施肥对稻田湿地土壤碳氮磷库及其相关酶活变化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施肥影响周围环境。稻田土壤碳氮磷迁移转化受施肥影响,进而影响水体和大气等环境。本研究利用两点野外稻田定位试验(一点连续27年和另一点连续6年),对稻田土壤有机碳(SOC)固定、剖面土壤全氮(STN)和土壤无机氮(SMN)变化、剖面土壤全磷(STP)和Olsen-P变化及剖面土壤脲酶和中性磷酸酶活性分布等进行了研究,同时分析了稻田田面水和100 cm深地下水氮磷浓度,探讨了稻田氮磷径流和淋溶流失潜能。主要结论有:
     1.施肥影响耕层SOC含量和100 cm土体SOC密度。南昌点连续27年试验后结果表明,施肥提高了耕层SOC含量。嘉兴点连续6年试验后结果表明,施用尿素影响耕层SOC含量较小,但低剂量尿素损耗SOC;施用猪粪显著提高耕层SOC含量。南昌试验点,100 cm土体SOC密度变幅从73.1至91.4 Mg C ha-1.与CK比较,施肥同样提高了SOC密度,且有机无机肥配施处理其提高效果大于仅施化肥处理。嘉兴试验点,尿素处理组的100 cm土体SOC密度变幅从120.0到125.1 Mg Cha-1;猪粪处理组的从121.7到133.0 Mg C ha-1.嘉兴试验点,尿素处理组SOC密度差异较小,但低剂量尿素损耗SOC密度;SOC密度随猪粪用量增加而提高。两试验点的SOC密度与有机肥输入碳相关。有机无机肥配施和施用有机肥能促进土壤固碳。有机无机肥配施是高效可持续固定SOC的措施。
     2.施肥影响耕层STN和SMN含量,对耕层以下没有影响。STN.SMN.NH4+-N及NO3-N之间极显著正相关。南昌试验点,施肥提高了耕层STN,有机无机肥配施处理STN显著高于对照和仅施化肥处理。嘉兴试验点,尿素处理组耕层STN处理间较小,但低剂量尿素损耗土壤氮素;猪粪处理组STN随猪粪用量增加而显著提高。SMN变化趋势与STN基本相同。施用有机肥和有机无机肥配施,保持耕层土壤氮。
     3.施用磷肥提高耕层STP和Olsen-P,对耕层以下没有影响。南昌试验点,NK比CK处理耕层STP和Olsen-P耗竭更甚,有机无机肥配施比仅施无机磷肥显著提高耕层STP和Olsen-P.嘉兴试验点,耕层STP和Olsen-P随磷肥用量增加而增加。
     4.施肥提高耕层土壤脲酶活性,对耕层以下没有影响。脲酶活性随深度而降低。脲酶活性与STN.SMN.NH4+-N及NO3-N之间显著正相关。南昌试验点,有机无机肥配施提高效果优于仅施化肥。嘉兴试验点,尿素提高耕层土壤脲酶活性,但尿素过量会抑制其活性;猪粪提高效应大于尿素。施用有机肥和有机无机肥配施提高耕层土壤脲酶活性。
     5.施肥影响耕层土壤中性磷酸酶活性,对耕层以下没有影响。中性磷酸酶活性随深度而降低。中性磷酸酶活性与STP、Olsen-P显著正相关。南昌试验点,施肥提高耕层土壤中性磷酸酶活性,有机无机肥配施提高效果优于仅施化肥,而PK处理土壤中性磷酸酶活性低于对照。嘉兴试验点,过磷酸钙降低耕层土壤中性磷酸酶活性;猪粪提高土壤中性磷酸酶活性。施用有机肥和有机无机肥配施提高耕层土壤中性磷酸酶活性。
     6.水稻生长季末采样发现,田面水氮磷浓度施肥处理间有差异,但100 cm深地下水氮磷浓度无显著差异。稻田水氮磷浓度与相应土层土壤氮磷含量、土壤脲酶活性、磷酸酶活性之间显著正相关。土壤脲酶和磷酸酶活性在稻田氮磷流失潜能起着一定作用。南昌试验点,水稻生长季末采样发现,施肥提高田面水氮磷浓度,有机无机肥配施处理田面水氮磷浓度显著高于对照和仅施化肥处理,但田面水NO3--N浓度随有机肥施用量增加而减少。嘉兴试验点,水稻生长季末采样发现,尿素提高田面水氮浓度,低剂量尿素降低田面水氮浓度;猪粪提高田面水氮浓度,并随猪粪用量增加而显著提高,但田面水NO3--N浓度随有机肥施用量增加而减少。嘉兴试验点,水稻生长季末采样发现,过磷酸钙和猪粪都显著提高田面水磷浓度。
     7.稻田是可持续的湿地生态系统,其中的作物、微生物和土壤具有吸收、转化和吸附养分的作用,可处理消纳有机肥。稻田有田埂围栏,产生的只是机会径流,控制得当可做到零径流甚至负径流,将不会产生氮磷流失。长期耕作后稻田形成紧密犁底层,阻止水分、养分等下移,几乎不会导致氮磷淋失。稻田湿地生态系统在正确管理措施下,比如恰当施肥和零排水,可以消纳有机肥替代化肥。但不适当管理可能使稻田成为面源污染源。
Fertilization affects surrounding environment. The transformation of paddy soil carbon, nitrogen, and phosphorous is influenced by fertilization, which thus impacts the surrounding water body, atmosphere, and so on. Two field fertilization experiments, one for 27 years and the other for 6 years, were selected as study materials. The main objectives of this research were:(1) to study soil organic carbon (SOC) sequestration, the changes of soil total nitrogen (STN), soil mineral nitrogen (SMN), soil total phosphorous (STP), and Olsen-P in the profile; (2) to investigate the distribution of soil urease activity and neutral phosphatase activity in the profile; and (3) to determine the concentration of N and P in paddy water under different fertilization. The followings were the main results.
     1. Fertilization influenced SOC content in the plow layer and SOC density in the top 0-100 cm depth soil layer. At Nanchang site after 27 years experiment, fertilization increased SOC content in the plow layer compared to CK. At Jiaxing site after 6 years experiment, urea influence SOC content in the plow layer gently, and a low rate of urea depleted SOC; pig manure (PM) markedly increased SOC content in the plow layer. At Nanchang site, SOC density in the 0-100 cm depth soil layer ranged from 73.1 to 91.4 Mg C ha-1. Soil organic C density of all the fertilizer treatments was greater than that of the CK. Those treatments that combined both chemical fertilizers and organic amendments had greater SOC densities compared to those only receiving chemical fertilizers. At Jiaxing site, SOC density in the 0-100 cm depth soil layer varied from 120.0 to 125.1 Mg C ha-1 in the urea treatments, and from 121.7 to 133.0 Mg C ha-1 in the PM treatments. Urea was not beneficial to sequester SOC. Soil organic C density increased with increasing rate of PM. At two experimental sites, SOC density was closely correlated to the input C from organic amendments. Carbon sequestration in paddy soils could be obtained by fertilization with organic amendments. Fertilization combined both chemical fertilizers and organic amendments is an effective sustainable practice to sequester SOC.
     2. Fertilization affected STN and SMN in the plow layer, but not under the plow layer. There were significant correlations among soil total N, SMN, NH4+-N and NO3--N. At Nanchang site, STN of treatments with fertilizers was greater than that of the CK without fertilizer. Those treatments that combined both chemical fertilizers and organic amendments had greater increasing effects on STN compared to those only receiving chemical fertilizers. At Jiaxing site, urea gently affected STN in the plow layer, and a low rate of urea depleted STN; PM significantly sequestered STN. The change trend of SMN was similar to STN. Fertilization with organic amendments can maintain paddy soil N.
     3. Phosphorus fertilization increased STP and Olsen-P in the plow layer but not under the plow layer compared to P-free fertilization. Downward movement of P was not observed. At Nanchang site, STP and Olsen-P in the plow layer was exhausted more in the NK than in the CK. Those treatments that combined both chemical fertilizers and organic amendments had greater increasing effects on STP and Olsen-P compared to those only receiving chemical fertilizers. At Jiaxing site, superphosphate and PM significantly increased STP and Olsen-P in the plow layer, and the effect increased with increasing P rates.
     4. Fertilization influenced soil urease activity in the plow layer but not under the plow layer. Soil urease activity decreased with increasing soil depth. Soil urease activity was positively and significantly correlated with STN, SMN, NH4+-N, and NO3--N. At Nanchang site, soil urease activity of treatments with fertilizers was greater than that of the CK without fertilizer. Those treatments that combined both chemical fertilizers and organic amendments had greater increasing effects on soil urease activity compared to those only receiving chemical fertilizers. At Jiaxing site, urea increased soil urease activity in the plow layer, and an excessive rate of urea inhibited soil urease activity; PM had greater increasing effects on soil urease activity compared to urea. Fertilization with organic amendments increased soil urease activity in the plow layer.
     5. Fertilization affected soil neutral phosphatase activity in the plow layer but not under the plow layer. Soil neutral phosphatase activity decreased with increasing soil depth. Soil neutral phosphatase activity was positively and significantly correlated with STP and Olsen-P. At Nanchang site, soil neutral phosphatase activity of the treatments with fertilizers was greater than that of the CK without fertilizer, but except PK treatment. Those treatments that combined both chemical fertilizers and organic amendments had greater increasing effects on soil neutral phosphatase activity compared to those only receiving chemical fertilizers. At Jiaxing site, superphosphate decreased soil neutral phosphatase activity in the plow layer; PM increased soil neutral phosphatase activity in the plow layer. Fertilization with organic amendments increased soil neutral phosphatase activity in the plow layer.
     6. At the end of rice season, fertilization affected N and P concentration in paddy surface water but not in paddy groundwater at a 100-cm depth. The N and P concentration in paddy water were significantly and positively correlated to soil N and P, soil urease activity, and neutral phosphatase activity in the corresponding soil layer. Soil urease activity and neutral phosphatase activity contributed to the loss potential of paddy N and P. At Nanchang site at the end of rice season, fertilization increased N and P concentration in paddy surface water. Those treatments that combined both chemical fertilizers and organic amendments had greater increasing effects on N and P concentration in paddy surface water compared to those only receiving chemical fertilizers, but NO3--N concentration in paddy surface water decreased with increasing rate of organic amendments. At Jiaxing site at the end of rice season, urea increased N concentration in paddy surface water, but a low rate of urea decreased N concentration in paddy surface water; PM increased N concentration in paddy surface water, but N03--N concentration in paddy surface water decreased with increasing PM rate. At Jiaxing site at the end of rice season, both superphosphate and PM markedly increased P concentration in paddy surface water.
     7. Paddy fields are sustainable wetland ecosystems. The paddy wetland ecosystem may act as a sink for C, N, and P through plants and soil apart from being a pollution source due to the existence of barriers and plow pans. The plants and soil are the reservoirs for nutrients in the paddy system, barriers on the paddy perimeter prevent runoff, and plow pans prevent leaching. Paddy wetland ecosystem can act as a sink especially for organic amendments, which could partly or totally substitute for chemical fertilizers, with proper management such as reduced-drainage or zero-drainage taking the advantage of the barriers. If with improper management, paddy fields may become non-point pollution sources.
引文
Albrecht, R., Le Petit, J., Calvert, V., Terrom, G., Perissol, C. Changes in the level of alkaline and acid phosphatase activities during green wastes and sewage sludge co-composting. Bioresour. Technol.2010,101:228-233.
    Amador, J.A., Glucksman, A.M., Lyons, J.B., Gorres, J.H. Spatial distribution of soil phosphatase activity within a riparian forest. Soil Sci.1997,162:808-825.
    American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater.19th Edition. EPS Group Inc., Washington, D.C. 1995.
    Aon, M.A., Cabello, M.N., Sarena, D.E., Colaneri, A.C., Franco, M.G., Burgos, J.L., Cortassa, S.I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil Ecol.2001,18:239-254.
    Ashley, K., Cordell, D., Mavinic, D. A brief history of phosphorus:From the philosopher's stone to nutrient recovery and reuse. Chemosphere 2011, 84:737-746.
    Azeez, J.O., Van Averbeke, W. Fate of manure phosphorus in a weathered sandy clay loam soil amended with three animal manures. Bioresour. Technol.2010,101: 6584-6588.
    Batjes, N.H. Carbon and nitrogen in the soils of the world. Eur. J Soil Sci.1996, 47(2):151-163.
    Batlle-Bayer, L., Batjes, N.H., Bindraban, P.S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado:A review. Agr. Ecosyst. Environ. 2010,137(1-2):47-58.
    Bhattacharyya, P., Chakrabarti, K., Chakraborty, A. Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere.2005,60:310-318.
    Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A.K., Gupta, H.S., Mitra, S. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr. Cycl. Agroecosyst.2010,86:1-16.
    Bi, L.D., Zhang, B., Liu, G.R., Li, Z.Z., Liu, Y.R., Ye, C., Yu, X.C., Lai, T., Zhang, J.G., Yin, J.M., Liang, Y. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agr. Ecosyst. Environ.2009,129(4):534-541.
    Bolinder, M.A., Katterer, T., Andren, O., Ericson, L., Parent, L.E., Kirchmann, H. Long-term soil organic carbon and nitrogen dynamics in forage-based crop rotations in Northern Sweden (63-64°N). Agr. Ecosyst. Environ.2010, 138(3-4):335-342.
    Buresh, R.J., De Datta, S.K. Nitrogen dynamics and management in rice-legume cropping systems. Adv. Agron.1991,45:1-59.
    Cai, Z.C., Qin, S.W. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma.2006, 136(3-4):708-715.
    Cassman, K.G., Peng, S., Olk, D.C., Ladha, J.K., Reichardt, W., Dobermann, A., Singh, U. Opportunities for increasing nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop. Res.1998, 56(1-2):7-39.
    Chabot, J., Antoun, H., Cescas, M.P. Growth promotion of maize and lettuce by phosphate-solubilising Rhizobum leguminosarum biovar. phaseoli. Plant Soil. 1996,184:311-321.
    Chahal, M.K., Toor, G.S., Nkedi-Kizza, P., Santos, B.M. Effect of tomato packinghouse wastewater properties on phosphorus and cation leaching in a Spodosol. J. Environ. Qual.2011,40:999-1009.
    Chen, D.J., Lu, J., Wang, H.L., Shen, Y.N., Kimberley, M.O. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China. Environ.'Sci. Pollut. Res.2010,17(2):312-320.
    Chen, H. J. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecol. Manage.2003,178:301-310.
    Chen, L.D., Peng, H.J., Fu, B.J., Qiu, J., Zhang, S.R. Seasonal variation of nitrogen
    concentration in the surface water and its relationship with land use in a catchment of northern China. J. Environ. Sci.2005,17(2):224-231.
    Chun, J.A., Cooke, R.A., Kang, M.S., Choi, M., Timlin, D., Park, S.W. Runoff losses of suspended sediment, nitrogen, and phosphorus from a small watershed in Korea. J. Environ. Qual.2010,39:981-990.
    Cordell, D., Rosemarin, A., Schroder, J.J., Smit, A.L. Towards global phosphorus security:A systems framework for phosphorus recovery and reuse options. Chemosphere 2011,84:747-758.
    Crecchio, C., Curei, M., Mininni, R., Ricciuti, P., Ruggiero, P. Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and generic diversity. Biol. Fert. Soils.2001, 34:311-318.
    Darilek, J.L, Huang, B., Wang, Z.G., Qi, Y.B., Zhao, Y.C., Sun, W.X., Gu, Z.Q., Shi, X.Z. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agr. Ecosyst. Environ.2009,129:286-292.
    De Datta, S.K. Nitrogen transformation in wetland rice ecosystems. Fert. Res.1995, 42:193-203.
    Demira, K., Sahinb, O., Kadiogluc, Y.K., Pilbeamd, D.J., Gunesb, A. Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci. Hortic.2010,127:16-22.
    Eghball, B., Binford, G.D., Baltensperger, D.D. Phosphorus movement and adsorption in a soil receiving long-term manure and fertilizer application. J. Environ. Qual. 1996,25:1339-1343.
    Elrashidi, M.A., Alva, A.K., Huang, Y.F., Calvert, D.V., Obreza, T.A., He, Z.L. Accumulation and Downward Transport of Phosphorus in Florida Soils and Relationship to Water Quality. Commun. Soil Sci. Plant Anal.2001,32 (19/20):3099-3119.
    Fang, C.M., Smith, P., Moncrieff, J.B., Smith, J.U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature.2005,433: 57-59.
    Feng, H.L., Kurkalova, L.A., Kling, C.L., Gassman, P.W. Transfers and environmental co-benefits of carbon sequestration in agricultural soils:retiring agricultural land in the Upper Mississippi river basin. Climatic Change.2007, 80(1-2):91-107.
    Franzaring, J., Holz, I., Zipperle, J., Fangmeier, A. Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Wurttemberg (SW Germany). Environ. Sci. Pollut. Res.2010, 17(1):4-12.
    Franzluebbers, A.J. Soil organic carbon sequestration and agricultural GHG emissions in the southeastern USA. Soil Till. Res.2005,83:120-147.
    Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Till. Res.2002,66(2):95-106.
    Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton M.A. Transformation of the nitrogen cycle:Recent trends, questions, and potential solutions. Science.2008, 320(5878):889-892.
    Gami, S.K., Lauren, J.G., Duxbury, J.M. Soil organic carbon and nitrogen stocks in Nepal long-term soil fertility experiments. Soil Till. Res.2009,106:95-103.
    Garg, S., Bahl, G.S. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour. Technol.2008,99:5773-5777.
    Ge, G.F., Li, Z.J., Zhang, J., Wang, L.G., Xu, M.G., Zhang, J.B., Wang, J.K., Xie, X.L., Liang, Y.C. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex.2009,6:421-431.
    George, T., Ladha, J.K., Buresh, R.J., Garrity, D.P. Managing native and legume-fixed nitrogen in lowland rice-based cropping systems. Plant Soil.1992, 141:69-91.
    Gichangi, E.M., Mnkeni, P.N.S., Brookes, P.C. Effects of goat manure and inorganic phosphate addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions. Soil Sci. Plant Nutr.2009, 55:764-771.
    Glaesner, N., Kjaergaard, C., Rubaek, G.H., Magid, J. Interactions between soil texture and placement of dairy slurry application:II. leaching of phosphorus forms. J. Environ. Qual.2011,40:344-351.
    Goldstein, A.H., Baertlein, D.A.S., McDaniel, R.G. Phosphatate starvation inducible metabolism in Lycopersicum esculentum. Part I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol.1988,87:711-715.
    Haefele, S.M., Wopereis, M.C.S., Schloebohm, A.M., Wiechmann, H. Long-term fertility experiments for irrigated rice in the West African Sahel:effect on soil characteristics. Field Crop. Res.2004,85:61-77.
    Hao, X.H., Liu, S.L., Wu, J.S., Hu, R.G., Tong, C.L., Su, Y.Y. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosyst.2008,81(1):17-24.
    Hao, X.Y., Chang, C., Travis, G.R., Zhang, F.R. Soil carbon and nitrogen response to 25 annual cattle manure applications. J. Plant Nutr. Soil Sci.2003, 166(2):239-245.
    Harrison, A.F. Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biol. Biochem.1983,15: 93-99.
    Hati, K.M., Swarup, A., Mishra, B., Manna, M.C., Wanjari, R.H., Mandal, K.G., Misra, A.K. Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma.2008,148:173-179.
    Heckrath, G., Brookes, P.C., Poulton, P.R., Goulding, K.W.T. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment. J. Environ. Qual.1995,24:904-910.
    Hernandez-Ramirez, G., Brouder, S.M., Ruark, M.D., Turco, R.F. Nitrate, phosphate, and ammonium loads at subsurface drains:agroecosystems and nitrogen management. J. Environ. Qual.2011,40:1229-1240.
    Hofma, G. Nutrient management legislation in Eruopean countries. NUMALEC Report.1999, Concerted Action, Fair 6-C98-4215.
    Hua, L., Wu, W.X., Liu, Y.X., McBride, M.B., Chen, Y.X. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res.2009,16(1):1-9.
    Huang, C., Deng, L.J., Gao, X.S., Zhang, S,R., Luo, T., Ren, Q.R. Effects of fungal residues return on soil enzymatic activities and fertility dynamics in a paddy soil under a rice-wheat rotation in Chengdu Plain. Soil Till. Res.2010,108:16-23.
    Jobbagy, E.G., Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl.2000,10(2):423-436.
    Ju, X.T., Xing, G.X., Chen, X.P. Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS. 2009,106:3041-3046.
    Kaiser, D.E., Mallarino, A.P., Sawyer, J. E. Utilization of poultry manure phosphorus for corn production. Soil Sci. Soc. Am. J.2010,74:2211-2222.
    Kavvadias, V., Doulaa, M.K., Komnitsasb, K., Liakopoulou, N. Disposal of olive oil mill wastes in evaporation ponds:Effects on soil properties, J. Hazard. Mater. 2010,182:144-155.
    Khan, S.A., Mulvaney, R.L., Ellsworth, T.R., Boast, C.W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual.2007, 36(6):1821-1832.
    Kiss, S., Dragan-Bularda, M., Radulescu, D. Biological significance of enzymes accumulated in soil. Advan. Agron.1975,27:25-87.
    Kibet, L.C., Allen, A.L., Kleinman, P.J.A., Feyereisen, G.W., Church, C., Saporito, L.S., Way, T. R. Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils. J. Environ. Qual.2011,40:412-420.
    Knops J.M.H., Bradley K.L. Soil Carbon and nitrogen accumulation and vertical distribution across a 74-Year chronosequence. Soil Sci. Soc. Am. J.2009, 73:2096-2104.
    Kovar, J.L., Moorman, T.B., Singer, J.W., Cambardella, C.A., Tomer, M.D. Swine manure injection with a low-disturbance applicator and cover crops reduce phosphorus losses in runoff. J. Environ. Qual.2011,40:329-336.
    Kronvang, B., Rubaek, G. H., Heckrath, G. International phosphorus workshop: diffuse phosphorus loss to surface water bodies-risk assessment, mitigation options, and ecological effects in river basins. J. Environ. Qual.2009, 38:1924-1929.
    Ladha, J.K., Padre, A.T., Punzalan, G.C., Garcia, M., Watanabe, I. Effect of inorganic N and organic fertilizers on nitrogen-fixing (acetylene-reducing) activity associated with wetland rice plants. In:Skinner FA et al (eds) N2 fixation with non-legumes. Kluwer, Dordrecht,1989, pp 23-35.
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science.2004,304:1623-1627.
    Lal, R. World soils and greenhouse effect. IGBP Global Change Newsletter,1999, 37:4-5.
    Leytem, A.B., Westermann, D.T. Phosphorus availability to barley from manures and fertilizers on a calcareous soil. Soil Sci.2005,170(6):401-412.
    Li, J.T., Zhang, B. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China. Pedosphere.2007,17:568-579.
    Li, S., Li, H., Liang, X.Q., Chen, Y.X., Cao, Z.H., Xu, Z.H. Rural wastewater irrigation and nitrogen removal by the paddy wetland system in the Tai Lake region of China. J. Soils Sediments.2009a,9:433-442.
    Li, S., Li, H., Liang, X.Q., Chen, Y.X., Wang, S.X., Wang, F.E. Phosphorus removal of rural wastewater by the paddy-rice-wetland system in Tai Lake Basin. J. Hazard. Mater.2009b,171:301-308.
    Li, Z.P., Liu, M., Wu, X.C., Han, F.X., Zhang, T.L. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Till. Res.2010, 106:268-274.
    Liang, X.Q., Chen, Y.X., Li, H., Tian, G.M., Zhang, Z.J., Ni, W.Z., He, M.M. Nitrogen interception in floodwater of rice field in Taihu region of China. J. Environ. Sci.2007,19(12):1474-1481.
    Liang, X.Q., Li, H., He, M.M., Chen, Y.X., Tian, G.M., Xu, S.Y. The ecologically optimum application of nitrogen in wheat season of rice-wheat cropping system. Agron. J.2008,100(1):67-72.
    Lopez-Bellido, R.J., Fontan, J.M., Lopez-Bellido, F.J., Lopez-Bellido, L. Carbon sequestration by tillage, rotation, and nitrogen fertilization in a Mediterranean Vertisol. Agron. J.2010,102(1)::310-318.
    Luo, J., Wang, X.R., Yang, H., Yu, J. Z., Yang, L.Y., Qin, B.Q. Atmospheric phosphorus in the northern part of Lake Taihu, China. Chemosphere 2011, 84:785-791.
    Luo, Z.K, Wang E.L., Sun O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems:A review and synthesis. Geoderma. 2010,155:211-223.
    Lu. P., Su, Y.R., Niu, Z., Wu, J.S. Geostatistical analysis and risk assessment on soil total nitrogen and total soil phosphorus in the Dongting Lake Plain Area, China. J. Environ. Qual.2007,36:935-942.
    Ma, W.Q., Ma, L., Li, J.h., Wang, F.h., Sisak, I., Zhang, F.S. Phosphorus flows and use efficiencies in production and consumption of wheat, rice, and maize in China. Chemosphere 2011,84:814-821.
    Maguire, R.O., Kleinman, P.J.A., Beegle, D.B. Novel manure management technologies in no-till and forage systems:introduction to the special series. J. Environ. Qual.2011,40:287-291.
    Maguire, R.O., Rubaek, G.H., Haggard, B.E., Foy, B.H. Critical evaluation of the implementation of mitigation options for phosphorus from field to catchment Scales. J. Environ. Qual.2009,38:1989-1997.
    Majumder, B., Mandal, B., Bandyopadhyay, P.K., Chaudhury, J. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant Soil.2007,297(1):53-67.
    Mallarino, A.P., Wittry, D.J. Crop yield and soil phosphorus as affected by liquid swine manure phosphorus application using variable-rate technology. Soil Sci. Soc. Am. J.2010,74:2230-2238.
    Manna, M.C., Swarup, A., Wanjari, R.H., Singh, Y.V., Ghosh, P.K., Singh, K.N., Tripathi, A.K., Saha, M.N. Soil organic matter in a West Bengal Inceptisol after 30 years of multiple cropping and fertilization. Soil Sci. Soc. Am. J.2006, 70(1):121-129.
    Marinari, S., Masciandaro, G., Ceccanti, B., Grego, S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour. Technol. 2000,72:9-17.
    Martens, D.A., Johanson, J.B., Frankenbenger, W.T. Production and persistence of soil enzymes with repeated additions of organic residues. Soil Sci.1992, 153:53-61.
    Marx, M.C., Kandeler. E., Wood, M., Wermbter, N., Jarvis, S.C. Exploring the enzymatic landscape:distribution and kinetics of hydrolytic enzymes in soil particle-size fractions. Soil Biol. Biochem.2005,37:35-48.
    McCallister, D.L., Bahadis, M.A., Blumerthal, J.M. Phosphorus partitioning and phosphatase activity in semi-arid region soils under increasing crop growth intensity. Soil Sci.2002,167:616-623.
    Miller, J.J., Chanasyk, D.S., Curtis, T.W., Olson, B.M. Phosphorus and nitrogen in runoff after phosphorus-or nitrogen-based manure applications. J. Environ. Qual.2011,40:949-958.
    McLauchlan, K. The nature and longevity of agricultural impacts on soil carbon and nutrients:a review. Ecosystems.2006,9:1364-1382.
    Mulvaney R. L., Khan S. A., Ellsworth T. R. Synthetic nitrogen fertilizers deplete soil nitrogen:A global dilemma for sustainable cereal production. J. Environ. Qual. 2009,38:2295-2314.
    Murphy, J. Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta.1962,27:31-36.
    Nayak, D.R., Babu, Y.J., Adhya, T.K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol. Biochem.2007,39(8):1897-1906.
    Nayak, P., Patel, D., Ramakrishnan, B., Mishra, A.K., Samantaray, R.N. Long-term application effects of chemical fertilizer and compost on soil carbon under intensive rice-rice cultivation. Nutr. Cycl. Agroecosyst.2009,83(3):259-269.
    Novak, J.M., Watts, D.W., Hunt, P.G., Stone, K.C. Phosphorus movement through a Coastal Plain soil after a decade of intensive swine manure application. J. Environ. Qual.2000,29,1310-1315.
    Oberson, A., Besson, J.M., Maire, N., Sticher, H. Microbiological processes in soil organic phosphorus transformations in conventional and biological cropping systems. Biol. Fertil. Soils.1996,21:138-148.
    Owens, L.B., Bonta, J.V., Shipitalo, M.J., Rogers, S. Effects of winter manure application in Ohio on the quality of surface runoff. J. Environ. Qual.2011, 40:153-165.
    Pan, G.X., Li, L.Q., Zhang, X.H., Wu, L.S. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Glob. Change Biol.2004, 10:79-92.
    Pan, G.X., Xu, X.W., Smith, P., Pan, W., Lal, R. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agr. Ecosyst. Environ.2010,136:133-138.
    Pan, G.X., Zhou, P., Li, Z.P., Smith, P., Li, L.Q., Qiu, D.S., Zhang, X.H., Xu, X.B., Shen, S.Y., Chen, X.M. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agr. Ecosyst. Environ.2009, 131:274-280.
    Pan, G.X.; Wu, L.S., Li, L.Q., Zhang, X.H., Wei, G, Yvonne, W. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China. J. Environ. Sci.2008,20:463-465.
    Panagopoulos, I., Mimikou, M., Kapetanaki, M. Estimation of nitrogen and
    phosphorus losses to surface water and groundwaterthrough the implementation of the SWAT model for Norwegian soils. J. Soils Sediments.2007,7:223-231.
    Plaza, C., Hernandez, D., Garcia-Gil, J.C., Polo, A. Microbial activity in pig slurry-amended soil under semiarid conditions. Soil Biol. Biochem.2004, 36:1577-1585.
    Poudel, D.D., Horwath, W.R., Lanini, W.T., Temple, S.R., van Bruggen, A.H.C. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agr. Ecosyst. Environ.2002,90:125-137.
    Powlson, D.S., Jenkinson, D.S., Johnston, A.E., Poulton, P.R., Glendining, M.J., Goulding, K.W.T. Comments on "Synthetic nitrogen fertilizers deplete soil nitrogen:a global dilemma for sustainable cereal production," by Mulvaney RL, Khan SA, Ellsworth TR in the Journal of Environmental Quality (2009)38:2295-2314. J. Environ. Qual.2010,39:749-752.
    Qiao, M., Zheng, Y.M., Zhu, Y.G., Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 2011, 84:73-778.
    Qiu, S.J., Ju, X.T., Ingwersen, J., Qin, Z.C., Li, L., Streck, T., Christie, P., Zhang, F.S. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil Till. Res.2010,107:80-87.
    Ramaekers, L., Remansb, R., Raoc, I.M., Blair, M.W., Vanderleydena, J. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop. Res. 2010,117:169-176.
    Rasool, R., Kukal, S.S., Hira, G.S. Soil physical fertility and crop performance as affected by long term application of FYM and inorganic fertilizers in rice-wheat system. Soil Till. Res.2007,96(1-2):64-72.
    Raun, W.R., Johnson, G.V. Soil plant buffering of inorganic nitrogen in continuous winter wheat. Agron. J.1995,87(5):827-834.
    Reddy, S.S., Nyakatawa, E.Z., Reddy, K.C., Raper, R.L., Reeves, D.W., Lemunyon, J.L. Long-term effects of poultry litter and conservation tillage on crop yields and soil phosphorus in cotton-cotton-corn rotation. Field Crop. Res.2009, 114:311-319.
    Reid, D.K. Comment on "The myth of nitrogen fertilization for soil carbon sequestration", by S.A. Khan et al. in the Journal of Environmental Quality 36:1821-1832. J. Environ. Qual.2008,37(3):739; author reply 739-740.
    Rittmann, B.E., Mayer, B., Westerhoff, P., Edwards, M. Capturing the lost phosphorus. Chemosphere 2011,84:846-853.
    Saha, S., Mina, B.L., Gopinath, K.A., Kundu, S., Gupta, H.S. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bioresour. Technol.2008,99:1750-1757.
    Sahoo, P.K., Bhattacharyya, P., Tripathy, S., Equeenuddina, S.M., Panigrahi, M.K. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site. J. Hazard. Mater. 2010,179:966-975.
    Sainju, U.M., Senwo, Z.N., Nyakatawa, E.Z., Tazisong, I.A., Reddy, K.C. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agr. Ecosyst. Environ.2008,127(3-4):234-240.
    Sardans, J., Penuelas, J. Drought decreases soil enzyme activity in a Mediterranean Ouercus ilex L. forest. Soil Biol. Biochem.2005,37:455-461.
    Schroder, J.J., Smit, A.L., Cordell, D., Rosemarin, A. Improved phosphorus use efficiency in agriculture:A key requirement for its sustainable use. Chemosphere 2011,84:822-831.
    Schwab, A.P., Kulvingyong, S. Changes in phosphatase activities and availability indexes with depth after 40 years of fertilization. Soil Sci.1989, 147(3):179-186.
    Sharpley, A.N., Kleinman, P.J.A., Jordan, P., Bergstrom, L., Allen, A. L. Evaluating the success of phosphorus management from field to watershed. J. Environ. Qual.2009,38:1981-1988.
    Sharpley, A.N., McDowell, R.W., Kleinman, P.J.A. Amounts, forms, and solubility of phosphorus in soils receiving manure. Soil Sci. Soc. Am. J.2004,68:2048-2057.
    Shen, J., Li, R., Zhang, F., Fan, J., Tang, C., Rengel, Z. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crop. Res.2004,86:225-238.
    Shibu, M.E., Leffelaar, P.A., Van Keulen, H., Aggarwal, P.K. Quantitative description of soil organic matter dynamics-a review of approaches with reference to rice-based cropping systems. Geoderma.2006,137(1-2):1-18.
    Sims, J.T., Edwards, A.C., Schoumans, O.F., Simard, R.R. Integrating soil phosphorus testing into environmentally based agricultural management practices. J. Environ. Qual.2000,29:60-71.
    Sparks, D., Page, A., Helmke, P., Loeppert, R. Methods of Soil Analysis. Part 3.Chemical methods. Soil Science Society of America, Madison, WI.1996.
    Suh, S., Yee, S. Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere 2011,84:806-813.
    Taylor, J.P., Wilson, B., Mills, M.S., Burns, R.G. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem.2002,34:387-401.
    Timsina, J., Connor, D.J. Productivity and management of rice-wheat cropping systems:Issues and challenges. Field Crop. Res.2001,69:93-132.
    Tong, C.L., Xiao, H.A., Tang, G.Y., Wang, H.Q., Huang, T.Q., Xia, H.A., Keith, S J., Li, Y., Liu, S.L., Wu, J.S. Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China. Soil Till. Res.2009,106(1):8-14.
    Tsuji, H., Yamamoto, H., Matsuo, K., Usuki, K. The effects of long-term conservation tillage, crop residues and P fertilizer on soil conditions and responses of summer and winter crops on an Andosol in Japan. Soil Till. Res. 2006,89(2):167-176.
    Wang, F., Sims, J. T., Ma, L., Ma, W., Dou, Z., Zhang, F. The phosphorus footprint of China's food chain:implications for food security, natural resource management, and environmental quality. J. Environ. Qual.2011,40:1081-1089.
    Wang S.Q., Huang M., Shao X.M. Vertical distribution of soil organic carbon in China. Environ. Manage.2004,33 (Suppl.1),200-209.
    Wang, X.C., Lu, Q. Beta-glucosidase activity in paddy soils of the Taihu Lake region, China. Pedosphere.2006a,16(1):118-124.
    Wang, X.C., Lu, Q. Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere.2006b,16(4):532-539.
    West, T., Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change.2007, 80(1):25-41.
    West, T.O., Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture:comparing tillage practices in the United States. Agr. Ecosyst. Environ.2002,91(1-3):217-232.
    Whitbread, A., Blair, G., Konboon, Y., Lefroy, R., Naklang K. Managing crop residues, fertilizers and leaf litters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand and Australia. Agr. Ecosyst. Environ.2003,100(2-3):251-263.
    Xavier, F.A.S., Oliveira, T.S., Andrade, F.V., Mendonca, E.S. Phosphorus fractionation in a sandy soil under organic agriculture in Northeastern Brazil. Geoderma.2009,151:417-423.
    Xiao, G.L., Li, T.X., Zhang, X.Z., Yu, H.Y., Huang, H.G., Gupta, D.K. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area. J. Hazard. Mater.2009,171:542-550.
    Xie, Z.B., Zhu, J.G., Liu, G., Cadisch, G., Hasegawa, T., Chen, C.M., Sun, H.F., Tang, H.Y., Zeng, Q. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol.2007,13:1989-2007.
    Yang, L.J., Li, T.L., Fu, S.F., Lemcoff, J. H., Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in a cucumber field. Sci. Hort.-Amsterdam.2008,116:21-26.
    Zaman, M., Cameron, K.C., Di, H.J., Inubushi, K. Changes in mineral N, microbial and enzyme activities in different soil depths after applications of dairy shed effluent and chemical fertilizer. Nutr. Cycl. Agroecosyst.2002,63:275-290.
    Zhang, M.K., He, Z.L. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China. Geoderma.2004, 118(3-4):167-179.
    Zhang, S.L., Yang, X.Y., Wiss, M., Grip, H., Lovdahl, L. Changes in physical properties of a loess soil in China following two long-term fertilization regimes. Geoderma.2006,136(3-4):579-587.
    Zhang, Q.L., Chen, Y.X., Jilani, G, Shamsi, I.H., Yu, Q.G. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin, J. Hazard. Mater. 2010,174:824-830.
    Zhang, W.J., Xu, M.G., Wang, B.R., Wang, X.J. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutr. Cycl. Agroecosyst.2009,84(1):59-69.
    Zhu, Z.L., Chen, D.L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst.2002,63:117-127.
    Zhu, Z.L. Fate and management of fertilizer nitrogen in agro-ecosystems. In:Zhu, Z.L., Wen, Q.X., Freney, J.R., (Eds.), Nitrogen in soils of China. Kluwer Academic Publishers, Dordrecht, Netherlands,1997, pp,239-279.
    曹志洪,林先贵,杨林章,胡正义,董元华,尹睿.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征.土壤学报.2005a,42(5):799-804.
    曹志洪,林先贵,杨林章,胡正义,董元华,尹睿.论“稻田圈”在保护城乡生态环境中的功能Ⅱ.稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学报.2005b,43(2):256-260.
    曹志洪,朱永官,廖海秋,吴留松.苏南稻麦两熟制下土壤养分平衡与培肥的长期试验.土壤.1995,27(2):60-63,93.
    曹志洪.施肥与水体环境质量-论施肥对环境的影响.土壤.2003a,35:353-362.
    曹志洪.施肥与土壤健康质量-论施肥对环境的影响.土壤.2003b,35(6):450-455.
    曹志洪.中国史前灌溉稻田和古水稻土研究进展.土壤学报.2008,45(5):784-791.
    陈安磊,王凯荣,谢小立,刘迎新.不同施肥模式下稻田土壤微生物生物量磷对土壤有机碳和磷素变化的响应.应用生态学报.2007,19(12):2733-2738.
    陈恩凤.土壤酶与土壤肥力研究.北京,科学出版社.1979,pp 54-61.
    陈庆强,沈承德,孙彦敏,彭少麟,易惟熙,李志安,姜漫涛.鼎湖山土壤有机质深度分布的剖面演化机制.土壤学报.2005,42(1):1-8.
    陈欣,张庆忠,鲁彩艳,史奕,张璐,东北一季作农田秋末土壤中无机氮的累积.应用生态学报.2004,15(10):1887-1890.
    陈义,王胜佳,吴春艳,王钟祥,张连佳,张琳玲,赵秉强,张夫道.稻田土壤有机碳平衡及其数学模拟研究.浙江农业学报.2004,16(1):1-6,
    陈义,吴春艳,水建国,王家玉.长期施用有机肥对水稻土CO2释放与固定的影响.中国农业科学.2005,38(12):2468-2473.
    陈子明,袁锋民,姚适华,周春生,傅高明,李小平,王丽霞.氮肥使用对土体中氮素移动及其对环境质量和产量的影响.陈子明.氮素、产量、环境.北京,中国农业科技出版社.1996.
    程先富,史学正,于东升,王洪杰.江西兴国县农田土壤固碳潜力20 a变化研究.应用与环境生物学报.2007,13(1):37-40.
    单艳红,杨林章,沈明星,王建国,陆长婴,吴彤东.长期不同施肥处理水稻土磷素在剖面的分布与移动.土壤学报.2005,42(6):970-976.
    范明生,刘学军,江荣风,张福锁,吕世华,曾祥忠.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响.生态学报.2004,24(11):2591-2596.
    范业成,陶其骧,叶厚专,刘光荣,李宁,李祖章.有机无机肥配施改土增产效果定位研究.江西农业学报.1991,3(2):104-111.
    范业成,陶其骧,叶厚专.稻田肥料效应和肥力监测阶段性研究报告.江西农业学报.1996,8(2):114-122.
    龚子同.土壤地球化学进展和应用.北京:科学出版社.1985.
    关松荫.土壤酶活性影响因子的研究:Ⅰ.有机肥料对土壤中酶活性及氮磷转化的影响.土壤学报.1989,26(1):72-78.
    关松荫.土壤酶及其研究法.北京,农业出版社.1986.
    国家环境保护总局.水和废水监测分析方法(第四版).北京,中国环境科学出版 社.2002.
    何念祖,倪吾钟.不同肥料管理对三熟制高产稻田土壤有机碳消长与平衡的影响.植物营养与肥料学报.1996,2(4):315-321.
    黄卉,王波,朱利,刘春晓,曹阳,卞新民.稻田处理养殖场粪便的氮磷动态效应与污染风险研究.农业环境科学学报.2009,28(4):736-743.
    黄明蔚,刘敏,陆敏,侯立军,欧冬妮,林啸.稻麦轮作农田系统中氮素渗漏流失的研究.环境科学学报.2007,27(4):629-636.
    黄庆海,李茶苟,赖涛,吴建华,魏绪英,赵美珍.长期施肥对红壤性水稻土磷素积与形态分异的影响.土壤与环境.2000,9(4):290-293.
    姜波,林咸永,章永松.杭州市郊典型菜园土壤磷素状况及磷素淋失.浙江大学学报(农业与生命科学版).2008,34(2):207-213.
    焦少俊,胡夏民,潘根兴,周虹杰,徐向东.施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响.生态学杂志.2007,26(4):495-500.
    解开治,徐培智,陈建生,杨少海,张发宝,唐拴虎,黄旭,顾文杰.施用缓控释配方肥对水稻田面水氮浓度动态变化及土壤脲酶活性的影响研究.广东农业科学.2010,9:23-26.
    李华,陈英旭,梁新强,田光明,俞巧钢.土壤脲酶活性对稻田田面水氮素转化的影响.水土保持学报.2006,20(1):55-58.
    李东坡,武志杰,陈利军,朱平,任军,梁成华.长期不同培肥黑土磷酸酶活性动态变化及其影响因素.植物营养与肥料学报.2004,10(5):550-553.
    李粉茹,于群英,邹长明.设施菜地土壤pH值、酶活性和氮磷养分含量的变化.农业工程学报.2009,25(1):217-222.
    李贵宝,周怀东,尹澄清.我国“三湖”的水环境问题和防治对策与管理[EB/ OL]. [2000-10].http://www.chinawater.net.cn/CWSnews/newshtm /y011114-1.htm.
    李恋卿,潘根兴,龚伟,孙玉华,张旭辉.太湖地区几种水稻土的有机碳储存及其分布特性.科技通报.2000,16(6):421-426.
    李良勇,余卓越,邹喜明,刘峰,罗春燕.不同施肥土壤中无机氮的垂直分布及烤烟对氮素的利用.湖北农业科学.2006,45(5):584-586.
    李庆逵.中国水稻土.北京,科学出版社.1992,pp 11-16.
    李松.稻田湿地处理农村生活污水脱氮除磷及其径流试验研究.浙江大学博士学位论文.2009.
    李卫正,王改萍,张焕朝,曹志洪,艾畅.两种水稻土磷素渗漏流失及其与Olsen磷的关系.南京林业大学学报(自然科学版).2007,31(3):52-56.
    李新爱,童成立,蒋平,吴金水,汪立刚.长期不同施肥对稻田土壤有机质和全氮的影响.土壤.2006,38(3):298-303.
    李志宏,刘宏斌,张树兰,张福锁.小麦-玉米轮作下土壤-作物系统对氮肥的缓冲能力.中国农业科学.2001,34(6):637-643.
    李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析.土壤学报.2006,43(1):46-52.
    李祖章,刘光荣,刘益仁,周荣娇.长期施肥丘岗地红壤性水稻土肥力演变规律.徐明岗,梁国庆,张夫道.中国土壤肥力演变.北京,中国农业科技出版社.2006,pp67-78.
    梁涛,王浩,章申,张秀梅,于兴修.西苕溪流域不同土地类型下磷素随暴雨径流的迁移特征.环境科学.2003,24(2):35-40.
    梁涛,张秀梅,章申,于兴修,王浩.西苕溪流域不同土地类型下氮元素输移过程.地理学报.2002,57(4):389-396.
    梁新强,田光明,李华,陈英旭,朱松.天然降雨条件下水稻田氮磷径流流失特征研究.水土保持学报.2005,19(1):59-63.
    林天,何园球,李成亮,杨芳,徐江兵.红壤早地中土壤酶对长期施肥的响应.土壤学报.2005,42(4):682-686.
    凌启鸿.论水稻生产在中国南方经济发达地区可持续发展中的不可替代作用.科技导报.2004,3:42-45.
    刘畅,唐国勇,童成立,夏海鳌,蒋平,林蕴华.不同施肥措施下亚热带稻田土壤碳、氮演变特征及其耦合关系.应用生态学报.2008,19(7):1489-1493.
    刘经荣,张德远,周卫,沈润平,吴建富.不同肥料结构对稻田水流中养分平衡的影响.江西农业大学学报.1994,16(4):328-331.
    刘勤,张斌,谢育平,李江涛,张金福,袁熳熳,王德建.施用鸡粪稻田土壤氮 磷养分淋洗特征研究.中国生态农业学报.2008,16(11):91-95.
    刘守龙,童成立,张文菊,吴金水.湖南省稻田表层土壤固碳潜力模拟研究.自然资源学报.2006,21(1):118-125.
    鲁如坤.土壤农业化学分析方法.北京,中国农业科技出版社.1999.
    鲁如坤.土壤磷素水平和水体环境保护.磷肥与复肥.2003,18(1):4-8.
    罗良国,闻大中,沈善敏.北方稻田生态系统养分渗漏规律研究.中国农业科学.2000,33(2):68-74.
    马立珊,汪祖强.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报.1997,17(1):39-47.
    孟娜,廖文华,贾可,刘建玲.磷肥、有机肥对土壤有机磷及磷酸酶活性的影响.河北农业大学学报.2006,29(4):7-59.
    潘根兴.全球土壤变化暨生态系统长期试验国际研讨会侧记.地球科学进展.2008,23(2):219-220.
    潘根兴,曹建华,周运超.土壤碳及其在地球表层生态系统碳循环中的意义.第四纪研究.2000,20(4):325-334.
    潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展.2003,18(4):609-618
    潘根兴,周萍,张旭辉,李恋卿,郑聚锋,邱多生,储秋华.不同施肥对水稻土作物碳同化与土壤碳固定的影响-以太湖地区黄泥土肥料长期试验为例.生态学报.2006,26(11):3704-3710.
    潘圣刚,黄胜奇,曹凑贵,蔡明历,翟晶,江洋,张帆.氮肥运筹对稻田田面水氮素动态变化及氮素吸收利用效率影响.农业环境科学学报.2010,29(5):1000-1005.
    彭娜,王开峰.长期有机无机肥配施对稻田土壤养分的影响.湖北农业科学.2009,48(2):310-313.
    乔艳,李双来,胡诚,刘国际,苏章锋,万炎生.长期施肥对黄棕壤性水稻土有机质及全氮的影响.湖北农业科学.2007,46(5):730-731.
    邱卫国,唐浩,王超.上海郊区水稻田氮素渗漏流失特性及控制对策.中国环境科学.2005,25(5):558-562.
    曲均峰,李菊梅,戴建军,徐明岗.长期单施NK肥条件下几种典型土壤磷的演化.生态环境.2008,17(5):2068-2073.
    全国土壤普查办公室.中国土壤.北京,中国农业出版社.1998,pp 1023-1045.
    邵宗臣,赵美芝.土壤中积累态磷活化动力学研究:Ⅰ有机质的影响.土壤学报.2002,39(3):318-325.
    沈善敏.中国土壤肥力.北京,中国农业出版社.1998,pp 452-484.
    孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报.2003,9(4):406-410.
    孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥田土壤酶活性的动态变化特征.生态环境.2008,17(5):2059-2063.
    孙文娟,黄耀,张稳,于永强.农田土壤固碳潜力研究的关键科学问题.地球科学进展.2008,23(9):996-1004.
    唐国勇,苏以荣,肖和艾,黄道友,刘守龙,黄敏,吴金水.湘北红壤丘岗稻田土壤有机碳、养分及微生物生物量空间变异.植物营养与肥料学报.2007,13(1):15-21.
    唐晓红,吕家恪,魏朝富,谢德体,潘根兴,曾希柏.区域稻田土壤碳储量的空间分布特征.中国农学通报.2009,25(14):173-177.
    唐艳,杨林林,叶家颖.银杏园土壤酶活性与土壤肥力的关系研究.广西植物.1999,19(3):277-281.
    唐玉姝,慈恩,颜延梅,魏朝富,杨林章,沈明星.长期定位施肥对太湖地区稻麦轮作土壤酶活性的影响.土壤.2008,40(5):732-737.
    唐玉霞,孟春香,贾树龙,刘巧玲,王惠敏.不同碳源物质对土壤无机氮生物固定的影响.河北农业科学.2004,8(1):6-9.
    通乐嘎,李成芳,杨金花,汪金平,曹凑贵,吴海亚,梅少华,梅金先,翟中兵.免耕稻田田面水磷素动态及其淋溶损失.农业环境科学学报.2010,29(3):527-533.
    王成秋,王树良,杨剑虹,魏朝富,屈明,谢德体.紫色土柑橘园土壤酶活性及其影响因素研究.中国南方果树.1999,28(5):7-10.
    王立刚,邱建军,马永良,王迎春.应用DNDC模型分析施肥与翻耕方式对土壤有 机碳含量的长期影响.中国农业大学学报.2004,9(6):15-19.
    王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究.1999,18(4):349-356.
    王绪奎,张林钱,芮雯奕,黄山,黄爱军,张卫建.近20年江苏省环太湖稻田土壤碳氮及速效磷钾含量的动态特征.江苏农业科学.2007,6:287-292.
    王永和,曹翠玉,史瑞和,蒋仁成,厉志华.石灰性土壤有机-无机肥配施对土壤供磷的影响.南京农业大学学报.1993,16(4):36-42.
    吴建富,王海辉,刘经荣,卢志红,黄立章.长期施用不同肥料稻田土壤养分的剖面分布特征.江西农业大学学报.2001a,23(1):54-56.
    吴建富,张美良,刘经荣,王海辉.不同肥料结构对红壤稻田氮素迁移的影响.植物营养与肥料学报.2001b,7(4):368-373.
    吴乐知,蔡祖聪.基于长期试验资料对中国农田表土有机碳含量变化的估算.生态环境.2007,16(6):1768-1774.
    吴晓晨,李忠佩,张桃林.长期不同施肥措施对红壤水稻土有机碳和养分含量的影响.生态环境.2008,17(5):2019-2023.
    谢坚,郑圣先,廖育林,鲁艳红,向艳文,聂军.缺磷型稻田土壤施磷增产效应及土壤磷素肥力状况的研究.中国农学通报.2009,25(3):147-154.
    谢林花,吕家珑,张一平,刘选卫,刘利花.长期施肥对石灰性土壤磷素肥力的影响Ⅰ.有机质、全磷和速效磷.应用生态学报.2004,15(5):787-789.
    熊俊芬,石孝均,毛知耘.长期定位施肥对紫色土磷素的影响.云南农业大学学报.2000,15(2):99-101.
    徐明岗,梁国庆,张夫道,中国土壤肥力演变.北京,中国农业科技出版社.2006.
    许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响.水土保持学报.2005,19(6):193-196.
    薛冬,姚槐应,何振立,黄昌勇.红壤酶活性与肥力的关系.应用生态学报.2005,14(2):179-183.
    颜慧,钟文辉,李忠佩.蔡祖聪长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响.应用生态学报.2008,19(1):71-75.
    颜明娟,章明清,陈子聪,李娟,林琼,吴启堂,熊德忠.菜园土壤无机氮解吸特性对硝态氮流失潜能的影响.应用生态学报.2007,18(1):94-10.
    杨邦俊,向世群.有机肥对紫色水稻土磷酸酶活性及其磷素转化作用的影响.土壤通报.1990,21(3):108-110.
    杨朝辉,韩晓日,刘岱松,高鸣,隋小慧.包膜复合肥料对盆栽大豆土壤酶活性的影响.安徽农业科学.2007,35(18):5493-5495.
    杨丽娟,李天来,付时丰,须晖.施用有机肥和化肥对菜田土壤酶动态特性的影响.土壤通报.2005,36(2):223-226.
    杨学云,孙本华,古巧珍,李生秀,郝兴顺.长期施肥磷素盈亏及其对土壤磷素状况的影响.西北农业学报.2007,16(5):118-123.
    尹云锋,蔡祖聪.不同施肥措施对潮土有机碳平衡及固碳潜力的影响.土壤.2006,38(6):745-749.
    于群英.土壤磷酸酶活性及其影响因素研究.安徽技术师范学院学报.2001,15(4):5-8.
    袁玲,杨邦俊,郑兰君,刘学成.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报.1997,3(4):300-306.
    张大弟,章家骐,汪稚谷.上海市郊主要的非点源污染及防治对策.上海环境科学.1997,16(3):1-3.
    张风华,贾可,刘建玲,廖文华.土壤磷的动态积累及土壤有效磷的产量效应.华北农学报.2008,23(1):168-172.
    张夫道.有机和无机氮在土壤-水稻系统中平衡的研究Ⅰ.有机和无机氮在土壤-水稻系统中的动态和分布.土壤肥料.1994,4:10-13.
    张刚,王德建,陈效民.稻田化肥减量施用的环境效应.中国生态农业学报.2008,16(2):327-330.
    张红爱,张焕朝,钟萍.太湖地区典型水稻土稻-麦轮作地表径流中磷的变规律.生态科学.2008,27(1):17-23.
    张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点’南京林业大学学报.2004,28(5):6-10.
    张慧敏,章明奎.稻田土壤磷淋失潜力与磷积累的关系.生态与农村环境学报.2008,24(1):59-62.
    张静,王德建,王灿.苏南平原稻田灌排水系统中氮磷平衡状况.土壤学报.2008,45(4):657-662.
    张琪,李恋卿,潘根兴,张旭辉,蒋定安,黄洪光.近20年来宜兴市域水稻土有机碳动态及其驱动因素.第四纪研究.2004,24(2):236-242.
    张焱华,吴敏,何鹏,佘贵连,吴炳孙,韦家少.土壤酶活性与土壤肥力关系的研究进展.安徽农业科学.2007,35(34):11139-11142.
    张永兰,于群英.长期施肥对潮菜地土壤磷素积累和无机磷组分含量的影响.中国农学通报.2008,24(3):243-247.
    张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报.2004,12(1):83-90.
    张志剑,王珂,朱荫湄,王光火,施丹潮.水稻田表水磷素的动态特征及其潜在环境效应的研究.中国水稻科学.2000,14(1):55-57.
    张志剑,朱荫湄,王珂,王光火,董亮,郑洪福.水稻田土-水系统中磷素行为及其环境影响研究.应用生态学报.2001,12(2):229-232.
    章永松,林咸永,倪吾钟.有机肥对土壤磷吸附-解吸的直接影响.植物营养与肥料学报.1996,2(3):200-205.
    赵俊晔,于振文,李延奇,王雪,施氮量对土壤无机氮分布和微生物量氮含量及小麦产量的影响.植物营养与肥料学报.2006,12(4):466-472.
    赵之重.土壤酶与土壤肥力关系的研究.青海大学学报(自然科学版).1998,16(3):24-29.
    周萍,张旭辉,潘根兴.长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机态含量及深度分布的影响.植物营养与肥料学报.2006,12(6):765-771.
    周全来,赵牧秋,鲁彩艳,史奕,陈欣.施磷对稻田土壤及田面水磷浓度影响的模拟.应用生态学报.2006,17(10):1845-1848.
    周卫,刘经荣,张德远.水稻土有机-无机肥料配合施用的效应(之四).江西农业大学学报,1990,12(2):24-31.
    周卫军,王凯荣.不同农业施肥制度对红壤稻田土壤磷肥力的影响.热带亚热带土壤科学.1997,6(4):231-234.
    周卫军,王凯荣,郝金菊,刘鑫.红壤稻田生态系统有机物料循环对土壤有机碳转化的影响.生态学杂.2006,25(2):140-144.
    朱兆良.肥料与农业和环境.大自然探索.1998,17(4):25-28.
    朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系.中国科学院院刊.2003,2:89-93.
    朱兆良.中国土壤氮素研究.土壤学报.2008,45(5):778-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700