolinsky,S.,Babusikova,E.,Likavcanova,K., Drgova,A.,Strapkova,A.,Boldyrev,A.,Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury:after-stroke-effect,Neurochem Res,2005,30:1283-1288.
    [25]Gallant,S.,Kukley,M.,Stvolinsky,S.,Bulygina,E.,Boldyrev,A.,Effect of carnosine on rats under experimental brain ischemia,Tohoku J Exp Med,2000,191:85-99.
    [26]Boldyrev,A.,Song,R.,Lawrence,D.,Carpenter,D.O.,Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species,Neuroscience,1999,94:571-577.
    [27]Fitzpatrick,D.W.,Fisher,H.,Histamine synthesis,imidazole dipeptides,and wound healing,Surgery,1982,91:430-434.
    [28]Greene,S.M.,Margolis,F.L.,Grillo,M.,Fisher,H.,Enhanced carnosine (beta-alanyl-L-histidine) breakdown and histamine metabolism following treatment with compound 48/80,Eur J Pharmacol,1984,99:79-84.
    [29]Otani,H.,Okumura,A.,Nagai,K.,Okumura,N.,Colocalization of a carnosine-splitting enzyme,tissue carnosinase (CN2)/cytosolic non-specific dipeptidase 2 (CNDP2),with histidine decarboxylase in the tuberomammillary nucleus of the hypothalamus,Neurosci Lett,2008,445:166-169.
    [30]Winnick,R.E.,Winnick,T.,Carnosine-anserine synthetase of muscle.Ⅱ.Specificity and inhibition studies with amino acid analogs,Bull Soc Chim Biol (Paris),1958,40:1727-1735.
    [31]Horinishi,H.,Grillo,M.,Margolis,F.L.,Purification and characterization of carnosine synthetase from mouse olfactory bulbs,J Neurochem,1978,31:909-919.
    [32]Hipkiss,A.R.,Preston,J.E.,Himsworth,D.T.,Worthington,V.C.,Keown,M.,Michaelis,J.,Lawrence,J.,Mateen,A.,Allende,L.,Eagles,P.A.,Abbott,N.J.,Pluripotent protective effects of carnosine,a naturally occurring dipeptide,Ann N Y Acad Sci,1998,854:37-53.
    [33]Fitzpatrick,J.C.,Fisher,H.,Flancbaum,L.,Mobilization of renal carnosine and histidine to histamine during compound-48/80-induced shock,Nephron,1991,59:299-303.
    [34]Flancbaum,L.,Fitzpatrick,J.C.,Brotman,D.N.,Marcoux,A.M.,Kasziba,E.,Fisher,H.,The presence and significance of carnosine in histamine-containing tissues of several mammalian species,Agents Actions,1990,31:190-196.
    [35]Adachi,N.,Oishi,R.,Itano,Y.,Yamada,T.,Hirakawa,M.,Saeki,K.,Aggravation of ischemic neuronal damage in the rat hippocampus by impairment of histaminergic neurotransmission,Brain Res,1993,602:165-168.
    [36]Brown,R.E.,Reymann,K.G.,Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro,J Physiol,1996,496 (Pt1):175-184.
    [37]Dai,H.,Zhang,Z.,Zhu,Y.,Shen,Y.,Hu,W.,Huang,Y.,Luo,J.,Timmerman,H.,Leurs,R.,Chen,Z.,Histamine protects against NMDA-induced necrosis in cultured cortical neurons through H receptor/cyclic AMP/protein kinase A and H receptor/GABA release pathways,J Neurochem,2006,96:1390-1400.
    [38]Behar,T.N.,Scott,C.A.,Greene,C.L.,Wen,X.,Smith,S.V.,Marie,D.,Liu,Q.Y.,Colton,C.A.,Barker,J.L.,Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration,J Neurosci,1999,19:4449-4461.
    [39]Tanovic,A.,Alfaro,V.,[Glutamate-related excitotoxicity neuroprotection with memantine,an uncompetitive antagonist of NMDA-glutamate receptor,in Alzheimer's disease and vascular dementia],Rev Neurol,2006,42:607-616.
    [40]Choi,D.W.,Glutamate neurotoxicity and diseases of the nervous system,Neuron,1988,1:623-634.
    [41]Albensi,B.C.,The NMDA receptor/ion channel complex:a drug target for modulating synaptic plasticity and excitotoxicity,Curr Pharm Des,2007,13:3185-3194.
    [42]Lipton,S.A.,Failures and successes of NMDA receptor antagonists:molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults,NeuroRx,2004,1:101-110.
    [43]Casado,M.,Lopez-Guajardo,A.,Mellstrom,B.,Naranjo,J.R.,Lerma,J.,Functional N-methyl-D-aspartate receptors in clonal rat phaeochromocytomacells,J Physiol,1996,490 (Pt 2):391-404.
    [44]Arundine,M.,Sanelli,T.,Ping He,B.,Strong,M.J.,NMDA induces NOS 1 translocation to the cell membrane in NGF-differentiated PC 12 cells,Brain Res,2003,976:149-158.
    [45]Crisanti,P.,Leon,A.,Lim,D.M.,Omri,B.,Aspirin prevention of NMDA-induced neuronal death by direct protein kinase Czeta inhibition,J Neurochem,2005,93:1587-1593.
    [46]Ha,H.C.,Snyder,S.H.,Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion,Proc Natl Acad Sci USA,1999,96:13978-13982.
    [47]Jin,C.L.,Yang,L.X.,Wu,X.H.,Li,Q.,Ding,M.P.,Fan,Y.Y.,Zhang,W.P.,Luo,J.H.,Chen,Z.,Effects of carnosine on amygdaloid-kindled seizures in Sprague-Dawley rats,Neuroscience,2005,135:939-947.
    [48]Niimi,M.,Yamamoto,Y.,Takemori,H.,Uno,A.,Kondo,Y.,Yamatodani,A.,Lipopolysaccharide and interleukin-lbeta augmented histidine decarboxylase activity in cultured cells of the rat embryonic brain,J Neurochem,1997,69:851-858.
    [49]Hipkiss,A.R.,Carnosine,a protective,anti-ageing peptide?,Int J Biochem Cell Biol,1998,30:863-868.
    [50]Severina,I.S.,Bussygina,O.G.,Pyatakova,N.V.,Carnosine as a regulator of soluble guanylate cyclase,Biochemistry (Mosc),2000,65:783-788.
    [51]Hipkiss,A.R.,Carnosine and protein carbonyl groups:a possible relationship,Biochemistry (Mosc),2000,65:771-778.
    [52]Boldyrev,A.,Abe,H.,Metabolic transformation of neuropeptide carnosine modifies its biological activity,Cell Mol Neurobiol,1999,19:163-175.
    [53]Stuerenburg,H.J.,The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases,Biochemistry (Mosc),2000,65:862-865.
    [54]Hoffmann,A.M.,Bakardjiev,A.,Bauer,K.,Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes,Neurosci Lett,1996,215:29-32.
    [55]De Marchis,S.,Melcangi,R.C.,Modena,C,Cavaretta,I.,Peretto,P.,Agresti,C,Fasolo,A.,Identification of the glial cell types containing carnosine-related peptides in the rat brain,Neurosci Lett,1997,237:37-40.
    [56]Biffo,S.,Grillo,M.,Margolis,F.L.,Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system,Neuroscience,1990,35:637-651.
    [57]Boldyrev,A.A.,Does carnosine possess direct antioxidant activity?,Int J Biochem,1993,25:1101-1107.
    [58]Hipkiss,A.R.,Michaelis,J.,Syrris,P.,Non-enzymatic glycosylation of the dipeptide L-carnosine,a potential anti-protein-cross-linking agent,FEBS Lett,1995,371:81-85.
    [59]Fu,Q.,Dai,H.,Hu,W.,Fan,Y.,Shen,Y.,Zhang,W.,Chen,Z.,Carnosine protects against Abeta42-induced neurotoxicity in differentiated rat PC 12 cells,Cell Mol Neurobiol,2008,28:307-316.
    [60]Zhu,Y.Y.,Zhu-Ge,Z.B.,Wu,D.C.,Wang,S.,Liu,L.Y.,Ohtsu,H.,Chen,Z.,Carnosine inhibits pentylenetetrazol-induced seizures by histaminergic mechanisms in histidine decarboxylase knock-out mice,Neurosci Lett,2007,416:211-216.
    [61]Vizuete,M.L.,Merino,M.,Venero,J.L.,Santiago,M.,Cano,J.,Machado,A.,Histamine infusion induces a selective dopaminergic neuronal death along with an inflammatory reaction in rat substantia nigra,J Neurochem,2000,75:540-552.
    [62]Matsukura,T.,Tanaka,H.,Applicability of zinc complex of L-carnosine for medical use,Biochemistry (Mosc),2000,65:817-823.
    [63]Xiang,J.,Hu,Y.,Smith,D.E.,Keep,R.F.,PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes,Brain Res,2006,1122:18-23.
    [64]O'Dowd,A.,Miller,D.J.,Analysis of an HI receptor-mediated,zinc-potentiated vasoconstrictor action of the histidyl dipeptide carnosine in rabbit saphenous vein,Br J Pharmacol,1998,125:1272-1280.
    [65]Arrang,J.M.,Garbarg,M.,Schwartz,J.C.,Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor,Nature,1983,302:832-837.
    [66]Garcia,M.,Floran,B.,Arias-Montano,J.A.,Young,J.M.,Aceves,J.,Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata,Neuroscience,1997,80:241-249.
    [67]Schlicker,E.,Fink,K.,Hinterthaner,M.,Gothert,M,Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors,Naunyn Schmiedebergs Arch Pharmacol,1989,340:633-638.
    [68]Schlicker,E.,Fink,K.,Detzner,M.,Gothert,M.,Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors,J Neural Transm Gen Sect,1993,93:1-10.
    [69]Kurata,H.,Fujii,T.,Tsutsui,H.,Katayama,T.,Ohkita,M,Takaoka,M,Tsuruoka,N.,Kiso,Y.,Ohno,Y.,Fujisawa,Y.,Shokoji,T.,Nishiyama,A.,Abe,Y.,Matsumura,Y.,Renoprotective effects of 1-carnosine on ischemia/reperfusion-induced renal injury in rats,J Pharmacol Exp Ther,2006,319:640-647.
    [70]Kozuka,M.,Smith,M.L.,Siesjo,B.K.,Preischemic hyperglycemia enhances postischemic depression of cerebral metabolic rate,J Cereb Blood Flow Metab,1989,9:478-490.
    [71]DeGraba,T.J.,Ostrow,P.T.,Grotta,J.C.,Threshold of calcium disturbances after focal cerebral ischemia in rats.Implications of the window of therapeutic opportunity,Stroke,1993,24:1212-1216;discussion 1216-1217.
    [72]Matsumoto,K.,Lo,E.H.,Pierce,A.R.,Halpern,E.F.,Newcomb,R.,Secondary elevation of extracellular neurotransmitter amino acids in the reperfusion phase following focal cerebral ischemia,J Cereb Blood Flow Metab,1996,16:114-124.
    [73]Irisawa,Y.,Adachi,N.,Liu,K.,Arai,T.,Nagaro,T.,Alleviation of ischemia-induced brain edema by activation of the central histaminergic system in rats,J Pharmacol Sci,2008,108:112-123.
    [74]Motoki,A.,Adachi,N.,Semba,K.,Liu,K.,Arai,T.,Reduction in brain infarction by augmentation of central histaminergic activity in rats,Brain Res,2005,1066:172-178.
    [75]Adachi,N.,Seyfried,F.J.,Arai,T.,Blockade of central histaminergic H2 receptors aggravates ischemic neuronal damage in gerbil hippocampus,Crit Care Med,2001,29:1189-1194.
    [76]Adachi,N.,[Cerebral ischemia and histamine],Nippon Yakurigaku Zasshi,2002,120:215-221.
    [77]Brown,R.E.,Haas,H.L.,On the mechanism of histaminergic inhibition of glutamate release in the rat dentate gyrus,J Physiol,1999,515 (Pt 3):777-786.
    [78]Adachi,N.,Liu,K.,Arai,T.,Alleviation of ischemic neuronal damage by postischemic loading with histidine in the rat striatum,Brain Res,2004,998:136-138.
    [79]Lee,Y.T.,Hsu,C.C,Lin,M.H.,Liu,K.S.,Yin,M.C.,Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation,Eur J Pharmacol,2005,513:145-150.
    [80]Shen,Y.,Hu,W.W.,Fan,Y.Y.,Dai,H.B.,Fu,Q.L.,Wei,E.Q.,Luo,J.H.,Chen,Z.,Carnosine protects against NMDA-induced neurotoxicity in differentiated rat PC 12 cells through carnosine-histidine-histamine pathway and H(1)/H(3) receptors,Biochem Pharmacol,2007,73:709-717.
    [81]Gong,Y.X.,Wang,H.J.,Zhu,Y.P.,Zhang,W.P.,Dai,H.B.,Zhang,S.H.,Wei,E.Q.,Chen,Z.,Carnosine ameliorates morphine-induced conditioned place preference in rats,Neurosci Lett,2007,422:34-38.
    [82]Rossi,D.J.,Brady,J.D.,Mohr,C,Astrocyte metabolism and signaling during brain ischemia,Nat Neurosci,2007,10:1377-1386.
    [83]Takano,T.,Oberheim,N.,Cotrina,M.L.,Nedergaard,M.,Astrocytes and ischemic injury,Stroke,2009,40:S8-12.
    [84]Dienel,G.A.,Hertz,L.,Astrocytic contributions to bioenergetics of cerebral ischemia,Glia,2005,50:362-388.
    [85]Albrecht,J.,Sonnewald,U.,Waagepetersen,H.S.,Schousboe,A.,Glutamine in the central nervous system:function and dysfunction,Front Biosci,2007,12:332-343.
    [86]Hoshi,A.,Nakahara,T.,Kayama,H.,Yamamoto,T.,Ischemic tolerance in chemical preconditioning:possible role of astrocytic glutamine synthetase buffering glutamate-mediated neurotoxicity,J Neurosci Res,2006,84:130-141.
    [87]Rothstein,J.D.,Dykes-Hoberg,M.,Pardo,C.A.,Bristol,L.A.,Jin,L.,Kuncl, R.W.,Kanai,Y.,Hediger,M.A.,Wang,Y.,Schielke,J.P.,Welty,D.F.,Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate,Neuron,1996,16:675-686.
    [88]Voutsinos-Porche,B.,Bonvento,G.,Tanaka,K.,Steiner,P.,Welker,E.,Chatton,J.Y.,Magistretti,P.J.,Pellerin,L.,Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex,Neuron,2003,37:275-286.
    [89]Tanaka,K.,Watase,K.,Manabe,T.,Yamada,K.,Watanabe,M.,Takahashi,K.,Iwama,H.,Nishikawa,T.,Ichihara,N.,Kikuchi,T.,Okuyama,S.,Kawashima,N.,Hori,S.,Takimoto,M.,Wada,K.,Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1,Science,1997,276:1699-1702.
    [90]Saria,A.,Lundberg,J.M.,Evans blue fluorescence:quantitative and morphological evaluation of vascular permeability in animal tissues,J Neurosci Methods,1983,8:41-49.
    [91]Tureyen,K.,Vemuganti,R.,Sailor,K.A.,Dempsey,R.J.,Ideal suture diameter is critical for consistent middle cerebral artery occlusion in mice,Neurosurgery,2005,56:196-200;discussion 196-200.
    [92]Longa,E.Z.,Weinstein,P.R.,Carlson,S.,Cummins,R.,Reversible middle cerebral artery occlusion without craniectomy in rats,Stroke,1989,20:84-91.
    [93]Belayev,L.,Busto,R.,Zhao,W.,Ginsberg,M.D.,Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats,Brain Res,1996,739:88-96.
    [94]Huang,X.J.,Zhang,W.P.,Li,C.T.,Shi,W.Z.,Fang,S.H.,Lu,Y.B.,Chen,Z.,Wei,E.Q.,Activation of CysLT receptors induces astrocyte proliferation anddeath after oxygen-glucose deprivation,Glia,2008,56:27-37.
    [95]Dallas,M.,Boycott,H.E.,Atkinson,L.,Miller,A.,Boyle,J.P.,Pearson,H.A.,Peers,C,Hypoxia suppresses glutamate transport in astrocytes,J Neurosci,2007,27:3946-3955.
    [96]Reers,M.,Smith,T.W.,Chen,L.B.,J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential,Biochemistry,1991, 30:4480-4486.
    [97]Smiley,ST.,Reers,M.,Mottola-Hartshorn,C,Lin,M.,Chen,A.,Smith,T.W.,Steele,G.D.,Jr.,Chen,L.B.,Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,Proc Natl Acad Sci USA,1991,88:3671-3675.
    [98]Robinson,K.M.,Janes,M.S.,Beckman,J.S.,The selective detection of mitochondrial superoxide by live cell imaging,Nat Protoc,2008,3:941-947.
    [99]Kirkland,R.A.,Saavedra,G.M.,Franklin,J.L.,Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis:evidence for a role in cytochrome c redistribution,J Neurosci,2007,27:11315-11326.
    [100]Ohtsu,H.,Tanaka,S.,Terui,T.,Hori,Y.,Makabe-Kobayashi,Y.,Pejler,G.,Tchougounova,E.,Hellman,L.,Gertsenstein,M.,Hirasawa,N.,Sakurai,E.,Buzas,E.,Kovacs,P.,Csaba,G.,Kittel,A.,Okada,M.,Hara,M.,Mar,L.,Numayama-Tsuruta,K.,Ishigaki-Suzuki,S.,Ohuchi,K.,Ichikawa,A.,Falus,A.,Watanabe,T.,Nagy,A.,Mice lacking histidine decarboxylase exhibit abnormal mast cells,FEBS Lett,2001,502:53-56.
    [101]Parmentier,R.,Ohtsu,H.,Djebbara-Hannas,Z.,Valatx,J.L.,Watanabe,T.,Lin,J.S.,Anatomical,physiological,and pharmacological characteristics of histidine decarboxylase knock-out mice:evidence for the role of brain histamine in behavioral and sleep-wake control,J Neurosci,2002,22:7695-7711.
    [102]Lipton,P.,Ischemic cell death in brain neurons,Physiol Rev,1999,79:1431-1568.
    [103]Stvolinsky,S.L.,Dobrota,D.,Anti-ischemic activity of carnosine,Biochemistry (Mosc),2000,65:849-855.
    [104]Berger,C,Stauder,A.,Xia,F.,Sommer,C,Schwab,S.,Neuroprotection and glutamate attenuation by acetylsalicylic acid in temporary but not in permanent cerebral ischemia,Exp Neurol,2008,210:543-548.
    [105]Donnan,G.A.,Baron,J.C.,Ma,H.,Davis,S.M.,Penumbral selection of patients for trials of acute stroke therapy,Lancet Neurol,2009,8:261-269.
    [106]Lo,E.H.,A new penumbra:transitioning from injury into repair after stroke,Nat Med,2008,14:497-500.
    [107]Pestalozza,I.F.,Di Legge,S.,Calabresi,M.,Lenzi,G.L.,Ischaemic penumbra:highlights,Clin Exp Hypertens,2002,24:517-529.
    [108]Schlag,B.D.,Vondrasek,J.R.,Munir,M.,Kalandadze,A.,Zelenaia,O.A.,Rothstein,J.D.,Robinson,M.B.,Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons,Mol Pharmacol,1998,53:355-369.
    [109]Rao,V.L.,Bowen,K.K.,Dempsey,R.J.,Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain,Neurochem Res,2001,26:497-502.
    [110]Takahashi,M.,Billups,B.,Rossi,D.,Sarantis,M.,Hamann,M.,Attwell,D.,The role of glutamate transporters in glutamate homeostasis in the brain,J Exp Biol,1997,200:401-409.
    [111]Lauderback,CM.,Hackett,J.M.,Huang,F.F.,Keller,J.N.,Szweda,L.I.,Markesbery,W.R.,Butterfield,D.A.,The glial glutamate transporter,GLT-1,is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain:the role of Abetal-42,J Neurochem,2001,78:413-416.
    [112]Ouyang,Y.B.,Voloboueva,L.A.,Xu,L.J.,Giffard,R.G.,Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia,J Neurosci,2007,27:4253-4260.
    [113]Turrens,J.F.,Boveris,A.,Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria,Biochem J,1980,191:421-427.
    [1]Bakardjiev,A.,Bauer,K.,Biosynthesis,release,and uptake of carnosine in primary cultures,Biochemistry(Mosc),2000,65:779-782.
    [2]Guiotto,A.,Calderan,A.,Ruzza,P.,Borin,G,Carnosine and carnosine-related antioxidants:a review,Curr Med Chem,2005,12:2293-2315.
    [3]Horinishi,H.,Grillo,M.,Margolis,F.L.,Purification and characterization of carnosine synthetase from mouse olfactory bulbs,J Neurochem,1978,31:909-919.
    [4]Kalyankar,G.D.,Meister,A.,Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides,J Biol Chem,1959,234:3210-3218.
    [5]Winnick,R.E.,Winnick,T.,Carnosine-anserine synthetase of muscle.Ⅱ. Specificity and inhibition studies with amino acid analogs,Bull Soc Chim Biol (Paris),1958,40:1727-1735.
    [6]Harding,J.W.,O'Fallon,J.V.,The subcellular distribution of carnosine,carnosine synthetase,and carnosinase in mouse olfactory tissues,Brain Res,1979,173:99-109.
    [7]Lenney,J.F.,Specificity and distribution of mammalian carnosinase,Biochim Biophys Acta,1976,429:214-219.
    [8]Margolis,F.L.,Grillo,M.,Grannot-Reisfeld,N.,Farbman,A.I.,Purification,characterization and immunocytochemical localization of mouse kidney carnosinase,Biochim Biophys Acta,1983,744:237-248.
    [9]Teuscher,N.S.,Shen,H.,Shu,C,Xiang,J.,Keep,R.F.,Smith,D.E.,Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice,J Neurochem,2004,89:375-382.
    [10]Margolis,F.L.,Carnosine in the primary olfactory pathway,Science,1974,184:909-911.
    [11]Wideman,J.,Brink,L.,Stein,S.,New automated fluorometric peptide microassay for carnosine in mouse olfactory bulb,Anal Biochem,1978,86:670-678.
    [12]Biffo,S.,Grillo,M,Margolis,F.L.,Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system,Neuroscience,1990,35:637-651.
    [13]Ferriero,D.,Marogolis,F.L.,Denervation in the primary olfactory pathway of mice.Ⅱ.Effects on carnosine and other amine compounds,Brain Res,1975,94:75-86.
    [14]Tarozzo,G,Peretto,P.,Fasolo,A.,Cell migration from the olfactory placode and the ontogeny of the neuroendocrine compartments,Zoolog Sci,1995,12:367-383.
    [15]Peretto,P.,Bonfanti,L.,Merighi,A.,Fasolo,A.,Carnosine-like immunoreactivity in astrocytes of the glial tubes and in newly-generated cells within the tangential part of the rostral migratory stream of rodents,Neuroscience,1998,85:527-542.
    [16]Marchis,S.D.,Modena,C,Peretto,P.,Migheli,A.,Margolis,F.L.,Fasolo,A.,Carnosine-related dipeptides in neurons and glia,Biochemistry (Mosc),2000,65:824-833.
    [17]De Marchis,S.,Melcangi,R.C.,Modena,C,Cavaretta,I.,Peretto,P.,Agresti,C,Fasolo,A.,Identification of the glial cell types containing carnosine-related peptides in the rat brain,Neurosci Lett,1997,237:37-40.
    [18]Hoffmann,A.M.,Bakardjiev,A.,Bauer,K.,Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes,Neurosci Lett,1996,215:29-32.
    [19]Vaughan-Jones,R.D.,Spitzer,K.W.,Swietach,P.,Spatial aspects of intracellular pH regulation in heart muscle,Prog Biophys Mol Biol,2006,90:207-224.
    [20]Abe,H.,Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle,Biochemistry (Mosc),2000,65:757-765.
    [21]Smith,E.C.,The buffering of muscle in rigor;protein,phosphate and carnosine,J Physiol,1938,92:336-343.
    [22]Skulachev,V.P.,Biological role of carnosine in the functioning of excitable tissues.Centenary of Gulewitsch's discovery,Biochemistry (Mosc),2000,65:749-750.
    [23]Abe,H.,Dobson,G.P.,Hoeger,U.,Parkhouse,W.S.,Role of histidine-related compounds to intracellular buffering in fish skeletal muscle,Am J Physiol,1985,249:R449-454.
    [24]Boldyrev,A.A.,Problems and perspectives in studying the biological role of carnosine,Biochemistry (Mosc),2000,65:751-756.
    [25]Kohen,R.,Yamamoto,Y,Cundy,K.C.,Ames,B.N.,Antioxidant activity of carnosine,homocarnosine,and anserine present in muscle and brain,Proc Natl Acad Sci USA,1988,85:3175-3179.
    [26]Brown,C.E.,Interactions among carnosine,anserine,ophidine and copper in biochemical adaptation,J Theor Biol,1981,88:245-256.
    [27]Baran,E.J.,Metal complexes of carnosine,Biochemistry (Mosc),2000,65:789-797.
    [28]Boldyrev,A.,Carnosine as a modulator of endogenous Zn(2+) effects,Trends Pharmacol Sci,2001,22:112-113.
    [29]Boldyrev,A.A.,Dupin,A.M.,Batrukova,M.A.,Bavykina,N.I.,Korshunova,G.A.,Shvachkin Yu,P.,A comparative study of synthetic carnosine analogs as antioxidants,Comp Biochem Physiol B,1989,94:237-240.
    [30]Nagasawa,T.,Yonekura,T.,Nishizawa,N.,Kitts,D.D.,In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine,Mol Cell Biochem,2001,225:29-34.
    [31]Decker,E.A.,Ivanov,V.,Zhu,B.Z.,Frei,B.,Inhibition of low-density lipoprotein oxidation by carnosine histidine,J Agric Food Chem,2001,49:511-516.
    [32]Salim-Hanna,M,Lissi,E.,Videla,L.A.,Free radical scavenging activity of carnosine,Free Radic Res Commun,1991,14:263-270.
    [33]Pavlov,A.R.,Revina,A.A.,Dupin,A.M.,Boldyrev,A.A.,Yaropolov,A.I.,The mechanism of interaction of carnosine with superoxide radicals in water solutions,Biochim Biophys Acta,1993,1157:304-312.
    [34]Decker,E.A.,Livisay,S.A.,Zhou,S.,A re-evaluation of the antioxidant activity of purified carnosine,Biochemistry (Mosc),2000,65:766-770.
    [35]Hipkiss,A.R.,Brownson,C,Carrier,M.J.,Carnosine,the anti-ageing,anti-oxidant dipeptide,may react with protein carbonyl groups,Mech Ageing Dev,2001,122:1431-1445.
    [36]Hipkiss,A.R.,Michaelis,J.,Syrris,P.,Non-enzymatic glycosylation of the dipeptide L-carnosine,a potential anti-protein-cross-linking agent,FEBS Lett,1995,371:81-85.
    [37]Hobart,L.J.,Seibel,I.,Yeargans,G.S.,Seidler,N.W.,Anti-crosslinking properties of carnosine:significance of histidine,Life Sci,2004,75:1379-1389.
    [38]Hipkiss,A.R.,On the mechanisms of ageing suppression by dietary restriction-is persistent glycolysis the problem?,Mech Ageing Dev,2006,127:8-15.
    [39]Dukic-Stefanovic,S.,Schinzel,R.,Riederer,P.,Munch,G,AGES in brain ageing:AGE-inhibitors as neuroprotective and anti-dementia drugs?,Biogerontology,2001,2:19-34.
    [40]Hipkiss,A.R.,Could carnosine or related structures suppress Alzheimer's disease?,J Alzheimers Dis,2007,11:229-240.
    [41]Lee,V.M.,Goedert,M.,Trojanowski,J.Q.,Neurodegenerative tauopathies,Annu Rev Neurosci,2001,24:1121-1159.
    [42]Hardy,J.,Selkoe,D.J.,The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics,Science,2002,297:353-356.
    [43]Lorenzo,A.,Yankner,B.A.,Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red,Proc Natl Acad Sci USA,1994,91:12243-12247.
    [44]Pollard,H.B.,Rojas,E.,Arispe,N.,A new hypothesis for the mechanism of amyloid toxicity,based on the calcium channel activity of amyloid beta protein (A beta P) in phospholipid bilayer membranes,Ann N Y Acad Sci,1993,695:165-168.
    [45]Yankner,B.A.,Dawes,L.R.,Fisher,S.,Villa-Komaroff,L.,Oster-Granite,M.L.,Neve,R.L.,Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease,Science,1989,245:417-420.
    [46]Rogers,J.,Cooper,N.R.,Webster,S.,Schultz,J.,McGeer,P.L.,Styren,S.D.,Civin,W.H.,Brachova,L.,Bradt,B.,Ward,P.,et al.,Complement activation by beta-amyloid in Alzheimer disease,Proc Natl Acad Sci USA,1992,89:10016-10020.
    [47]Schnabel,J.,New Alzheimer's therapy suggested,Science,1993,260:1719-1720.
    [48]Reddy,V.P.,Obrenovich,M.E.,Atwood,C.S.,Perry,G,Smith,M.A.,Involvement of Maillard reactions in Alzheimer disease,Neurotox Res,2002,4:191-209.
    [49]Seidler,N.W.,Yeargans,G.S.,Effects of thermal denaturation on protein glycation,Life Sci,2002,70:1789-1799.
    [50]Choi,D.W.,Rothman,S.M.,The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death,Annu Rev Neurosci,1990,13:171-182.
    [51]Lipton,P.,Ischemic cell death in brain neurons,Physiol Rev,1999,79:1431-1568.
    [52]Rossi,D.J.,Brady,J.D.,Mohr,C,Astrocyte metabolism and signaling during brain ischemia,Nat Neurosci,2007,10:1377-1386.
    [53]Adams,H.P.,Jr.,del Zoppo,G,Alberts,M.J.,Bhatt,D.L.,Brass,L.,Furlan,A.,Grubb,R.L.,Higashida,R.T.,Jauch,E.C.,Kidwell,C,Lyden,P.D.,Morgenstern,L.B.,Qureshi,A.I.,Rosenwasser,R.H.,Scott,P.A.,Wijdicks,E.F.,Guidelines for the early management of adults with ischemic stroke:a guideline from the American Heart Association/American Stroke Association Stroke Council,Clinical Cardiology Council,Cardiovascular Radiology and Intervention Council,and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups:The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists,Circulation,2007,115:e478-534.
    [54]Gladstone,D.J.,Black,S.E.,Hakim,A.M.,Toward wisdom from failure:lessons from neuroprotective stroke trials and new therapeutic directions,Stroke,2002,33:2123-2136.
    [55]Stvolinsky,S.L.,Dobrota,D.,Anti-ischemic activity of carnosine,Biochemistry (Mosc),2000,65:849-855.
    [56]Gallant,S.,Kukley,M.,Stvolinsky,S.,Bulygina,E.,Boldyrev,A.,Effect of carnosine on rats under experimental brain ischemia,Tohoku J Exp Med,2000,191:85-99.
    [57]Stvolinsky,S.,Kukley,M.,Dobrota,D.,Mezesova,V,Boldyrev,A.,Carnosine protects rats under global ischemia,Brain Res Bull,2000,53:445-448.
    [58]Boldyrev,A.,Fedorova,T.,Stepanova,M.,Dobrotvorskaya,I.,Kozlova,E.,Boldanova,N.,Bagyeva,G,Ivanova-Smolenskaya,I.,Illarioshkin,S.,Carnosine [corrected]increases efficiency of DOPA therapy of Parkinson's disease:a pilot study,Rejuvenation Res,2008,11:821-827.
    [59]Samii,A.,Nutt,J.G.,Ransom,B.R.,Parkinson's disease,Lancet,2004,363:1783-1793.
    [60]Schapira,A.H.,Etiology of Parkinson's disease,Neurology,2006,66:S10-23.
    [61]Wolters,E.,Berendse,H.W.,de Koning-Tijssen,M.A.,Parkinsonism & related disorders.Proceedings of the XVⅡ WFN World Congress on Parkinson's disease and related disorders,Parkinsonism Relat Disord,2007,13 Suppl 3:iii.
    [62]Shin,Y.,Klucken,J.,Patterson,C,Hyman,B.T.,McLean,P.J.,The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways,J Biol Chem,2005,280:23727-23734.
    [63]Hofer,A.,Gasser,T.,New aspects of genetic contributions to Parkinson's disease,J Mol Neurosci,2004,24:417-424.
    [64]Ma,Q.L.,Chan,P.,Yoshii,M.,Ueda,K.,Alpha-synuclein aggregation and neurodegenerative diseases,J Alzheimers Dis,2003,5:139-148.
    [65]Kang,J.H.,Kim,K.S.,Enhanced oHgomerization of the alpha-synuclein mutant by the Cu,Zn-superoxide dismutase and hydrogen peroxide system,Mol Cells,2003,15:87-93.
    [66]Kim,K.S.,Choi,S.Y.,Kwon,H.Y.,Won,M.H.,Kang,T.C.,Kang,J.H.,The ceruloplasmin and hydrogen peroxide system induces alpha-synuclein aggregation in vitro,Biochimie,2002,84:625-631.
    [67]Mozdzan,M.,Szemraj,J.,Rysz,J.,Nowak,D.,Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions,Basic Clin Pharmacol Toxicol,2005,96:352-360.
    [68]Calabrese,V.,Colombrita,C,Guagliano,E.,Sapienza,M.,Ravagna,A.,Cardile,V.,Scapagnini,G,Santoro,A.M.,Mangiameli,A.,Butterfield,D.A.,Giuffrida Stella,A.M.,Rizzarelli,E.,Protective effect of carnosine during nitrosative stress in astroglial cell cultures,Neurochem Res,2005,30:797-807.
    [69]Kang,K.S.,Yun,J.W.,Lee,Y.S.,Protective effect of L-carnosine against 12-0-tetradecanoylphorbol-13-acetate-or hydrogen peroxide-induced apoptosis on v-myc transformed rat liver epithelial cells,Cancer Lett,2002,178:53-62.
    [70]Jin,C.L.,Yang,L.X.,Wu,X.H.,Li,Q.,Ding,M.P.,Fan,Y.Y.,Zhang,W.P.,Luo,J.H.,Chen,Z.,Effects of carnosine on amygdaloid-kindled seizures in Sprague-Dawley rats,Neuroscience,2005,135:939-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700