句容水库农业流域反硝化对氮的去除作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业流域水体沉积物和土壤的反硝化作用是农业氮素去除的重要途径。但是,我国对农业流域反硝化作用的研究主要集中在农田土壤,且多为田块尺度,对水体沉积物反硝化作用的研究较少,本文对这两个方面进行了初步探讨。
     2007年5月、8月、11月和2008年2月,在句容水库农业流域的水塘、河流和水库中,采用自行设计制作的无扰动采样器采集了沉积物柱样,使用乙炔抑制法测定了水体沉积物反硝化作用,研究了沉积物反硝化潜势的季节变化及其影响因素。结果表明,水体沉积物反硝化潜势存在显著的季节差异,水塘沉积物的反硝化潜势范围在9.27~25.67μgN·m-2h-1之间,河流沉积物的反硝化潜势范围在8.85~64.04μgN·m-2·h-1之间,水库沉积物的反硝化潜势范围在5.01~28.18μgN·m-2·h-1之间。沉积物反硝化潜势的季节变化与上覆水的温度、NH4+、NO3-和TDN的浓度,及沉积物的OM和TN含量的季节变化有关。
     采用乙炔抑制法,研究了温度、NO3-浓度、沉积物深度对沉积物反硝化作用的影响。结果表明,沉积物的反硝化速率与温度、沉积物深度具有显著相关关系,与NO3-浓度不具有显著相关关系。沉积物反硝化作用主要发生在0~15cm厚度范围内,最高的反硝化潜势发生深度在0~5cm厚度。本试验对比了NO3-质量平衡法和乙炔抑制法测定沉积物反硝化作用的研究结果,表明两种方法具有很好的相关关系,但乙炔抑制法测定结果只有NO3-质量平衡法的25%左右。可见,采用乙炔抑制法测定沉积物的反硝潜势,可能存在低估反硝化作用的问题。
     采用密闭箱法测定了水塘、河流和水库表面排放的N2O排放通量。结果表明,水塘N2O的排放速率范围-0.42~16.76μgN·m-2·h-1,河流的N2O排放速率范围0.29~8.41μgN·m-2·h-1,水库的N2O的排放速率范围0.27~10.40μgN·m-2·h-1并且N2O排放速率最大值在2月份。水体是N2O排放的重要来源。水体温度的季节变化与水体N2O的排放量季节变化的趋势不一致。
     用乙炔抑制原状土柱培养法,测定土壤反硝化作用。结果表明,农田土壤的反硝化作用明显大于森林和茶园;种植不同作物的农田土壤的反硝化速率变化范围在0.01~239.14 kgN·ha-1·yr-1之间;旱地反硝化速率年平均值为19.3kgN·ha-1·yr-1,水田反硝化速率年平均值为8.35kgN·ha-1·yr-1;农田土壤反硝化去除的总氮量为31.93kgN·ha-1·yr-1。相关分析表明,土壤反硝化速率的季节变化与土壤NO3-、NH4+含量之间不具有显著相关关系。6月份含水率与反硝化速率有显著负相关关系,3月份含水率与反硝化速率之间有极显著正相关关系,其它月份无显著相关关系。
The denitrification of sediment and soil are considered as the most important way to remove nitrogen from agricultural watershed. However, most studies about denitrification in agricultural watershed mainly focus on farmland soil, based on field scale, and studies on sediment denitrification of water body are rare. So the objective of the paper was to explore the soil and sediment denitrification in Jurong reservoir agricultural watershed.
     Seasonal variation in denitrification potential of sediments of five ponds, a river and a reservoir in Jurong reservoir agricultural watershed were studied from May 2007 to February 2008. Denitrification potential of sediment cores were measured by acetylene inhibition technique. The results showed that denitrification potential of the sediments in the watershed was low, with seasonal average ranging from 9.27to25.67μgN·m-2h-1 for pond sediments,8.85 to 64.04μgN·m-2·h-1 for river sediments and 5.01 to 28.18μgN·m-2·h-1 for reservoir sediments, respectively. The seasonal variation in denitrification potential was influenced by water temperature, content of organic matter and TN in sediments and NH4+, NO3-, and TDN concentration in overlaying water.
     The acetylene inhibition technique was also used to investigate the effect of variables on sediment denitrification potential, including temperature, the NO3- concentration and sediment depth. The results showed that there was significant correlation between sediment denitrificatio potential and these variables except the NO3- concentration. And the sediment denitrification potential of different depth was determined. Results showed that denitrification mainly existed within 15 cm depth, and the biggest value of denitrification potential took place in the depth of 5 cm. In addition, NO3- mass balance and acetylene inhibition were used to measure sediment denitrification potential, the result showed that there was significant correlation between the two ways. However, the result in acetylene inhibition was only about 25% of the result in the other way. Maybe the denitrification potential was underestimated in acetylene inhibition method.
     N2O gas samples were collected from water surface emission by chamber method, and the N2O fluxes discharging from water body including the ponds, river and reservoir were also measured. The result showed that N2O emission flux ranging from-0.42~16.76μgN·m-2·h-1 for the ponds,0.29~8.41μg·m-2·h-1 for the river and 0.27~10.10μgN·m-2·h-1 for the reservoir, respectively. The value of N2O emission flux in February was the bigger than the other month value. The seasonal variation trend in N2O emission flux of water surface emission disaccorded with that of concentration of N2O in atmospheric and water temperature. Total N2O emission flux of water surface was 188 kgN·yr-1 in Jurong reservoir agricultural watershed. So the water body was important emission source of N2O.
     Seasonal variation in denitrification rate of soil was studied using acetylene inhibition technique from June 2008 to March 2009. The result showed that the denitrification rate was much bigger in farmland than that in forest and in tea garden. The denitrification rate of different crops changed from 0.01 to 239.14 kgN·ha-1·yr-1. The enitrification rate of the same crop, take wheat for example, was bigger in paddy field than that in upland. Annual average denitrification rate was 19.3kgN·ha-1·yr-1 for upland and 8.35kgN·ha-1·yr-1 for paddy field. The removal amount of nitrogen by soil denitrification was 31.93tonN·yr-1. There was no significant correlation between soil denitrification rate and NH4+ and NO3-. However, there was significant correlation between soil denitrification rate and soil moisture in June and March except that in August and December. While the relationship was negative correlation in June and that was positive correlation in March. Therefore, soil moisture was limiting factor of soil denitrification.
引文
[1]Lee S I. Nonpoint source pollution [J] Fisheries,1979, (2):50~52
    [2]Novotny V and Olem H. Water quality:prevention, identification and management of diffuse pollution [M]. New York:Van Nostrand Reinhold Reinhold Company,1994
    [3]张水龙,庄季屏.农业非点源污染研究现状与发展趋势[J].生态学杂志,1998,17(6):51~55
    [4]Novoty V, Chester G Handbook of nonpoint soure pollution and management [M]. New York:Van Nostrand Reinhold Company,1981
    [5]US EPA. National water quality inventory[R].Washing DC:USEPA 1995:497
    [6]Kronvang B. Diffuse nutrient losses in Denmark [J]. Water Science and Technology,1996,33(1): 81~88
    [7]Edwin D, Ongley. Control of water pollution from agriculture [J]. FAO Irrigation and Drainage,1996: 55
    [8]中国农业年鉴编辑委员会.中国农业统计年鉴[M].中国农业出版社,北京,2006:166
    [9]马立珊,钱敏仁.太湖流域水环境硝态氮和亚硝态氮污染研究[J].环境科学,1987,8(2):60~65
    [10]阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,2001,15(4):129~132
    [11]Aulak M S, Dorn J W and Mosier A R. Soil denitrification-significance, measurement, and effects of management. In:Stewart, B.A. Editor,1Advances in Soil Science. Springer-Verlag, New York. 1992,18:1-57
    [12]FAO. Production Yearbook Food and Agriculture Organization, Rome, Italy,1986
    [13]Tiedje J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In:Zehnder, A.J.B. (ed.). Biology of Anaerobic Micro-organisms. Wiley, New Yoik.1988:179~243
    [14]Aulak M S.Gaseous losses of nitriogen from soils through biological processes:a review. In Mishra, M M,Kappor(ed.) Soil Biology, Harayana Agric.Univ.Hissar, India. 1986:99~115
    [15]Allison F E. The enigma of soil nitrogen balance sheets. Norman, A.G. (ed.) Advances in agronomy.
    Academic Press, N.Y.,1955,3:213~250
    [16]Hauck R D. Nitrogen fertilizer effects on nitrogen cycle processes. In:Clark, F.E., Rosswall, T. (eds.) Terrestrial N Cycle. Ecol. Bull. Stockholm.1981,33:551~562
    [17]Hauck R D and Tanji K K. Nitrogen transfers and mass balances. In:Stevenson, F.J. (ed.) Nitrogen in Agricultural Soils. Agronnmy monograph no.22, American Society of Agronomy, Madison, Wis. 1982,891~925
    [18]Stevenson F J. Origin and distribution of nitrogen in soil. In:Stevenson, F.J. (ed) Nitrogen in Agriculutural Soils. Agronmomy Monograph No.22. American Society of Agronmom, Madison, Wis.1982,1~42
    [19]Trevors J T. The influence of oxygen concentrations on denitrification in soil [J]. Apply Microbiology Biotechnology,1985,23(2):152~155
    [20]Robertson L A, Kuenen J G. Aerobic denitrification:a controversy revived. Arch Microbiology, 1984,139(5):351-354
    [21]胡玲珍,陈振楼.河口沉积物反硝化反应影响因子综述[J].环境科学动态,2003,4:41~43
    [22]白洁,王晓东,李佳霖等.北黄海沉积物—水界面反硝化速率及影响因素研究[J].中国海洋大学学报,2007,37(4):653~656
    [23]Seitzinger S P. Denitrification in freshwater and costal marine ecological and geochemical significance [J]. Limonl Oceanogr,1988,33:702~724
    [24]Burford J R and Bremner J M. Relationships between the denitrification capacities of soils and total, water soluble and readily decomposable soil organic matter [J]. Soil Biol. Biochem,1975,7: 389~394
    [25]Drury C F, Mckenney D J and Findlay W I. Relationships between denitrification, microbial biomass and indigenous soil properties [J]. Soil Biol. Biochem.,1991,23:751~755
    [26]Chantigny M H. Dissolved and water-extractable organic matter in soils:a review on the influence of land use and management practices [J]. Geoderma,2003,113:357~380
    [27]Bouwan A F, Focht D D. The influence of glucose and nitrate concentration upon denitrification rate in a sandy soil [J]. Soil Biology and Biochemistry,1974,6:297~301
    [28]Knowles R. Denitrification, In:Paul, E.A and Ladd J. (eds.), Soil Biochemistry, Marcel Dekker, New York.1981,5:323~369
    [29]Kohl D H, Vithayathil F, Whitlow P, et al. Denitrification kinetics in soil systems:the significance of good fits of data to mathematical forms [J]. Soil Sci. Soc.Am.J.,1976,40:249~253
    [30]Limmer A W and Steele K W. Denitrification potentials:measurement of seasonal variation using a short-term anaerobic incubation technique [J]. Soil Biol.Biochem.1982,14:179~184
    [31]吴耀国.地下水中反硝化作用.环境污染治理技术与设备.2002,3(3):27~31
    [32]续勇波.亚热带土壤氮素反硝化及其环境效应[D].2007,6
    [33]Cavari B Z and Phelps G. Denitrification in Lake Kinneret in the presence of oxygen [J]. Freshwater Biol,1977,7(4):385~391
    [34]Nowichi B L. The effect of temperature, oxygen, salinity and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique [J]. Estuarine, Coastal and Shelf Science,1994,38(2):137~156
    [35]赵化德,姚子伟,关道明.河口区域反硝化作用研究进展[J].海洋环境科学,2007,3(26):296~300
    [36]Ryden G C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate [J]. J. Soil Science,1983,34:55~365
    [37]万晓红,周怀东,刘玲花.湿地反硝化作用研究进展[J].中国水利,2007,9:38~40
    [38]梁东丽,同延安,OVE Emterdy.土壤反硝化田间原位车的那个方法的研究进展[J].土壤与环境,2001,10(2):149~153
    [39]孙志高,刘景双,杨继松等.三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J].应用生态学报,2007,18(1):185~192
    [40]丁雷,徐慧,赵明宪.土壤硝化与反硝化作用研究方法进展[J].江西农业学报,2007,19(4):46~48
    [41]邹国元,李新慧,张琳.水稻土氮素硝化-反硝化损失的直接测定初报[J].中国农业大学学报,1997,2(增刊):79~82
    [42]Livingstone M W, Smith R V and Laughlin R J. A spatial study of denitrification potential of sediments in elfast and strangford loughs and its significance [J]. The Science of Total Environment, 2000,251:369~380
    [43]Aulakh M S, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effect of management [J]. Advances in Soil Science,1992,18:1-57
    [44]Hauck R D.1981. Nitrogen fertilizer effects on nitrogen cycle processes[C].International workshop: Terrestrial nitrogen cycles. Oesterfaernebo(Sweden),33:551~562
    [45]Groffman P M.1995. A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems [J]. Fertilizer Research,42:139~148
    [46]Zhu Z L. Nitrogen balance and cycling in agroecosystem of China. In Zhu Z L, Wen Q X and Freney J R.(eds.). Nitrogen in soil of China. Kluwer Academic Publishers, Dordreche/Boston/London.1997:323~330
    [47]Cai G X, Fan X H and Zhu Z L. Gaseous loss of nitrogen from fertilizers applied to wheat on a calcareous soil in North China Plain [J]. Pedospere,1998,8:32~45
    [48]Myrold D D. Denitrification in ryegrass and winter wheat cropping systems of Western Oregon [J]. Soil Sci. Soc. Am. J.,1988,52:412~416
    [49]Bertelsen F, Jensen E S. Gaseous nitrogen loss from field plots grown with pea or spring barley estimated by 15N balance and acetylene inhibition techniques [J]. Plant Soil,1992,142:287~295
    [50]Xing G X and Zhu Z L. Regional nitrogen budgets for China and its major watershed [J]. Biogeochemistry,2002,57/58:405~427
    [51]Saunders D L, Kalf J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia,2001,443: 205~212
    [52]徐玉裕,曹文志,黄一山等.五川农业流域土壤反硝化作用测定及其调控措施[J].农业环境科学学报,2007,26(3):1126~1131
    [53]Seitzinger S P, Pilson M and Scottw N. Denitrification and N2O production in near-shore marine sediments [J].Science,1983,4629(222):1244~1246
    [54]Messer J, P I Brezonik. Comparison of denitrification rate estimation techniques in a large, shallow lake [J]. Water Res.,1983,17(6):631~640
    [55]Mengis M, Gachter R, Wehrli B. Nitrous oxide emissions to the atmosphere from an artificially oxygenated lake [J]. Limnol Oceanogr,1996,41(3):548~553
    [56]杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41~47
    [57]Berelson W M., D.Heggie, A. Longmore et al. Benthic Nutrient Recycling in Port Phillip Bay, Australia, Estu [J]. Coas. Shelf. Sci.,1998,46:917~934
    [58]Jenkins M C and W M Kemp. The Coupling of Nitrification and Denitrification in two estuarine sediments [J]. Limnol Oceanogr,1984,29(3):609~619
    [59]马红波,宋金明.海洋沉积物中的氮循环[J].海洋科学集刊,2001,43:96~107
    [60]王东启,陈振楼,王军等.夏季长江河口潮间带反硝化作用和N20的排放与吸收[J].地球化学,2006,35(5):271~279
    [61]IPCC, Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In:Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, CA. (Eds.), Climate Change 2001:The scientific Basis. Cambridge University Press, Cambridge.2001,881
    [62]Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In Bouwman A F(ed.) [J]. Soil and the greenhouse effect. John Wiley and Sons Ltd., Chichester.1990,61~127
    [1]全为民,沈新强,韩金娣等.长江口及邻近水域富营养化现状及变化趋势的评价与分析[J].海洋环境科学,2005,24(3):13~16
    [2]Alm A L. Non-point Sources of Water Pollution [J]. Environmental Science and Technology,1990, 24(7):967
    [3]鲍全盛,王华东.我国水环境非点源污染研究与展望[J].地理科学,1996,16(1):66~71
    [4]阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理科学,1998,18(3):263~267
    [5]马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39~47
    [6]张振克.太湖流域湖泊水环境问题、成因与对策[J].长江流域资源与环境,1999,8(1):81~87
    [7]王东启,陈振楼,王军等.夏季长江河口潮间带反硝化作用和N2O的排放与吸收[J].地球化学,2006,35(5):271~279
    [8]白洁,王晓东,李佳霖等.北黄海沉积物—水界面反硝化速率及影响因素研究[J].中国海洋大学学报,2007,37(4):653~656
    [9]徐继荣,王友绍,殷建平等.珠江口入海河段DIN形态转化与硝化和反硝化作用.环境科学学报,2005,25(5):686~692
    [10]徐继荣,王友绍,殷建平等.大亚湾海域沉积物中的硝化与反硝化作用[J].海洋与湖泊,2007,38(3):206~211
    [11]邢光熹,曹亚澄,施书莲等.太湖地区水体氮的污染源和反硝化[J].中国科学(B辑),2001,31(2):130~137
    [12]徐玉裕,曹文志,李大明等.闽南农业小流域土壤反硝化作用研究[J].中国土壤与肥料,2007(3):15~19
    [13]徐玉裕,曹文志,黄一山等.五川农业流域土壤反硝化作用测定及其调控措施[J].农业环境科学学报,2007,26(3):1126~131
    [14]邹国元,赵紫娟,张福锁等.运用乙炔抑制-静态土柱培养法测定旱地土壤氮素反硝化损失[J].土壤通报,2002,35(5):381~384
    [15]Royer T V, Tank J L and David M B. Transport and fate of nitrate in headwater agricultural streams in Illinois [J]. Journal of Environmental Quality,2004,33:1296~1304
    [16]Smith M S and Tiedje J M. Phases of denitrification following oxygen depletion in soil [J]. Soil Biology and Biochemistry,1979,11:261~267
    [17]胡玲珍,陈振楼.反硝化实验方法研究综述[J].环境科学动态,2003,3:27~29
    [18]孙志高,刘景双,杨继松等.三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J].应用生态学报,2007,18(1):185~192
    [19]David M B, Wall L Q Royer T V, et al. Denitrification and the nitrogen budget of a reservoir in an agricultural landscape [J]. Ecological Application,2006,16(6):2177~2190
    [20]Terry R E, Tate Ⅲ R L and Duxbury J M. The effect of flooding on nitrous oxide emission from an organic soil [J]. Soil Science,1981,132(3):228~232
    [21]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,106~109;146~149
    [22]史春龙.富营养化湖泊底泥中反硝化微生物及其反硝化作用的研究[D].2003,1~111
    [23]杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41~47
    [24]Messer J, P I Brezonik. Comparison of denitrification rate estimation techniques in a large, shallow lake. Water Res.,1983,17(6):631~640
    [25]Seitzinger S P, Pilson M and Scottw N. Denitrification and N2O production in near-shore marine sediments [J].Science,1983,4629(222):1244~1246
    [26]王耀思,郑循华.北京大气中N2O浓度观测.资源生态环境网络研究动态,1994,5:30~34
    [27]Tomaszek J A, et al. Denitrification in sediments of Lake Erie coastal wetland (Old Woman Creek, Huron, Ohio, USA) [J]. J Great Lake Res.,1996,23(4):403~415
    [28]杨龙元,Gardner W S.休伦湖Saginaw湾沉积物反硝化率的测定及其时空特征[J].湖泊科学,1998,10(3):32~38
    [29]赵化德,姚子伟,关道明.河口区域反硝化作用研究进展[J].海洋环境科学,2007,26(3):296~300
    [30]Ogilvie B. High nitrate, muddy estuaries as nitrogen sinks:the nitrogen budget of the River Colne Estuary [J]. Marine.Ecology Progress Series,1997,150:217~228
    [31]Aulakh M S, Doran J W, Mosier A R. Soil denitrification-significance, measurement, and effect of management [J]. Advances in Soil Science,1992,18:1~57
    [32]Hauck R D. Nitrogen fertilizer effects on nitrogen cycle processes[C].International workshop: Terrestrial nitrogen cycles. Oesterfaernebo (Sweden),1981,33:551~562
    [33]Groffman P M. A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems [J]. Fertilizer Research,1995,42:139~148
    [34]Herbert R A. Nitrogen cycling in coastal marine ecosystem [J]. FEMS Microbiology Reviews,1999, 3:563~590
    [35]Kaspar H F. Denitrification in marine sediment:measurement of capacity and estimate of in situ rate [J]. Appl Enviton Microbiol.,1982,43:522~527
    [1]白洁,王晓东,李佳霖等.北黄海沉积物—水界面反硝化速率及影响因素研究[J].中国海洋大学学报,2007,37(4):653~656
    [2]胡玲珍,陈振楼.河口沉积物反硝化反应影响因子综述[J].环境科学动态,2003,4:41~43
    [3]赵化德,姚子伟,关道明.河口区域反硝化作用研究进展[J].海洋环境科学,3(26):296~300
    [4]Terry R E, Tate Ⅲ R L, Duxbury J M.1981. The effect of flooding on nitrous oxide emission from an organic soil [J]. Soil Science,132(3):228~232
    [5]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,106~109;146~149
    [6]Rudolph J, Frenzel P, Pfenning N. Acetylene inhibition technique underestimates in situ denitrification rates in intact cores of fresh water sediment [J]. FEMS Microbiol Lett,1991,85(2): 101~106
    [7]Livingstone M W, Smith R V and Laughlin R J. A spatial study of denitrification potential of sediments in elfast and strangford loughs and its significance [J]. The Science of Total Environment, 2000,251:369~380
    [8]Seitzinger S P. Denitrification in freshwater and coastal marine ecosystems:ecological and geochemical significance [J]. Limnol Oceanogr,1988,33:702~724
    [9]Nowicki B. The effect of temperature, oxygen, salinity and nutrient enrichment on estuarine denitrification rates measured with a modified gas flux technique [J]. Estuarine Coastal Shelf Sci., 1994,38:137~156
    [10]Saunders D L, Kalef J. Denitrification rates in the sediments of Lake Memphremagog, Canada USA [J]. Wat. Res.,2001,35(8):1897~1904
    [11]吴耀国.地下水环境中反硝化作用[J].环境污染治理技术与设备,2002,3(3):27~31
    [12]Ogilvie B. High nitrate, muddy estuaries as nitrogen sinks:the nitrogen budget of the River Colne Estuary [J]. Marine Ecology Progress Series,1997,150:217~228
    [1]IPCC. Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007-11-17). http://www.ipcc.ch/
    [2]Groffman P M, Goldb A, Addyb K. Nitrous oxide production in riparian zones and its importance to nation emission inventories [J]. Chemosphere Global Change Science,2000,2(3-4):291~299.
    [3]Rodhe H. A Comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990,248:1217~1219
    [4]Robertson G P. Fluxes of nitrous oxide and other nitrogen trace gases from intensively managed landscapes:A Global Perspective[C]. In:Rolston DE, eds. Agricultural ecosystem effect on trace gases and global climate change.ASA. Special publication number,1993,55:95~108
    [5]Mathews E. Nitrogenous Fertilizers:Global distribution of consumption and associated emission of nitrous oxide and ammonium [J]. Global Biogeochem.Cycles,1994,8:411~439
    [6]Xing GX. N2O emission from cropland in China [J]. Nutr Cycl Agroecosys,1998,52 (2/3):249~254
    [7]Romen D, Magaritz M, Almon E. Contaminated aquifers are a forgotten component of the global budget [J]. Nature,1988,335:37~59
    [8]Seitzinger S P, Kroeze C, Styles R V. Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects [J]. Chemosphere-Global Change Science,2000,2: 267~279
    [9]Mosier A, Kroeze C. Potential impact on global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands [J]. Chemosphere-Global Change Science,2000, 2:465~473
    [10]谢军飞,李玉娥.土壤温度对北京旱地农田N2O排放的影响[J].中国农业气象,2005,26(1):7~10
    [11]Christensen S, Tiedje J M. Brief and vigorous N2O production by soil at spring thaw [J]. J Soil Sci., 1990,41(1):1~4
    [12]Koponen H T, Martikainen P J. Soil water, content and freezing temperature affect freeze-thaw related N2O production in organic soil [J]. Nutr Cycl Agroecosys,2004,69(3):213~219
    [13]Kammann C, Grunhage L, Muller C, et al. Seasonal variability and mitigation options for N2O emissions from differently managed grasslands [J]. Environ Pollut,1998,102:179~186
    [14]Muller C, Martin M, Stevens R J, et al. Processes leading to N2O emissions in grassland soil during freezing and thawing [J]. Soil Biol Biochem,2002,34(9):1325~1331
    [15]Sehy U, Dyckmans J, Ruser R, et al. Adding dissolved organic carbon to simulate freeze-thaw related N2O emissions from soil [J]. J Plant Nutr Soil Sc.,2004,167(4):471~478
    [16]Usui T, Koike I, Ogura N. N2O production, nitrification and denitrification in estuarine sediment [J]. Estuar Coast Shelf Sci,2001,52(6):769~781
    [17]Christianson C B, Cho C M. Chemical denitrification of nitrite in frozen soils [J]. Soil Sci Soc Am J, 1983,47(1):38~42
    [18]Rover M, Heinemeyer O, Kaiser E A. Microbial induced nitrous oxide emissions from an arable soil during winter [J]. Soil Biol Biochem,1998,30(14):1859~1865
    [19]Garcia-Ruiz R, Pattinson S N, and Whitton B A. Nitrous oxide production in the river Swale-Ouse, North-East England. Water Research,1999,33(5):1231~1237
    [20]熊正琴,邢光喜,沈光裕等.太湖地区湖水与河水中溶解N2O及其排放[J].环境科学,2002,23(6):26~30
    [21]熊正琴,邢光熹,沈光裕等.太湖地区井水中溶解N2O及其排放的研究[J].中国生态农业学报,2003,11(3):99~101
    [22]Silvennoinen H. Denitrification and N2O effluxes in the Bothnian Bay river sediment as affect by temperature under different oxygen concentrations [J]. Biogeochemistry,2008,88(1):63~72
    [23]孙丽,宋长春,黄耀.沼泽湿地N2O通量特征及N2O与CO2排放间的关系[J].中国环境科学,2006,26(5):532~536
    [24]蒋静艳,黄耀.农业土壤N2O排放的研究进展[J].农业环境保护,2001,20(1):51~54
    [25]郑循华,王明星,王跃思等.华东稻麦轮作生态系统的N20排放研究[J].应用生态学报,1997,8(5):495~499
    [26]曾江海,王智平,张玉铭等.小麦-玉米轮作期土壤排放N20通量及总量估算[J].环境科学,1995,16(1):32~35
    [27]王东启,陈振楼,王军等.夏季长江河口潮间带反硝化作用和N20的排放与吸收[J].地球化学,2006,35(5):271~279
    [28]徐继荣,王友绍,张凤琴等.南海东北部海水中N20分布与产生机制的初步研究[J].热带海洋学报,2006,25(4):66~74
    [29]王洪君,王为东,卢金伟等.湖滨带温室气体氧化亚氮(N20)排放研究[J].生态环境,2006,15(2):270~275
    [30]杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41~47
    [31]Messer J, P I Brezonik. Comparison of denitrification rate estimation techniques in a large, shallow lake [J].Water Res.,1983,17(6):631~640
    [32]Mengis M, Gachter R, Wehrli B. Nitrous oxide emissions to the atmosphere from an artificially oxygenated lake [J]. Limnol Oceanogr,1996,41(3):548~553
    [1]Buresh RJ, De Datta SK. Denitrification losses from puddle rice soils in the tropics [J]. Biology and Fertility of Soils,1990,9:1-13
    [2]Fillery IRP, Vlek PLG. The significance of denitfification of applied nitrogen in fallow and rooped rice soils under different flooding regimes [J].Greenhouse Experiments. Plant and Soil,1982,65: 153~169
    [3]Xing GX, Can Y C, Shi S L, et al. Denitrification in underground aturated soil in a rice paddy region [J]. Soil Biology and Biochemistry,2002,34:1593~1598
    [4]Zhang Y M, Chen D L, Zhang J B, et al. Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain [J]. Pedosphere,2004,14(4):533~540
    [5]Aulakh M S, Doran J W, Mosier A R.1992. Soil denitrification-significance, measurement, and effect of management [J]. Advances in Soil Science18:1~57
    [6]Hauck R D. Nitrogen fertilizer effects on nitrogen cycle processes[C].International workshop: Terrestrial nitrogen cycles. Oesterfaernebo (Sweden),1981,33:551~562
    [7]Groffman P M.1995. A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems [J]. Fertilizer Research,42:139~148
    [8]丁洪,王跃思,李卫华.玉米-潮土系统中不同氮肥品种的反硝化损失与N2O排放量[J].中国农业科学,2004,37(12):1886~1891
    [9]丁洪,蔡贵信,王跃思等.玉米-小麦轮作系统中氮肥反硝化损失与N2O排放量[J].农业环境科学学报,2003,22(5):557~560
    [10]丁洪,王跃思,项虹艳等.菜田氮素反硝化损失与N2O排放的定量评价[J].园艺学报,2004,31(6):762~766
    [11]Myrold, D D. Denitrification in ryegrass and winter wheat cropping systems of Western Oregon. Soil Sci. Soc. Am. J.,1988,52:412~416
    [12]Bertelsen F, Jensen E. S. Gaseous nitrogen loss from field plots grown with pea or spring barley estimated by 15N mass balance and acetylene inhibition techniques [J]. Plant Soil,1992,142: 287~295
    [13]Xing G X, Zhu Z L. Regional nitrogen budgets for China and its major watersheds [J]. Biogeochemistry,2002,57/58:405~27
    [14]徐玉裕,曹文志,黄一山等.五川农业流域土壤反硝化作用测定及其调控措施[J].农业环境科学学报,2007,26(3):1126~1131
    [15]Aulakh M S, Doran J W, Mosier A R. Soil denitrification significance, measurement, and effect of management [J]. Advance in Soil Science,1992,18:1-57
    [16]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,133;159~160;289~290
    [17]Desjardins R L, Smith W, Grant B, et al. Management strategies to sequester carbon in agricultural soils and to mitigrate greenhouse gas emission [J]. Climatic Change,2005,70:283~297
    [18]Liu X J, Mosier, Arvin R, et al. Dinitrogen and N2O emission in arable soils:effect of tillage, N source and soil moisture [J]. Soil Biolog&Biochemistry,2007,39:2362~2370
    [19]Wang X L, Yang S T, Mannaerts C M, et al. Spatially explicit estimation of soil denitrification rates and land use effects in the riparian buffer zone of the large Guanting reservoir [J]. Geoderma,2009, 150:240~252
    [20]Svensson Boh, Klemedtsson Leif, Simkins Stephen, et al. Soil denitrification in three cropping systems characterized by differences in nitrogen and carbon supply [J]. Plant and Soil,1991,138: 257~271
    [21]Hofstra N, Bouwman A F. Denitrification in agricultural soils:summarizing published data and estimating global annual rates [J]. Nutrient Cycling in Agroecosysteme,2005,72:267~278
    [22]Freney J R, Trevitt A C F, De Datta S K, et al. The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines [J]. Boil Fertil Soils,1990,9:31~36
    [23]Xing G X. N2O emission from cropland in China [J]. Nutrient Cycling in Agroecosystem,1998,52: 249~254
    [24]Yoshinari T, Hynes R, Knowles R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil [J]. Soil Biology and Biochemistry, 1979,9:177~183
    [25]Knowles R. Denitrification [J]. Microbiol Rev.,1982,46:43~70
    [26]Burton D L, Beauchamp E G. Denitrificaion rate relationships with soil parameters in the field [J]. Commun Soil Sci Plant Annal,1985,16(5):539~549
    [27]续勇波.亚热带土壤氮素反硝化及其环境效应[D].2007,6
    [28]Zhu Z L. Nitrogen balance and cycling in agroecosystem of China [C]. In Zhu Z L, Wen Q X and Freney J R.(eds.). Nitrogen in soil of China. Kluwer Academic Publishers, Dordreche/ Boston/London.1997:323~330
    [29]Cai Z C, Fan X H and Zhu Z L. Gaseous loss of nitrogen from fertilizers applied to wheat on a calcareous soil in North China Plain [J]. Pedospere,1998,8:32~45
    [30]Benckiser G. Relationships between field-measured denitrification losses, CO2 formation and diffusional constrains [J]. Soil Biol Biochem,1994,26:891~899
    [31]Terry R E, Jellen E N, Breakwell D P. Effect of irrigation method and acetylene exposure on field denitrification measurements [J]. Soil Sci Soc Am J,1986,50:115~120
    [32]Mahmood T, Ali R, Azam F, et al. Comparison of two version of acelyene inhibition/soil core method for measuring denitrification loss from an irrigated wheat field [J]. Biol Fertil Soils,1999, 29:328~331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700