牙鲆群体遗传多样性及鲽形目鱼类分子系统学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以山东近海野生和养殖牙鲆Paralichthys olivaceus(T. & S.)为研究对
    象,采用同工酶电泳和随机扩增多态性DNA(RAPD)两种方法,进行了群体遗
    传学研究;另外,用PCR扩增了牙鲆、桂皮斑鲆Pseudorhombus cinnamomeus(T.
    & S.)、石鲽Kareius bicoloratus,Basilewsky和大菱鲆Psetta maxima 4种鲽形目
    鱼类mtDNA 16S rRNA基因区的部分片段,采用生物信息学方法构建了鲽形目
    分子系统树。主要结果如下:
     1.首先建立了适于牙鲆同工酶分析的水平淀粉凝胶和垂直聚丙烯酰胺凝
    胶电泳系统;对获得的牙鲆15种同工酶基本酶谱进行了生化遗传分析,进而
    对自然和养殖群体的生化遗传结构进行了分析,共记录了29个基因座位,发
    现了9个多态座位。
     2.野生群体的生化遗传参数多态基因座位比例(31.0%)、等位基因平均
    数(1.38)和群体平均杂合度(0.0802)都明显高于养殖群体(24.1%,1.28,
    0.0788);在野生群体中有9个多态基因座位,而养殖群体仅7个多态基因座
    位;其中,除了Cat和Idhp-1(仅养殖群体)(P<0.05)有显著差异、Ldh-C
    (P<0.01)完全偏离Hardy-Weinberg定律外,其余多态座位基因频率均符合
    Hardy-Weinberg遗传平衡定律。野生和养殖群体的遗传相似性系数(Ⅰ)为
    0.9877,它们的遗传距离(D)是0.0124;两群体间的遗传分化系数G_(st)为0.0681,
    D_m为0.01,表明总变异中的6.8%的遗传变异产生于群体间的基因差异。
     3.采用11个随机引物对20个野生个体和24个养殖个体进行了RAPD群
    体遗传多样性分析,分别扩增出88条和86条DNA带,片段大小在200-2500bp
    之间,平均每个引物扩增的带数是7.8-8.0。两个群体的多态座位比例分别是
    43.2%和34.9%,平均杂合度是0.2739和0.2255,而Shannon遗传多样性指数
    表明两群体的遗传变异中有88.12%的遗传变异来自种群内,只有11.88%的
    变异来自群体间。遗传分化指数G_(st)的结果也验证了Shannon遗传多样性指数的
    结果:总群体的遗传变异中约有12%是由两群体间的基因差异产生的。
     4.本文对牙鲆两个群体的同一批样品分别采用经典的同工酶方法和RAPD
    
    
    
    
     我N卧 牙鲜群体遗传多样性及煤形图鱼类分子系统学初步研究 治e学位论文
     方法进行了较系统的比较分析。发现,KAPD所显示的多态性要比同工酶的高
     得多,因为大部分RAPD的变异是源于非编码区和重复DNA,可以遍布整个基
     因组,而同工酶仅是功能基因的产物,只表现编码区的变异。因此,自然选择
     在同工酶编码区的作用要多于 RAPD标记。在遗传相似性系数目)和遗传距离
     (D)上,KAPD的分析结果与同工酶的分析结果也是有差异的,用同工酶分
     析两个群体遗传距离只有0乃124,而用RAPD研究可达0刀508。遗传分化指数
     的差异也很大,同工酶为0.068,RAPD为0.1237。
     5.RAPD和同工酶的分析结果是类似的,即自然群体的多态座位比例和平
     均杂合度要比养殖群体高,降低幅度在同工酶中界于1.7~22.3%之间,在KAPD
     中则界于 15.9~19.2%之间。这充分证明了养殖群体的遗传多样性水平己有明显
     的丧失,值得我们注意。
     6.构建了毁形目鱼类 mtDNA 6S rRNA基因的分子系统树。通过分子克
     隆法将牙均、桂皮斑稣、大菱鲜和石煤 mtDNA 6S rANA目的基因片段连接到
     质粒载体上,经MegaBACE测序仪坝序,分别获得了 590、595、582和 590hp
     序列,通过生物信息学方法对其进行了序列分析和核酸变异比较,结合NCBI
     上6种群形目鱼类的同源序列探讨了这4种鱼类在群形目中的遗传分化和分子
     系统进化,构建了系统树,其中,桂皮斑稣的 16s rRNA基因在系统树中的位
     置与物种形态资料的系统演化不相符,而其它三种很好地呈现了它们在线形目
     中的系统位置。同时,可以看出 mtDNA 6S rRNA基因片段可以构建一个相对
     准确的树,特别是NJ树和ML树比较接近,更为客观一些。由比对序列获得
     的物种之间的遗传距离也基本可以反映种、属、科间的不同变异水平。
Population genetics of the left-eyed flounder, Paralichthys olivaceus, including natural and
    
     cultured stocks off Shandong coastal waters of China was analyzed using isozyme and RAPD
    
     techniques. And partial DNA sequences of mitochondrial DNA 1 6S rRNA gene from P. olivaceus,
    
     Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus were amplified by PCR and
    
     sequenced in order to address the phylogenetic relationships of 4 flatfishes. The main results shown
    
     as follows:
    
     1. Pm and 25 isozymes, such as LDH, MDH, MEP, IDHP, G3PDH, AK, CK, ACP, PGM,
    
     SDH, ADH, CAT, SOD, GDH, GPI, GAPDH, ALP, HK, G6PDH, PGDI-1, MPI, EST, POD, AMY
    
     and GOT in 4 buffer systems (TC, pH=6.9; TCI,pH8.O; EBT, pH?.9; TG,pH=8.3) were studied by
    
     horizontal starch gel and vertical po]yacrylamide gel electrophoresis. Among them, 15 isozymes
    
     (LDH. MDH. MEP. IDHP.. G3PDH. AK.. CK. ACP, PGM. SDH. ADHS CAT.. SOD..
    
     GDH.. GPI) in 3 buffer systems (TC, pH=6.9; EBT, pH=8.9; TG,pH=8.3) were analyzed, and their
    
     expression in 6 tissues and organs-tissues specify were also compared. The basic electrophoretic
    
     patterns of these 15 isozymes were gained and their biochemical genetic parameters such as locus
    
     number, structure, alleles et al., were also analyzed. The electrophoregrams of the rest isozymes were
    
     too bad to be recorded.
    
     2. The natural sample size was 79 live left-eyed flounders, which were collected from the
    
     coastal waters of Qingdao. The cultured samples (52 live left-eyed flounders) were collected from a
    
     fish farm in Rongcheng of Shandong Province, the parental generation of which was also captured in
    
     the coastal waters of Shandong. The biochemical genetic structures of both stocks have been studied
    
     and compared. Altogether 29 loci in each stock were recorded, among them 9 gene loci (Ldh-A, Ldh-
    
     C, Idhp-1, Acp-1, Pgm, Sdh, Adh, Cat and Gdh) belong to the polymorphic loci in the natural stock
    
     and its mean proportion of polymorphic loci (P) was 31.0%. While in the cultured stock, 7 gene Joci
    
     (Ldh-A, Ldh-C, Idhp-1, Sdh, Adh, Cat and Gdh) belong to the polymorphic loci and its P was 24.1%.
    
     The allelic frequencies of both stocks were also gained, with the average heterozygosities (H) of
    
     stocks being 0.0802 in the natural stock and 0.0788 in the cultured stock. Both values ofF and H in
    
     the cultured stock are lower than those in the natural stock. The chi-square test showed that all
    
    
     polymorphic loci but Cat (P<0.05), Idhp-1 (P<0.05, only in the cultured population) and Ldh-C
     (P<0.0 1) in both of the natural and cultured stocks were in Hardy-Weinberg equilibrium. The
    
     observational values of heterozygosity (Ho), Hardy-Weinberg expected heterozygosity (He) and the
    
     genetic departure index (d) also expressed the difference in genetic variance of these two stocks. The
    
     genetic similarity and genetic distance between the two stocks were 0.9877 and 0.0 124, respectively.
    
     3. 20 natural individuals and 24 cultured individuals of]? ollvaceus were investigated using 11
    
     random primers, respectively. 88 and 86 RAPD bands ranging from 200 to 2,500 bp were recorded
    
     separately, an average of 7.8-8.0 bands gained by per primer. The mean percentages of polymorphic
    
     loci of two stocks were 43.2% and 34.9%. The average heterozygosity (H) of them were 0.2739 and
    
     0.2255. And the average Shannon indices of phenotypic diversity of them (H0) were 0.1120 and
    
     0.0942. The genetic similarity ano genetic distance between these two stocks were 0.9505 and 0.0508
    
     respectively.
引文
陈乐真,张杰,荧光原位杂交技术及其应用,细胞生物学杂志,1999,21 (4) :177-180。
    成庆泰,郑葆珊编,中国鱼类系统检索 (上),科学出版社,北京,1987,第一版:489-504。
    董在杰,夏德全,吴亭亭等,RAPD 技术在鱼类杂种优势研究中的应用,中国水产科学, 1999,6 (1) :37-40。
    樊斌,李奎,彭中镇等,湖北省三品种猪 27 个微卫星座位的遗传变异,生物多样性.1999, 7 (2) : 2-7。
    方宣钧,吴为人,唐纪良编著,作物 DNA 标记辅助育种,科学出版社。北京 (第一版), 2001,1-20。
    根井正利著,王家玉译,分子群体遗传学与进化论,1975,农业出版社,北京 (第一版): 121-203。
    郭尧君编著,蛋白质电泳实验技术,1999,科学出版社,北京(第一版):1-33。
    郝柏林,张淑誉编著,生物信息学手册,上海科学技术出版社,上海,第一版,2000,61-245。
    黄梅,袁仕取,朱作言,原位杂交和原位 PCR 技术在鱼类基因定位中的应用,水生生物学 报,2001,25 (5) :195-201。
    姜运良,卫星、小卫星和微卫星 DNA-真核生物基因组的串状重复序列,生命的化学,1998, 18 (3) : 29-31。
    金显仕,渤海主要渔业生物资源变动的研究,中国水产科学,2001,7 (4) :22-26。
    雷霁霖,海水养殖新品种介绍-大菱鲆。中国水产,2000,4:38-39。
    李思发,吴力钊,王强等,长江、珠江、黑龙江鲢、鳙、草鱼种质资源研究,上海科学技 术出版社,上海 (第一版),1990:51-101。
    李思忠,王惠民,硬骨鱼纲-鲽形目,中国动物志,科学出版社,北京 (第一版),1995:91-255。
    李衍达,孙之荣等译,生物信息学基因和蛋白质分析的实用指南,清华大学出版社,北京, 第一版,2000,16-336。
    黎裕,贾继增,王天宇,分子标记的种类及其发展,生物技术通报,1999,4:18-22。
    林凤等,高粱遗传图谱初探,国外农学,1997,1:11-14。
    
    
    林红,夏德全,杨弘,遗传连锁图谱及其在鱼类遗传育种中的应用,中国水产科学,2000, 7 (1) :95-98。
    刘萍,DNA 标记技术在海洋生物种质资源开发和保护中的应用,中国水产科学,2000,7 (2) : 86-89。
    楼允东,中国鱼类染色体组型研究的进展,水产学报,1997,21 增刊:82-96。
    吕国庆,李思发,鱼类线粒体 DNA 多态研究和应用进展,中国水产科学,1998,5 (3) : 94-103。
    吕朝阳,谢志雄,杨代淑,鱼类线粒体 DNA 多态性的研究和应用,生物学杂志,1996,6: 27。
    L.M.库克著,汉搓译,群体遗传学,科学出版社,1981,第一版:1-76。
    罗静,杨君兴,张亚平,鱼类多样性的遗传基础,动物学研究,2000,21 (2) :158-164。
    莽克强,徐乃正,方荣祥,聚丙烯酰胺凝胶电泳,北京:科学出版社,1975,43-47。
    孟宪红,孔杰,庄志猛等,真鲷自然群体和人工繁殖群体的遗传多样性,生物多样性,2000, 8 (3) :248-252。
    欧阳高亮,肖俐,李祺福等,分子生物学技术在水产养殖中的应用,海洋科学,2000,24 (3) : 31-34。
    钱亚屏,褚嘉佑,初正韬等,应用线粒体 DNA D-loop 取遗传多样性分析云南 4 个少数民 族的遗传关系, 遗传学报,2001,28 (4) :291-300。
    邱芳,伏建民,金德敏等,遗传多样性的分子检测,生物多样性,1998,6 (2) :143-150。
    权洁霞,梭鱼和中国对虾的遗传多样性以及对虾总科十二种虾的分子系统进化,博士论文, 2000,1-130。
    权洁霞.戴继勋,荧光原位杂交技术 (FISH) 在鱼类遗传学研究中的应用及前景,动物学 研究,1999,20 (3) :161-167。
    宋林生,海洋生物分子遗传标记的研究,博士后研究工作报告,1998,18-26。
    王可玲, 增养殖生物种质资源的保护,海洋科学,1998,4:30-34。
    王可玲,尤锋,徐成等,5 种海水鱼同工酶组织表达的特性及其电泳的初步分析,海洋与 湖沼,1996,27(6) :626-631。
    王可玲,张培军,刘兰英等,中国近海带鱼种群生化遗传结构及其鉴别的研究,海洋学报, 1994,16 (1) :93-104。
    王可玲,张培军,刘兰英等,中国近海带鱼分种的研究,海洋学报,1993,15 (2) :77-83。
    
    
    王伟继,孔杰,庄志猛等,真鲷野生群体和人工繁殖群体的同工酶遗传差异,生物多样性, 2000,8 (4) :391-396。
    王晓梅,宋文芹,李秀兰等,鲫鱼种群的随机扩增多态 DNA 与遗传多样性分析,中国水产 科学,1999,6 (2) :26-28。
    王文,分子系统学在生物保护中的意义,生物多样性,1998,6 (2) :138-142。
    吴力钊,王祖熊,草鱼同工酶基因座位多态性的初步研究。水生生物学报,1988,12 (2) : 116-124。
    吴力钊,王祖熊,草鱼同工酶发育遗传学研究I.不同组织器官中的同工酶分析,遗传学报, 1987,14(4) :278-286。
    吴清江,桂建芳,鱼类遗传育种工程,上海科学技术出版社,上海 (第一版),1999,51-162。
    夏德全,曹萤,吴婷婷等,用 RAPD 分析对罗非鱼遗传变异的研究及其对杂种优势的应用, 水产学报,1999,23 (1) :27-32。
    夏德全,王文君,动物线粒体 DNA 研究及在鱼类种群遗传结构研究中的应用,水产学报, 1998,22 (4) :364-370。
    肖武汉,张亚平,鱼类线粒体 DNA 的遗传与进化,水生生物学报,2000,24 (4) :384-391。
    徐成,王可玲,尤锋等,鲈鱼群体生化遗传学研究I.同工酶的生化遗传分析,海洋与湖 沼,2001a,32 (1) :42-49。
    徐成,王可玲,张培军等,鲈鱼群体生化遗传学研究Ⅱ.种群生化遗传结构及变异,海洋 与湖沼,2001b,32 (3) :248-254。
    杨光,刘珊,季国庆等,淡水豚类线粒体 DNA 12S rRNA 基因的序列变异及其分子系统 学研究,动物学研究,2000,21 (6) :425-431。
    杨纪明,田明城,鱼类种类和区系,现代渔业信息,1999,5:12-14。
    杨书婷,桂建芳,两个雌核发育白鲢群体同工酶分析及遗传标记的确定,水生生物学报, 1999,23 (3) :11-17。
    杨永华,姚健, 分子生物学方法在微生物多样性研究中的应用,生物多样性,2000,8 (3) : 337-342。
    尤锋,王可玲,相建海等, 山东近海牙鲆同工酶的生化遗传分析, 海洋与湖沼,1999, 30 (2) :127-133。
    余先觉,周敦,李渝成等,中国淡水鱼类染色体,科学出版社 (中国,北京),1989,1-9。
    张大勇,姜新华,遗传多样性鱼频危植物保护生物学研究进展,生物多样性,1999,7 (1) :31-37。
    
    
    张四明,邓怀,晏勇等,中华鲟随机扩增多态性 DNA 遗传多样性研究,海洋与湖沼,2000, 31 (1) : 1-7。
    张细权,吕雪梅,杨玉华等,用微卫星多态性和 RAPD 分析广东地方鸡种的群体遗传变异, 遗传学报,1998,25 (2) :112-119。
    张亚平,王文,宿兵等,大熊猫微卫星 DNA 的筛选及其应用,动物学研究,1995,16 (4) : 301-306。
    张亚平,施立明,动物线粒体 DNA 多态性的研究概况,动物学研究,1992,13 (3) :289-298。
    郑光明,朱新平,张跃,鱼类种质鉴定技术与渔业管理,中国水产科学,1999,6 (2) : 108-111。
    邹曙明,李思发,蔡完其,牙鲆和大菱鲆养殖群体的分子标记和遗传变异,中国水产科学, 2001,7 (4) :6-9。
    邹喻苹,RAPD 分子标记简介,生物多样性,1995,3(2) :104-108。
    朱兰菲,蒋一圭,银鲫种内的遗传标记及其在选种中的应用,水生生物学报,1987,11: 105-111。
    朱兰菲,1982. 几种鲤科鱼类及杂种的乳酸脱氢酶同工酶的比较,水生生物学集刊,7 (4) : 539-545。
    谷口顺彦,森田敏夫, 识别,Bulletin of the Janpanese Society of Scientific Fisheries, 1979,45 (1) :37-41。
    田火田和男,五利江重昭, 亲鱼 遗伝子型 生体检查法 IDH 遗伝 子座-动原体间 组换率 .水产育种,1987,12:51-56.
    田火田和男,五利江重昭,谷口顺彦, 遗伝子        雌性发 生2倍体   3倍体诱导 确认。水产育种,1986,11:35-41.
    菅谷琢磨,池田 実,藤尾芳久, mtDNA D 领域 RFLP 分析 检出,水产育种,1998,26:33-40。
    藤尾芳久, 分析手法 魚介類 遗伝的特性 解明   研究,农林水 产业特别实验研究费辅助金 研究报告书,1986,1-30。
    藤尾芳久, 分析手法 魚介類 遗伝的特性 解明 研究,农林水产业特别实验研究费辅助金 研究报告书,1985,1-58。
    
    
    藤尾芳久, 分析手法 魚介類 遗伝的特性 解明 研究,农林水 产业特别实验研究费辅助金 研究报告书,1984,1-65。
    Alarcon,J.A.and M.C.Alvarez,Genetic identifcation of sparid species by isozyme markers:application to interspecific hybrids,Aquaculture,1999,173:95-103.
    Allendorf,F.W.and G.H.Thorgaad,Tetraploid and the evolution of salmonid fishes, Truner B.J.ed.,Evolutionary genetics of fishes,New York,Plenum press,1984,1-53.
    Allendorf,F.W., N.Mitchell and N.Ryman et al.,Isozyme loci in brown trout (Salmo trutta L.) detection and interpretation from population data,Hereditas,1977,86:179-190.
    Allendorf,F.w.,N.Ryman and A.Stennek et al.,Genetic variation in Scandinavian brown trout (Salmo trutta L.):evidence of distinct sympatric populations,Heriditas,83:73-82.
    Altukhov, Y.P.,The stock concept from the viewpoint of population genetics.Can.J. Fish.Aquat Sci..1981,38:1523-1538.
    Andreata,A.A.,F.D.Almeida-Roledo and C.Oliveira et al., Chromosome studies in Hypoptopomatinae (Pisces,Siluriformes,Loricariidae), Cytogenet.Cell Genet., 1993, 63:215-220.
    Aoyama,J., T. Kobayashi and K.Tsukamoto, Phylogeny of eels suggested by Mitochondrial DNA sequences,Nippon Suisan Gakkaishi,1996,62(3) :370-375.
    Aoyama,J.,et al.,Are morphological characters distinctive enough to discriminate between two species of freshwater eels,Anguilla celebesensis and Anguilla interioris? Ichthyol.Res.,2000,47(2) :157-161.
    Avise,J.C.,G.S.Helfman and N.C.Saunders et al.,Mitochondrial DNA differentiation in North Atlantic eels:Population genetic consequences of an unusual life history pattern, Proc.Natl Acad.Sci.,1986,83:4350-4354.
    Avise,J.C.,N.C.Saunders,Hybridization and introgression among species of sunfish (Lepomis):analysis by mitochondrial and allozyme markers,Genetics,1984,108: 237-255.
    Avise,J.C.,et al.,Characterization of mitochondrial DNA variability in a hybrid swarm
    
    between subspecies of bluegill sunfish (Lepomis macrochirus), Evolution, 1984, 38: 931-941.
    Avise, J.C., J.F. Shapiro and S.W. Daniel, et al., Mitochondrial DNA differentiation during the speciation process in Peromuscus, Mol. Biol. Evol., 1983, 1: 38-56.
    Ayala, F.J., Population and evolutionary genetics: a Primer.the Benjamin/Cummings Publishing Company.Inc., 1982, 1-226.
    Banks,M.A., et al., Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhychus tshawytscha) in California's Central Valley, Can.J. Fish.Aquat.Sci.; 2000, 51(5) : 915-927.
    Bardakci, F. and D.O.F. Skibinski, Application of the RAPD technique in tilapia fish: species and subspecies isentification, Heredity, 1994, 73: 117-123.
    Bartley, D. and C.V. Casal, Impacts of introductions on the conservation and sustainable use of aquatic biodiversity, FAO Aquaculture Newsletter, 2000, 20: 15-19.
    Beacham, T.D., R.E. Withler and A.P. Gould, Biochemical stock identification of chum salmon (Oncorhynchus gorbuscha) in southern British Columbia and Puget Sound, Can. J. Fish, aquat. Sci., 1985, 42: 1474.
    Begg. G.A.. K.D.Friedland and J.B.Pearce, Stock identification and its role in stock assessment and fisheries management: an overview, Fish. Res.,1999, 43: 1-8.
    Begg. G.A. and J.R. Waldman, An holistic approach to fish stock identification, Fish. Res., 1999,43: 35-44.
    Bell, L.J., J.T.Moyer and K. Nomachi, Morphological and genetic variation in Japanese populations of the anemonefish Amphiprion clarkii, Mar. Biol., 1982, 72: 99-108.
    Bentzen, P., W.C. Leggett and G.C. Brown, Length and restriction site heteroplasmy in the mitochondrial DNA of American shad (Alosa sapidissima), Genetics, 1988, 118: 509-518.
    Bernardi, G and N.L. Crane, Molecular phylogeny of the humbug damselfishes inferred from mtDNA sequences, J. Fish Biol., 1999, 54: 1210-1217.
    Bert, T.M. and M.D. Tringali, The effects of various aquacultural breeding strategies on the genetic diversity of successive broods, Proceedings of the conference "Mariculture and the environment: towards the new millenium", 1999, 1-19.
    
    
    Bielawski, J.P. and D.E. Pumo, Randomly amplified polymorphic DNA (RAPD) analysis of Atlantic coast striped bass, Heredity, 1997, 78: 32-40.
    Billington, N., et al., Evidence of introgressive hybridization in the genus Stizostedion: interspecific transfer of mitochondrial DNA between sauger and walleye, Can. J.Fish Aquat. Sci., 1988, 45: 2 035-2 041.
    Bloomer,P, and N.D.Impson, Mitochondrial DNA differentiation in the critically endangered Berg river redfin (Pseudobarbus burgi), The American Genetic Association, 2000, 91: 122-127.
    Brooker. A.L., D. Cook and P. Bentzen et al., Organization of microsatellites differs between mammals and cold-water teleost fishes, Can. J. Fish. Aquat. Sci., 1994, 51: 1959-1966.
    Brown, J.R., A.T. Beckenbach and M.J. Smith, Intraspecific DNA sequence variation in the mitochondrial control region of white sturgeon (Acipenser transmontanus), Mol. Biol. Evol, 1993, 10: 326-341.
    Brown, B.E., G.H. Darcy and W. Overholtz, Stock assessment/stock identification: an interactive process, Proceedings of the Stock Identification Workshop,NOAA-TM-NMFS-SEFC-199, Washington, DC: US Dep. Commerce, 1987, 1-24.
    Callejas. C. And M.D. Ochando, Identification of Spanish barbel species using the RAPD technique, J. Fish Biol,. 1998, 53: 208-215.
    Campton,D.E. and J.M.Johnston, Electrophoretic evidence for a genetic admixture of native and nonnative rainbow trout in the Yakima river, Washington, Tans. Am. Fish. Soc., 1985, 114: 782-793.
    Carr, S.M. and H.D. Marshall, Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhud) by the polymerase chain reaction, Can. J. Fish, aquat. Sci., 1991, 48: 48-52.
    Carvalho,G.R. and L. Hauser, Molecular genetics and the stock concept in fisheries, 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 54-79.
    Carvalho, G.R. and L. Hauser, Molecular genetics and the stock concept in fisheries, Rev. Fish. Biol. Fish., 1994, 4: 326-350.
    Chan.I.K.K., et al., Genetic variability of the Japanese eel, Anguilla japonica (Temminck
    
    & Schlegel) related to Latitude, Ecol. Freshwat. Fish., 1997, 6(1) : 45-49.
    Chang, Y.S., F.L.Huang and T.-B. Lo,The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome, J. Mol. Evol. ,1994 38: 138-155.
    Chow, S.and H.Takeyama,Nuclear and mitochaondrial DNA analyses reveal four genetically separated breeding units of the swordfish, J. Fish Biol., 2000a, 56:
    Chow, S., H. Okamoto and N. Miyabe, et al., Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa, Mol.Ecol. 2000b, 9:
    Chow, S. and K. Hazama, Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol. Ecol., 1998, 7: 1247-1263.
    Chow, S., H. Okamoto and Y. Uozumi et al., Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region, Mar. Biol., 1997, 127: 359-367.
    Chow, S. and H. Ushiama, Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene, Mar. Biol., 1995, 123: 39-45.
    Chubb, A.L., R.M. Zink and J.M. Fitzsimmons, Patterns of mtDNA variation in Hawaiian freshwater fishes: the phylogeographic consequences of amphidromy, J. Hered., 1998, 89: 8-16.
    Clifford,S.L., Mcginnity,P., Ferguson, A., Genetic Changes in an Atlantic salmon population resulting from escaped juvenile Farm salmon, J. Fish Biology, 1998, 52: 18f turbot from Ireland and Norway: a preliminary study, J. Fish Biol., 1998, 52: 916-922.
    Cross.T., E.Dillance and P. Galvin, An evaluation of currently available molecular markers for different applications in aquaculture genetics (abstract), Aquaculture, 1997, 173: 6.
    Cross, T.F.and J. King, Genetic effects of hatchery rearing in Atlantic salmon, Aquaculture, 1983, 33: 33-40.
    Crozier, W. W., Genetic implications of hatchery rearing in Atlantic salmon: effects of rearing environment on genetic composition, J. Fish Biol., 1998, 52: 1014-1025.
    Cui, Z.X., J.H. Xiang and L.S.Song et al., Genetic differentiation within Eriochoir sinensis (Milne, Edwards) revealed by allozyme and RAPD, Chin. J. Ocean. Limno., 2000, 18
    
    (3) : 234-240.
    Davis, G.P. and D.J.S. Hetzel, Integrating molecular genetic technology with traditional approaches for genetic improvement in aquaculture species, Aquat.Res.,2000, 31: 3-10.
    Devlin,R.H.,B.K.McNeil andT.D.D.Groves, et al., Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in chinook salmon (Oncorhynchus tshawytscha), Can. J. Fish. Aquat. Sci., 1991, 48: 1606-1612.
    Dewoody, J.A.and J.C.Avise, Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals, J. Fish Biol., 2000, 56: 461-473.
    Duvernall, D.D.and B.J. Turner, Using allele frequencies and geographic subdivisiong to reconstruct gene trees within a species: molecular variance parsimony, Genetics, 1998, 136: 343-359.
    Estoup, A., P. Presa and P. Kridg et al., (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout), Heredity, 1995, 71: 488-496.
    Ferguson, A., Molecular genetics in fisheries: current and future perspectives, 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 111-116.
    Ferguson, M.M., The role of molecular genetic markers in the management of cultured fishes, Rev. Fish. Biol. Fish., 1994, 4: 351-373.
    Ferguson, M.M., R.G. Danzmann and S.K.A. Arndt, Mitochondrial DNA and allozyme variation in Ontario cultured rainbow trout spawning in different seasons, Aquaculture, 1993, 117: 217-259.
    Ferguson, M.M., P.E. Ihssen and J.D. Hynes, Are cultured stocks of brown trout (Salmon trutta) and rainbow trout (Oncorhynchus mykiss) genetically similar to their source po pulations? Can. J. Fish. Aquat. Sci., 1991, 48(Suppl.l): 118-123.
    Ferguson, M.M., R.G. Danzmann and J.A. Hutchings, Incongruent estimates of population differentiation among brook charr, Salvelinus fontinalis, from Cape Race,Newfoundland, Canada, based upon allozyme and mitochondrial DNA variation, J. Fish. Biol., 1991, 39(Supp. A), 79-85.
    Ferris, S.D. and G.S.Whitt, Mitochondrial DNA evolution in mice, Genetic, 1983, 105: 681-721.
    Fevolden, S.E., I. Martinez and J.S. Christiansen, RAPD and scnDNA analyses of polar
    
    cod, Boreogadus saida (Pisces, Gadidae), in the north Atlantic, Sarsia, 1999, 84: 99-103.
    Fujii, T. and M. Nishida, High sequence variability in the mitochondrial DNA control region of the Japanese flounder Paralichthys olivaceus, Fisheries Science, 1997, 63 (6) : 906-910.
    Gao, T.X. and S. Watanabe, Genetic variation among local populations of the Japanese mitten crab Eriocheir japonica de haan, Fisheries Science, 1998, 64(2) : 198-205.
    Garcia, D.L., F.J. Dallas and J.F. Chatain et al., Development and use of microsatellite markers in sea bass, Dicentrachus labrax (Linnaeus, 1758) (Perciformes: Serranidae), Mol. Biol. Biotech., 1995, 4: 62-68.
    Garcia, D.L.C. and A.D. Hawkins, Genetic determination of the contribution of stocked and wild Atlantic salmon, Salmo salar L., to the angling fisheries in two Spanish rivers, J. Fish Biol., 1983. 35(suppl. A): 261-270.
    Gjedrem, T., Genetic improvement of cold-water fish species, Aquat. Res, 2000, 31: 25-33.
    Goff, D.J., K. Galvin and H. Katz, et al., Indentification of polymorphic simple sequence repeats in the genome of the zebrafish, Genomics, 1992, 14: 200-202.
    Gold, J.R., L.R. Richardson and C. Furman et al., Mitochondrial DNA and population structure in red drum (Sciaenops ocellatus) from the Gulf of Mexico and Atlantic Ocean, Mar. Biol., 1993, 116: 175-185.
    Goodman, M., J. Czelusniak and G.W. Moore, et al., Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms contructed from globin sequences, Syst. Zool., 1979, 28: 132-163.
    Grant, W.S., C.I. Zhang and T. Kobayashi et al., Lack of genetic stock discretion in Pacific cod (Gadus macrocephalus), Can. J. Fish, aquat. Sci., 1987, 37: 1093-1100.
    Grant, W.S., Biochemical population genetics of Atlantic herring Clupea harengus, Copeia, 1984, 2: 357-364.
    Grant, W.S., R. Bakkala and R. Utter et al., Biochemical genetic population structure of yellowfin sole, Limanda aspera, of the north Pacific Ocean and Bering sea, Fishery Bulletin, 1983, 81: 667-677.
    Han, H.-S., H. Mannen and A. Tsujimura et al., Application of DNA fingerprinting to
    
    confirmation of clone in ayu, Nippon Suisan Gakkaishi, 1992, 58: 2027-2031.
    Hansen, M.M. and K.L.D. Mensberg, Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system, Can. J. Fish. Aqut. Sci., 1996, 53: 2229-2237.
    Harris, A.S. et al.,DNA fingerprinting of tilapia (Oroechromis niloticus) and its application to aquaculture genetics, Aquaculture, 1991, 92: 157-163.
    Harris, H. and D.A. Hopkinson, Handbook of Enzyme Electrophoresis in Human Genetics. North-Holland Publishing Company, Amsterdam (Oxford), 1976, Chapter 4.
    Harris, H., Enzyme polymorphisms in man, Proc. R. Soc., 1966, 164B: 298-310.
    He, S., Y. Chen and Y. Zhang, Preliminary study on mitochondrial cytochrome b DNA sequences and phylogeny of formalin fixed sisorid fishes (Teleostei: Siluriformes), Zoological Research(China), 1999, 20(2) : 81-87.
    Hedgecock, D, Methods for assessing genetic and biological diversities, FAO Fish Rep., 1993, 491: 37-38.
    Hedgecock, D., V. Chow and R.S. Waples, Effective population numbers of shellfish brood stocks estimated from temporal variance in allelic frequencies, Aquaculture, 1992, 108: 215-232.
    Heist, E.J.. et al., DNA Microsatellite Loci and Genetic Structure of Red Snapper in the Gulf of Mexico, Trans. Am. Fish. Soc., 2000, 129(2) : 469-475.
    Hills,D.M. and C.Moritz, Molecular systematics, Sinauer Associates, Inc., Massachusetts, USA, 1st edit.: 411-500.
    Hindar,K., N.Ryman and F.Utter, Genetic effects of aquaculture on natural fish populations, Aquaculture, 1991a, 98: 259-261.
    Hindar K., N. Ryman and F. Utter, Genetic effects of cultured fish on natural fish populations, Can. J. Fish. Aquae. Sci., 1991 b, 48: 945-957.
    Ihssen, P.E., H.E. Booke and J.M. Casselman et al., Stock identification: materials and methods, Can. J. Fish, aquat. Sci., 1981, 38: 1838-1855.
    Ikeda, M., T. Kawakami and Y. Fujio, Genetic relationships among breeds of goldfish based on isozyme variations, Fisheries Science, 1999, 65(2) : 182-185.
    Imai, H. and K.Numachi, Method of restriction fragment analysis of mtDNA in swimming
    
    crab, Portunus trituberculatus-Ⅱ. Designation of primers for PCR amplification of mtDNA D-loop region, Bull. Inst. Oceanic Res. & Develop., 1998, 19: 41-46.
    Johnson, M.S., S. Cragh and M. Moran, Genetic subdivision of stocks of snapper, Chrysophyrs unicolor, in Shark Bay, Western Australia, Aust. J. Mar. Freshw. Res., 1986, 37: 337-345.
    Kidwell, M.G., Lateral transfer in natural populations of eukaryotes, Annu. Rev. Genetics, 1993, 27: 235-256.
    Kim D S, Jeong C H, Lee Y D et al., Cytobiology and biochemical study in olive flounder, Paralichthys olivaceus.Bull. Natl. Fish. Dev.Agency (Korea), 1988, 42: 135-142.
    Kinsey, S.T., T. Orsoy and T.M. Bert et al., Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population, Mar. Biol., 1994, 118: 309-317.
    Kirpichnikov, VS., Genetic bases of fish selection, Springer-verlag (Berlin), 1981, 143-200.
    Knibb, W., Genetic improvement of marine fish-which method or industry? Aquat. Res., 2000, 31: 11-23.
    Knox, D.and E. Verspoor, A mitochondria! DNA restriction fragment length polymorphism of potential use for discrimination of farmed Norwegian and wild Atlantic salmon populations in Scotland, Aquaculture, 1991, 98: 249-257.
    Koh, T. L.,G. Khoo and Q.F. Li et al., Genetic diversity among wild forms and cultivated varieties of Discus(Symphysodon spp.) as revealed by Random Amplified Polymorphic DNA (RAPD) fingerprinting, Aquae. 1999, 173: 485-497.
    Kohlmann, K and P.Kersten, Genetic variability of German and foreign common carp (Cyprinus carpio L.) populations, Aquae., 1999, 173: 435-445.
    Lang, B.F., M.W. Gray and G. Burger, Mitochondrial genome evolution and the origin of eukaryotes, Annu. Rev. Genet., 1999, 33: 351-397.
    Lee, W.J.and T.D.Kocher, Microsatellite DNA markers for genetic mapping in Oreochromis niloticus, J. Fish Biol., 1996, 49: 169-171.
    Lewin, B., Genes VII, Oxford University Press Inc., New York (first edition), 2000: 1-20.
    Liao, I.C. and N.H. Chao, Developments in aquaculture biotechnology in Taiwan, J. Mar.
    
    Biotechnol., 1997, 5: 16-23.
    Lincoln, R., Molecular genetics applications in fisheries: snake oil or restorative? 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 123-126.
    Liu, Z. J., P. Li and B.J. Argue et al., Random amplified polymorphic DNA markers: usefulness for gene mapping and analysis of genetic variation of catfish, Aquae. 1999, 174: 59-68.
    Liu, Z.J., P. Li and B.J.Argue et al., Inheritance of RAPD markers in channel catfish (Ictalurns punctatus).blue catfish (I. furcatus) and their F1, F2 and backcross hybrids, Animal Genetics, 1998, 29: 58-62.
    Lush I. E, Cowey C.B, Knox D, The lactate dehydrogenase isozymes of twelve species of flatfish (Heterosomata), J. Exp. Zool., 1977, 171: 105-118.
    Lymbery, A.J., Genetic improvement in the Australian aquacutlure, Aquat. Res., 2000, 31: 145-149.
    Macaranas, J.M., P.B. Mather and P. Hoeben et al., Assesment of genetic variation in wild populations of the redclaw crayfish (Cherax quadricarinatus, von Martens 1868) by means of allozyme and RAPD-PCR markers, Mar. Freshwater Res., 1995, 46: 1217-1218.
    Maddison, W.P., Molecular approaches and the growth of phylogenetic biology(A), Ferraris J. Dand Stephen R.P., Molecular zoology: Advances, strategies and protocols(M), 1996, Wiley-Liss Inc., 48-63.
    Magee, S.M.and D.P. Philipp, Biochemical genetic analyses of the Grass carp (?)×Bighead carp & F, hybrid and the parental species, Iran. Am. Fish. Soc., 1982, 111: 593-602.
    Mamuris, Z., C. Stamatis and C. Triantaphyllidis, Intraspecific genetic variation of striped red mullet (Mullus surmuletus L.) in the Mediterranean sea assessed by allozyme and random amplified polymorphic DNA (RAPD) analysis, Heredity, 1999a, 83: 30-38.
    Mamuris, Z., C. Stamatist and M. Bani et al., Taxonomic relationships between four species of the Mullidae family revealed by three genetic methods: allozymes, random amplified polymorphic DNA and mitochondrial DNA, J. Fish Biol., 1999b, 55: 572-587.
    Mcgowan,C. and W.S.Davidson.The RAPD technique fails to detect a male-specific genetic
    
    marker in Atlantic salmon, J. Fish Biol, 1998, 53: 1134-1136.
    Menezs, M.R. and N. Taniguchi S., Degree of intraspecific genetic divergence in sciaenids from Japan and its adjacent waters. Jap. J. Icht., 1988, 35(1) : 40-46.
    Meruane, J., M. Takagi and N. Taniguchi, Species identification and genetic variation of three species of Macrobrachium (Crustacea: Palaemonidae) by RAPD, Suisanzoshoku, 1996, 44(3) : 299-305.
    Moore, S.S., V.Whan and G.P. Davis, et al., The development and application of genetic markers for the Kuruma prawn Penaeus japonicus, Aquaculture, 1999, 173: 19-32.
    Mork, J. and M. Gisever, Genetic structure of cod along the coast of Norway: results from isozyme studies, Sarsia, 1999, 84: 157-168.
    Mork, J., N.Ryman and G. Stahl et al., Genetic variation in Atlangtic cod (Gadus morhua) throughout its range, Can. J. Fish. Aquat. Sci., 1985, 42: 1580-1587.
    Nefedov,G.N., N.M.Alferova and Y.V. Chuksin, Polymorphism of muscle esterases in horse mackerel of the northeast Atlantic, Sov. J. Mar. Biol., 1978, 4: 611-618.
    Nei, M. and T. Helentjaris, Genetic distance between populations, Amer Natu, 1972, 106: 283-292.
    Neilson,J.S., Fishes of the world, John Wiley & Sons,lnc.(Canada), 1994, 3rd edition: 105-106.
    Nevo, E. T. Perl and A. Beiles, Mercury selection of allozyme genotypes in shrimps, Experientia, 1981, 37: 1152-1154. ★★Nieddu,M., et al., A comparative analysis of European and American eel (A. anguilla and A.rostratd) genomic DNA:5s rDNA polymorphism permits the distinction between the two populations. Genome, 1998, 41(5) : 728-738.
    Nielsen, J.L..C.A. Gan and J.M.Wright et al., Biogeographic distributions of mitochondrial and nuclear markers for southern steelhead, Mol.Mar. Biol. Biotech, 1994, 3: 281-293.
    Norris, AT., D.G.Bradley and E.P. Cunningham, Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers, Aquaculture, 2000, 182: 73-83.
    Numachi, K., Lactate and Malate dehydrogenase isozyme patterns in fish and marine mammals, Bull. Jap. Soc. Sci. Fish., 1970, 36(10) : 1067-1077.
    
    
    O'Connell, M. and J.M.Wright, Microsatellite DNA in fishes, Rev. in fish biol. and fish., 1997, 7: 331-363.
    Ovenden, J.R., Mitochondrial DNA and marine stock assessment: a review. Aust. J. Mar. Freshwat.Res. 41: 835-853.
    Paran, I.,D. Gidoni and R. Jacobsohn, Variation between and within broomrape (Orobanche) species revealed by RAPD markers, Heredity, 1997, 78: 68-74.
    Park, L. K. and P. Moran, Developments in molecular genetic techniques, 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 1-28.
    Park, L.K. and P. Moran, Developments in molecular genetic techniques in fisheries, Rev. Fish. Biol, 1994, 4: 272-299.
    Park, L.K., M.A. Brainard and D.A. Dightman, Low levels of intraspecific variation in the mitochondrial DNA of chum salmon (Oncoryhnchus keta), Mol. Mar. Biol. Biotech., 1993, 2, 362-370.
    Pasteur, N., G. Pasteur and F. Bonhomme et al.(M.Cobb translated), Practical isozyme genetics, Ellis Horwood Limited Publishers(New York), 1989, 1-190.
    Perez-Enriquez, R. and N. Taniguchi, Genetic structure of red sea bream (Pagrus major) population off Japan and the southwest Pacific, using microsatellite DNA markers, Fish. Sci., 1999, 65(1) : 23-30.
    Perez-Enriquez, R.,M. Takagi andN. Taniguchi, Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream(Pagrus major) used for stock enhancement, based on microsatellite DNA markers, Aquaculture, 1999, 173: 413-423.
    Pijkstra,L.H., et al., Is the subspecies classification of the freshwater eels Anguilla australis australis Richarson and Anguilla australis schmidtii Phillipps still valid? Mar. Fresh.Res., 1999, 50(3) : 261-263.
    Politov, D.V., N.Y. Gordon and K.I. Afanasiev, Identification of palearctic coregonid fish species using mtDNA and allozyme genetic markers, J. Fish Biol., 2000, 57(Suppl. A): 51-71.
    Poompuang, S. and E.M. Hallerman, Toward detection of quantitative trait loci and marker-assisted selection in fish, Reviews in Fisheries Science, 1997, 5(3) : 253-277.
    Powell.W. et al., The comparison of RFLP,RAPD,AFLPand SSR (microsatellite) markers
    
    for germplasm analysis, Mol. Breed., 1996, 2:225-238.
    Quillet, E., P. Garcia and R. Guyomard, Analysis of the production of all homozygous lines of rainbow trout by gynogenesis, J. Exp. Zool., 1991, 257: 367-374.
    Reilly, A., N.B.Elliott and P.M.Grewe, et al., Genetic differentiation between tasmanian cultured Atlantic salmon (Salmo salar L.) and their ancestral Canadian population: comparison of microsatellite DNA and allozyme and mitochondrial DNA variation, Aquac.,1999, 173: 459-469.
    Rico. C., 1. Rico and G. Hewitt, 470 million years of conservation of microsatellite loci among fish species, Proc. R. Soc. Lond., 1996, 263: 549-557.
    Safford, S.E. and H. Booke, Lack of biochemical genetic and morphometric evidence for discrete stocks of northwest Atlantic herring Clupea harengus harengus, Fish. Bull, 1992, 90: 210-230.
    Saiki, R.K., D.H. Gelfand and S. Stoffel et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Sciences, 1988, 239: 487-490.
    Saitoh, K., Genetic variation and local differentiation in the Pacific cod Gadus macrocephalus around Japan revealed by mtDNA and RAPD markers, Fish. Sci., 64 (5) : 673-679.
    Sakamoto, T., R.G.Danzmann and N. Okamoto et al., Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout(Oncorhynchus mykiss),Aquaculture, 1999, 173: 33-43.
    Sambrook, J., E.F. Fritsch and T. Maniatis, Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, 1989, 2nd. Ed. :
    Samonte,I.E.,R.C.Pagulayan and W.E. Mayer, Molecular phylogeny of Philippine freshwater sarfines based on mitochondrial DNA, The Journal of Heredity, 2000, 91(3) : 247-253.
    Sang, T.K., H.Y.Chang and C.T. Cheng, et al., Population structure of the Japanese eel, Mol. Biol. Evol., 1994, 11: 250-260.
    Saitoh, K., M. Tanaka and R. Ueshima et al., Preliminary data on restriction mapping and detection of length variation in Japanese flounder mitochondrial DNA, Aquaculture, 1995, 136: 109-116.
    Scheerer, P.O., G.H. Thorgaard and F.W. Allendorf, et al., Androgenetic rainbow trout
    
    produced from inbred and outbred sperm sources show similar survival, Aquaculture, 1986, 57: 289-298.
    Seeb, J.E., L.W. Seeb and P.M. Utter, Use of genetic marks to assess stock dynamics and management programs for chum salmon, Trans Am. Fish. Soc., 1986, 115: 448-454.
    Seinen Chow, Intron as a source of genetic polymorphism for fish population genetics, New Developments in Marine Biotechnology, Plenum Press, 1998 (Ird ed.) :231-233.
    Shaklee, J B., F.W., Allendorf and D.C. Morizot, Genetic nomenclature for protein-coding loci in fish, Trans. Amer. Fish. Soc., 1990, 119: 2-15.
    Shaklee,J.B.and C.P.Keenan,A practical laboratory guide to the techniques and methodology of electrophoresis and its application to fish fillet identification, Aust. CSIRO Mar. Lab, Report, 1986, 177: 1-100.
    Shaklee, J.B. and J.P. Salini, Genetic variation and population subdivision in Australian Barramundi, :Lates calcarifer(Bloch), Aus. J. Mar. Fresh. Res., 1985, 36: 203-218.
    Shaklee, J.B., K.L. Kepes and G.S. Whitt, Specialized Lactate dehydrogenase isozymes: the molecular and genetic basis for the unique eye and liver LDHs of teleost fishes, J. Exp. Zool., 1976, 185: 217-240.
    Skaala,O., G. Dahle and K. Jorstad, et al., Interactions between natural and farmed fish populations: information from genetic markers, J.Fish. Biol., 1990, 36: 449-460.
    Smith,P. andM.Mcveagh, Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean, J. Fish Biol., 2000, 57(Suppl.A): 72-83.
    Smith, P.J., P.O. Benson and S.M. McVeagh, A comparison of three genetic methods used for stock discrimination of orange roughy, Hoplostethus atlanticus: allozymes, mitochondria! DNA, and random amplified polymorphic DNA, Fishery Bulletin, 1997, 95: 800-811.
    Smith, P.J., A. Jamieson and A.J. Birley, Electrophoretic studies and the stock concept in marine teleosts, J. Cons. Int. Explor. Mer., 1990, 47: 231-245.
    Smith,P.J., Protein electrophoresis for identification of Australasian fish stocks, Aust. J.Mar. Freshwater Res., 1990, 41: 823-833.
    Smith,P.J., R.I.C.C. Francis and L.J. Paul, Genetic variation and population structure in the New Zealand snapper, N.ZJ.Mar.Fresw. Res., 1978, 12: 343-350.
    
    
    Spanakis, E., N. Tsirnenides and E. Zouros, Genetic differences between populations of sardine Sardina pilchardus and anchovy Engraulis encrasicolus in the Aegean and Ionian Seas, J. Fish. Biol., 1989, 35: 417-437.
    Stahl, G., Genetic differentiation among natural population of Atlantic salmon (Salmo salar) in north Sweden, Ecol. Bull.(Stockholm), 1981, 34: 95-105.
    Strachan, T. and A.P. Read, Human molecular genetics, A John Wiley & Sons, Inc., Publication, New York, 2nd edition, 1999, 271-274.
    Sugama, K.. N. Taniguchi and S. Seki, Survival, growth and gonad development of triploid red sea bream, Pagrus major (T. et S.): Use of allozyme markers for ploidy and family identification, Aquat. Fish. Manag., 1992, 23: 149-159.
    Sugama, K., Taniguchi, N., Umeda, S., An experimental study on genetic drift in hatchery population of red sea bream, Nippon Suilsa Gakkaishi, 1988, 54(5) : 739-744.
    Suneetha, K.B., G. Dahle and G Naevdal, Analysis of mitochondrial DNA sequences from two Maurolicus taxa: evidence for separate species? J. Fish Biol.,2000, 57:1605-1609.
    Taniguchi, N.and Y. Okada, Genetic study on the biochemical polymorphism in red sea bream, Bull. J. Jap.Soc. Sci. Fish., 1980, 46: 437-443.
    Taniguchi,N., et al., Identification of European, American and Japanese eels by Lactate Dehydrogenase and Malate Dehydrogenase isozyme patterns, Bull. Japan. Sci. Fish.. 1979, 45(1) :37-41.
    Thomas, O.K. et al., A genetic linkage map of a cichild fish, the tilapia Oreochromis miloticus, Genetics, 1998, 148: 1225-1232.
    Thompson, D., Genetic identification of trout strains, Aquaculture, 1985, 46: 341-351.
    Thorgaard, G.H., Application of genetic technologies to rainbow trout, Aquaculture, 1992, 100: 85-97.
    Thorgaard.G.H., P.D.Scheerer and J.E.Parsons, Residual paternal inheritance in gynogenetic rainbow trout: implications for gene transfer, Them. Appl. Genet., 1985, 71: 119-121.
    Thorgaard, G.H., F.W. Allendorf and K.L. Knudsen, Gene-centromere mapping in rainbow trout: high interference over long map distances, Genetics, 1983,103: 771-783.
    Tinti, F.and C. Piccinetti, Molecular systematics of the Atlanta-Mediterranean Solea species, J. Fish Biol., 2000, 56: 604-614.
    
    
    Turner.et al., Polymorphic microsatellite DNA markers in red drum (Sciaenops ocellatus), Mol. Ecol., 1998, 7(12) :1771-1788.
    Utter, F. and N. Ryman, Genetic markers and mixed stock fisheries, Fisheries, 1993, 18: 11-21.
    Utter,F.M., Bochemical genetics and fishery management: an historical perspective, J. Fish Biol., 1991, 39 (Suppl. A): 1-20.
    Utter, P.M., G. Milner and G. Stahl, Genetic population structure of chinook salmon in the Pacific Northwest, Fish. Bull. U. S.. 1989, 87: 239-264.
    Verneau,O.,C.Moreau and P.M. Catzeflis,et al.,Phylogeny of flatfishes (Pleuronectiformes): Comparisons and contradictions of molecular and morpho-anatomical data,J. Fish Biol., 1994, 45(4) : 685-696.
    Vrijenhoek, R.C., Conservation genetics of endangered fish populations in Arizona, Science, 1986, 228: 400-402.
    Vuorinen, J., Reduction of genetic variability in a hachery stock of brown trout. J. Fish Biology, 1984, 24(3) : 339-348.
    Wachira, F. N., R. Waugh and C. A. Hackett et al., Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers, Genome, 1995, 38: 201-210.
    Wakao,T., et al., A simple DNA analysis for identifying eel species by using polymerase chain reaction restriction fragment length polymorphism method. Nipp. Sui. Gakk. , 1999, 65(3) : 391-399.
    Waples, R.S., Pacific salmon, Oncorhynchus spp., and the definition of "species" under the Endangered Species Act, Mar. Fish. Rev., 1991a, 53: 11-22.
    Waples, R.S., Genetic interactions between hatchery and wild Salmonids: lessons from the Pacific Northwest, Can. J. Fish. Aqua. Sci., 1991b, 48(Suppl.1) : 124-133.
    Ward, R.D. and P.M. Grewe, Appraisal of molecular genetic techniques in fisheries, 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 29-54. ★★Ward, R.D. and P.M.Grewe, Appraisal of molecular genetic techniques in fisheries, Rev. Fish Biol. Fish.,1994, 18: 7313-7318.
    Ward, R.D. and N.G. Elliott, Heterozygosity and morphological variability in the oragne ro ughy, Hoplostethus atlanticus, Can. J. Fish. Aquat.Sci., 1993, 49:
    
    
    Ward, R.D., N. Billington and P.D.N. Hebert, Comparison of allozyme and mitochondrial DNA variation in populations of walleye,Stizostedion vitreum,Can. J. Fish, aquat. Sci., 1989, 46: 2074-2084.
    Wheeler, A., Key to the fishes of Northern Europe, Frederick Warne (Publishes) Ltd., London, 1978: 343-344.
    Winkler, P.M., D.Bartley and N.F.Diaz, Genetic differences among year classes in hatchery population of coho salmon (Oncorhynchus kisutch(Walbaum, 1792) ) in Chile, Aquaculture, 1999, 73: 425-433.
    Wirgin, I.I. and L. Maceda, Development and use of striped bass-specific probes, J. Fish Biol., 1992, 39 (suppl. A): 159-167.
    Wirgin, I.I. et al., Use of DNA fingerprinting in the identification and management of a striped bass population in the Southeasten United States, Trans. Am.Soc., 1991, 120: 273-282.
    Wirgin, I.I., et al., Restriction endonuclease analysis of striped bass mitochondrial DNA: the Atlantic coastal migratory stock, Amer. Fish Sod. Symp., 1990,7: 475-491.
    Wright. J.M. and P. Bentzen, Microsatellites: genetic markers for the future, 《Molecular genetics in fisheries》 , Chapman & Hall(England,London), 1995, 117-122.
    Wright, S., Fishery management of wild Pacific salmon stocks to prevent extinctions, Fisheries, 1993, 18: 3-4.
    Zhang, H., et al.. Foreign eel species in the natural waters of Japan detected by polymerase chain reaction of mitochondrial cytochrome b region, Fish. Sci., 1999, 65 (5) : 684-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700