利用GIS制图方法对长春市地下水污染环境和易损性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research on Pollution and Vulnerability Assessment of Groundwater Using GIS-Mapping Method in Changchun City, People Republic of China
  • 作者:Hamadoun ; Bokar
  • 论文级别:博士
  • 学科专业名称:环境科学
  • 学位年度:2004
  • 导师:汤洁
  • 学科代码:083001
  • 学位授予单位:吉林大学
  • 答辩委员会主席:邓伟
摘要
长春是吉林省省会,坐落在东北平原中部,人口600万。最近十年地区经济发展迅
    速,这导致了人口的激增、工业的增长以及由此引发的城市供水的不足。同时,水污
    染、固体废弃物和污水排放等环境问题却又逐年增加。城市给水的45%来自地下水,
    饮用水主要来自城市东部和南部的石头口门水库和新立城水库。然而,随着地区建设
    的发展,地下水尤其是深井水也成为城区重要的饮用水源。但是长春市区多数地下水
    研究却还只停留在水利厅和环保局的年度或季度报告水平上。鉴于以上问题,笔者采
    取了资料收集、野外踏查、试验研究等方法(约两个月野外工作和两年的实验室研
    究)在2002-2004年期间对长春的地下水污染进行了研究。野外工作包括对井水、地表
    水的取样测试,污水排放处的总量监测以及GPS地理定位等,笔者采用了GIS及其它
    一些数据处理软件进行了图件的绘制和模型的建立等工作。
     研究发现,工业废水和固体废物填埋场的垃圾渗滤液是长春市地下水污染的主要
    来源,因此废物填埋场周围监测井中的NO3 、总Fe及Mn2+要比其他地方高。城市地表
     -
    水体中BOD5、高锰酸盐指数、NO3 、总Fe和Mn2+也比较高。地表监测资料表明,远
     -
    离城市尤其靠近新立城水库和石头口门水库的地方受到污染的影响较小。从1991-1998
    年监测来看,大部分化学物质尤其位于浅层地下水中的化学物质的平均浓度普遍高于
    饮用水的标准。
     水化学类型的确定是研究地下水污染的有效方法,当某一地区的地下水化学含量
    与环境背景值相差较大时,即可以看作地下水受到了某种程度的污染。笔者主要采用
    Piper三线图的方法来分析地下水的质量,从而将浅层和深层地下水分成四种水化学类
    型:1)HCO3 -Ca2+水和HCO3 -Ca2+, Mg2+水或 HCO3 -Mg2+, Ca2+水; 2) SO4 -Ca2+水和
     - - - 2-
    SO4 -Ca2+, Mg2+水; 3) Cl- -Ca2+水; 4) CO3 - Na+水。因为Piper三线图没有反映任何地理
    
    信息,本研究采用了基于Piper三线图的GIS矢量图模型来研究地下水的水化学类型。
    这些地球化学类型表明,城市绝大部分地区无论浅层还是深层地下水都属重碳酸盐
    水。
     对1991-1998年的双变量统计分析表明,无论在浅层还是在深层地下水中,NO3 与
     -
    大多数离子,尤其Ca2+, Cl- 和 TDS有很强的正相关性。由于相关性分析仅揭示了离子
    对行为的相似性,但是并没有很好地说明离子团行为的相似性,所以笔者采用了要素
    分析的方法辅助解释数据的水文地球化学特性。要素分析法表明,Ca2+, Cl-, NO3 ,
     -
    Mg2+, TH和TDS为“污染要素”,它们在大多数情况下产生的变异作用可以占到总污
    染物作用的30%。分析结果还表明长春市的北部和西部地区的地下水水污染较重。
     基于中国地下水标准的污染指数分布图表明浅层地下水比深层地下水更易于受到
    污染,该区域污染指数范围值为4.25-7.2,1995年有51%的浅层监测井处于较差水质区
    域, 1996年为35%,1997年为24%,1998年竟高达71%,而同比位于该水域的深层监
    测井受污染比率1995年为19%,1996年为22%,1998年为48%。
     笔者运用ArcView GIS空间分析的方法建立了评估长春市地下水污染脆弱度的两
    个模型,即DRASTIC模型和GOD模型。这两个模型都是进行运算的。DRASTIC模型
    表明该市绝大部分地区都处于中等脆弱带,GOD模型显示90%地区都位于中等脆弱带
    内。说明这两个模型有很强的正相关性。
     研究还发现,人为过程尤其所排放污染物质的贡献对地下水质量的影响是非常大
    的。
The Changchun City, capital of Jilin Province, is situated in the central part of
    Northeast Plain of China. The population is about 6×106. The City has witnessed
    a rapid urbanization and economic growth over the last ten years. This has lead to
    rapid increase in population, industries and consequently a deficit in water supply.
    In addition many environmental problems such as water pollution, solid wastes
    and sewage effluents management have been increased. Groundwater assures
    about 45 % of total water supply of the city. Drinking was mostly served by
    surface water from Shitoukoumen and Xinlicheng reservoirs located in the east
    and south of the city. However, with the development of urban construction the
    groundwater especially from deep boreholes is also used for drinking purpose in
    suburban areas. Most of groundwater pollutions researches done in Changchun
    City remain the annual or sporadic reports provided by the Water Resources
    offices or Environmental agencies. In light of the above-mentioned problems,
    this research on groundwater pollution was conducted in Changchun City from
    2002-2004. The main methodologies used to carry out this research include desk
    study, field works, laboratory works (about 2 months fieldwork, and 2 years
    laboratory works) .The field works include wells water, surface water and waste
    dumped sites monitoring inventory and geographical locations recording using
    GPS. The GIS and statistical software were used for mapping and modeling
    
    
    works.
     From the research, it was clear that, industrial effluents and leachate from
    solid wastes disposal sites were the major sources of groundwater pollution in
    Changchun City therefore NO3 TFe and Mn2+ ions were higher in groundwater
     -
     ,
    monitoring wells near waste dumped sites. BOD, Permanganate Index, NO3 TFe -
     ,
    and Mn2+ were higher in surface water bodies inside the City. The surface
    monitoring sites, far from the city especially Shitoukoumen and Xinlicheng
    reservoirs were less impacted by the pollution.
     The median concentrations values of most of chemical species monitored
    from 1991 to 1998 especially for the shallow aquifer data were higher than the
    standard for drinking water.
     The determination of hydrochemical facies type is a tool to control
    groundwater from pollution any deviation from background water facies can be
    related to pollution. The most used tool to determine water quality is by plotting
    on Piper diagram, which determine 4 classes of water facies for both shallow and
    deep groundwater: (1) HCO3 -Ca2+ and HCO3 -Ca2+, Mg2+ or HCO3 -Mg2+, Ca2+;
     - - -
    (2) SO4 -Ca2+and SO4 -Ca2+, Mg2+; (3) Cl--Ca2+; and (4) CO3 - Na+. Because of
     2- 2- 2-
    Piper diagram does not have any geographical references, a GIS mapping model
    based on the piper diagram construction references were used here for mapping
    the groundwater chemical type. The maps of geochemical facies showed that
    HCO3 water type occupied the largest area of the city for both shallow and deep
     -
    groundwater data.
     Statistical bivariate analysis showed strong positive coefficient of correlation
    for NO3 with most of the major ions specially Ca2+, Cl-, for both shallow and
     -
    deep groundwater from 1991 to 1998. Since correlation analysis reveals
    similarities in the behavior of pairs of ions, and does not conveniently identify
    groups of ions that behave similarly, factor analysis is carried out to help in
    hydrogeochemical interpretation of the data. The Factor analysis showed that
     141
    
    
    Ca2+, Cl-, NO3 , Mg2+, TH and TDS were frequently loaded in Factor I which
     -
    represents in most of the cases more than 30% of total variances and termed as
    “Pollution Factor” .The results showed that the
引文
Abraham J 1998 Spatial distribution of major and trace elements in shallow reservoir
    sediments: an example from Lake Waco, Texas Environmental Geology 36 (3–4)
    December 1998.
    Abu-Jaber N.S, El Aloosy A. S, Jawad Ali Determination of aquifer susceptibility to
    pollution using statistical analysis Environmental Geology 31 (1/2) May 1997.
    Afsin 1997 Hydrochemical evolution and water quality along the groundwater flow path
    in the Sand?kl? plain, Afyon, Turkey Environmental Geology 31 (3/4) June 1997.
    Aller, L (1987), "DRASTIC": A Standardized system for Evaluating Groundwater
    Pollution Potential Using Hydrogeological Settings EPA 600/2-87-035 U.S.
    Environmental Protection Agency, Ada, Oklahoma.
    Al-Muzaini S, Muslmani K (1994) Study of the environmental pollution from landfill
    site receiving wastes generated during the Iraqi occupation. Final Report VR008C,
    Kuwait Inst Sci Res, Safat, Kuwait
    Alpha A.,Traore A.Z,Mariko A.,Banton O,Villeneuve,JP,Lahcen A.S 1991
    Hydrogeologie et contamination de la nappe preatique alimentant la ville de Bamako
    (Mali).CRDI Quebec 104p.
    Bachmat, Y., and Collin, M (1987), Mapping to assess groundwater vulnerability to
    pollution. In: W. van Duijvenbooden and H.G. van Waegeningh (eds.), Vulnerability of
    soils and groundwater pollutants. TNO Committee on Hydrological Research, The
    Hague, Netherlands. Proceedings and Information, No.38, p. 297-308.
    Backman B., Bodi? D. , Lahermo P. , Rapant S. ,Tarvainen T Application of a
    groundwater contamination index in Finland and Slovakia Environmental Geology 36
    (1–2) November 1998
    Bokar H, Tang J. Nianfeng L 2003 Hydrochemistry and mapping the groundwater
    contamination index in Changchun City China Journal of Environmental Hydrology
    Volume 11 Paper 15 December 2003
    Carter, A.D., Palmer, R.C., Monkhouse, R.A.: 1987: Mapping the vulnerability of
    groundwater to pollution from agricultural practice particularly in respect to nitrate. In:
    W. van Duijvenbooden and H.G. van Waegeningh edition. Proceedings and Information,
    No.38
     133
    
    
    REFERENCES
    Chen, H., Druliner, A.D. (1988), Agricultural chemical contamination of groundwater in
    six areas of the high plains aquifer, Nebraska. National Water summary- hydrologic
    events and groundwater quality Ruston Virginia: USA Geological Survey
    Civita and De Maio, 1998: Mapping groundwater vulnerability in areas impacted by
    flash Food disaster 13th ESRI European user conference
    Chebotarev, I.I. 1955. Metamorphism of natural waters in the crust of weathering
    Geochim. osmochim. cta.8:22-48, 137-170, 198-212.
    CHENG Jian Long, WANG Bian, 1992: Report on groundwater quality and dynamic in
    Changchun City after a ten years monitoring program (In Chinese) Jilin press, 88 p.
    Crockett, J.K. 1995. Idaho Statewide Ground Water Quality Monitoring Program –
    Summary of Results, 1991 – 1993 Idaho Department of Water Resources.Water
    Information Bulletin No. 50 Part 2. 67 pp.
    Davies SN de Wiest (1966) Hydrogeology. Wiley, New York
    Drever, J. I 1988 The Geochemistry of Natural Waters. Prentice hall, Inc. 437p
    Ducci, D (1999), GIS techniques for mapping groundwater contamination risk. Natural
    Hazards, 20, pp. 279-294.
    Ekpo B.O Ibok U.J Umoh N.D:2001 Geochemical evaluation of suitability of sites for
    hazardous waste disposal: a case study of recent and old waste-disposal sites in Calabar
    Municipality, SE Nigeria Environmental Geology 39 (11) October 2000
    Eldon D.E,Bradley F.S 2004 Environmental Science .A study of Interrelationship 9 th
    Edition Mc Graw Hill –Qinghua University 477p
    Eraifej N., Abu-Jaber N.:1999 Geochemistry and pollution of shallow aquifers in the
    Mafraq area, North Jordan Environmental Geology 37 (1–2) January 1999
    ESRI (1996), Using the ArcView Spatial Analyst, Environmental Systems
    Research Institute, Inc, New York
    ESRI, 1998: Getting to Know ArcView GIS (for Version 3.1), ESRI Press 1998, 660 p.
     134
    
    
    REFERENCES
    Fengman Fang ,Qichao Wang,Ruhai Liu,Zhuangwei Ma,Qingju Hao: Atmospheric
    particulate mercury in Changchun City,China Atmospheric Environment 35 (2001)
    4265–4272
    Foster, S.S.D., Hirata, R. (1988), Groundwater pollution risk assessment: a methodology
    using available data. World Health Organization; Pan American
    Center for Sanitary Engineering and Environmental Sciences, Lima, Peru
    Freeze, A.R., Cherry, J.A (1979), Groundwater (1979) Prentice Hall, New Jersey
    Gilbert, R.O., 1987. Statistical methods for environmental pollution monitoring.Van
    Nostrand-Reinhold, New York
    Grande G.A,Borrego J.Morale G.A 2000:Study of metal heavy pollution in the Tinto-
    Odiel estuary in southwestern Spain Using factor analysis Environmental Geology 39
    (10)
    Golojuch, C. (1994), Designing an interface for a coastal water quality prediction
    system. Proceedings of Urban and Regional Information Association (URISA),
    Washington D.C., pp. 582-587.
    Grischek,T ,Nestler W 1996 :Urban groundwater in Dresden Germany Hydrogeology
    journal V4,No1 ,1996
    Harman, H.H. (1976), Modern Factor Analysis, Third Edition, Chicago: University of
    Chicago Press.
    Heikkinen P.M, Korkka-Niemi K., Lahti M. ,Salonen V.P. 2002 Groundwater and
    surface water contamination in the area of the Hitura nickel mine, Western Finland
    Environmental Geology (2002) 42:313–329
    Hem, J.D., 1992, Study and interpretation of chemical characteristics of natural water
    (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
    Huanxin W Xunhong C 2000 Impact of polluted canal water on adjacent soil and
    groundwater systems.
    Hussain T, Hoda A, Khan R (1989) Impact of sanitary landfill on groundwater quality.
    Water Air Soil Pollut 45: 191–206
    Ka?arog?lu F., Günay G. 1997 Groundwater nitrate pollution in an alluvium aquifer,
    Esk?˙s?eh?˙r urban area and its vicinity, Turkey Environmental Geology 31 (3/4) June
    1997
    Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis
     135
    
    
    REFERENCES
    Psychometrika, 23, 187-200
    Kanchanawong S, Koottatep S (1993) Monitoring and evaluation of shallow well water
    quality near a waste-disposal site. Environ Intern 19: 579–587
    Kayabal? K. Yüksel F.A. Yeken T: Integrated use of hydrochemistry and resistivity
    methods in groundwater contamination caused by a recently closed solid waste site.
    Environmental Geology 36 (3–4) December 1998
    Kendall, M.G. 1975 Rank Correlation Methods. Charles Griffin, London.
    Jayakumar R., Siraz L 1997 Factor analysis in hydrogeochemistry of coastal
    aquifers – a preliminary study Environmental Geology 31 (3/4) June 1997
    JOHNSON and WICHERN (1992): Applied Multivariate Statistical Analysis (3rd
    edition) Prentice Hall, Englewood Cliffs, NJ.
    LEE & WONG, 2001: Statistical Analysis with ArcView GIS, John Wiley and Sons,
    New York, USA, 164-174.
    LIN Nianfeng, TANG Jie, and FENG-Xiang Huan, 2001: Eco-environmental problems
    and effective utilization of water resources in the Kashi Plain, western Terim Basin,
    China. Springer Hydrogeology Journal volume 9, number 2 April 12, 2001, 202 – 207.
    LIN Nianfeng, TANG Jie and H.M.ISMAEL, 2000: Study on environmental etiology of
    high incidence areas of liver cancer in China World Journal of Gastroenterogy volume 6
    number 4 August 15 2000, 572-576.
    Lin Niangfen 1991 Medical Environmental geochemistry Jilin Science Press (in Chinese)
    Lobo-Ferreira (2000) - Consolidated Scientific Report of the Project Development of
    Methodologies for the Assessment and Management of Groundwater Resources and
    Risks in Coastal Zones (EU - PRC Coastal Groundwater) - CD-ROM presented to DG
    Research. Contract number: IC 18CT960048, May 2000.
    Lobo-Ferreira (2000) GIS and mathematical modeling for the assessment of
    groundwater vulnerability to pollution: Application to two Chinese case-study
    International Conference "Ecosystem Service and Sustainable Watershed Management
    Towards Flood Prevention, Pollution Control, and Socio-Economic
    Development in North China" August 23 - 25, 2000, Beijing, PR China
    Loizidou M, Kapetanios EG (1993) Effect of leachate from landfill on underground
    water quality. Sci Total Environ 128 : 69–81
     136
    
    
    REFERENCES
    Maguire, David J., Michael Goodchild, and David W. Rhind, 1991. Geographic
    Information Systems: Principles and applications. Longman/Wiley, 0-470-21789-
    8 “The Big Book second edition.”
    Mato, R.R.A.M., Janssen, F.J.J.G., Katima, J.H.Y., Cramers, C.A.M.G., Mtalo,
    E.G., Ngereja, Z., Chonya, I (2001), Coupling of GIS with the DRASTIC
    model to assess groundwater vulnerability to pollution for the city of Dar es
    Salaam, Tanzania. Proceedings of the 5th international conference on diffuse
    pollution and watershed management, Milwaukee, USA. CD-ROM, Session 11.
    Napolitano, P. (1995), GIS for aquifer vulnerability assessment in the Piana
    Campana, Southern Italy, using the DRASTIC and SINTACS methods, TC, Enschede,
    The Netherlands
    Navulur, K., Engel, B.A. (1997), Predicting spatial distribution of vulnerability of
    Indian State aquifer system to nitrate leaching using GIS. Third International
    Conference on Integrating GIS and Environmental Modelling, Santa Fe, USA.
    Ngereja, Z (2001), GIS application for monitoring groundwater pollution in Dar es
    Salaam City: A case study of Dar es Salaam Metropolitan Area.
    Undergraduate dissertation, Department of land Surveying, University College of lands
    & Architectural Studies, Dar es Salaam.
    NRC 1993: Groundwater vulnerability assessment; contamination potential under
    conditions of uncertainty National Academy Press (Washington DC-USA) 198pp.
    Olayinka A.I., Abimbola A.F, Isibor R.A. , Rafiu A.R. 1999 A geoelectrical-
    hydrogeochemical investigation of shallow groundwater occurrence in Ibadan,
    southwestern Nigeria Journal of Environmental Geology Springer 37 (1–2) 1999.
    Ophori, D.U., and J. Tóth. 1989. Patterns of ground-water chemistry, Ross Creek basin,
    Alberta, Canada Ground Water 27:20–26.
    PIPER A.M, 1944: A graphic procedure in the geochemical interpretation of water-
    analyses Trans. Am .Geophys .Union Volume 25 , 914-923.
    Rupert, M.G., 1997, Nitrate (NO2+NO3-N) in ground water of the upper Snake River
    Basin, Idaho and western Wyoming, 1991-95: U.S. Geological Survey Water-Resources
    Investigations Report 97-4174, 47 p.
    Richert, S.E., Young, S.E., Johson, C. (1992), SEEPAGE: a GIS model for
    groundwater pollution potential. Paper no. 922592, ASAE, St. Joseph, Michigan.
    Runquist, D.C., Peters, A.J., Rodekohr, D.A., Ehrman, R.L., Murray, G. (1991),
    Statewide groundwater vulnerability assessment in Nebraska using the
    DRASTIC/GIS Model. Geocarto International, Vol. 6, No. 2, pp., 51-57.
     137
    
    
    REFERENCES
    Sawyer C.N, McCarty P.L, Parkin G.F 1994 Chemistry for Environmental Engineering
    McGraw-Hill (fourth edition) 658pp
    Sen, P.K., 1968 On a class of aligned rank order tests in two-way layouts. Annals of
    Mathematical Statistics 39, 1115-1124.
    SPSS 2001 : SPSS User manual
    STARTPOINT 2002 : CHEMISTAT 4.1 User manual
    Statsoft 2001 : Statistica User manual
    Srinivasa Rao Y. T. V. K. Reddy P. T. Nayudu 1997 Groundwater quality in the Niva
    River basin, Chittoor district, Andhra Pradesh India Environmental Geology Springer
    32 (1) July 1997.
    Subrahmanyam K., Yadaiah P. Assessment of the impact of industrial effluents on water
    quality in Patancheru and environs, Medak district, Andhra Pradesh, India
    Hydrogeology Journal (2001) 9:297–312
    Tremblay, T.A. (1994), GIS base data for water management on the Rio Grande delta
    plain. Proceedings of GIS/LIS, Association of American Geographers,
    Washington D.C., pp. 778-786.
    Umar R, M. Sami Ahmad 2000 Groundwater quality in parts of Central Ganga Basin,
    India Environmental Geology V 39 (6)
    Usunoff, E.J., and A. Guzman-Guzman 1989. Multivariate analysis in hydrochemistry:
    an example of the use of factor and correspondence analyses. Ground Water 27(1): 10
    27-34.
    Van Stempvoort, D., Ewert, L., and L. Wassenaar, 1992. AVI: A Method for
    Groundwater Protection Mapping in the Prairie Provinces of Canada Prairie Provinces
    Water Board, Regina, Saskatchewan.
    Wang X. J., Chen J.S. Trace element contents and correlation in surface soils in
    China’s eastern alluvial plains Environmental Geology 36 (3–4) December 1998
    Ward MH, Mark SD, Cantor KP 1996: Drinking water nitrate and the risk of non-
    Hodgkin lymphoma Epidemiology 1996; 7:465–71.
     138
    
    
    REFERENCES
    Weilguni H ,Humpesch,H 1999 Long-term trends of physical, chemical and biological
    variables in the River Danube 1957–1995: A statistical approach Aquat.sci.61 (1999)
    234–259
    Yang, Y., Lerner, D.N., Copperthwaite, N.H., Barrett, M.H. (1999), assessing the impact
    of Nottingham on groundwater using GIS In Chilton, J (editor), Groundwater in the
    urban environment- Selected city profiles, Balkema, Rotterdam.
    Yu, Y.S. and S. Zou, 1993 Research trends of principal components to trends of water-
    quality constituents Water Resources Bulletin 29(5): 797-806.
    ZHANG Lihua, 1993: A preliminary discussion of the present situation on pollution of
    groundwater in Changchun City and its tendency Journal of Jilin Geology (in Chinese)
    volume 12 number 4 december 1993, 75-81
    Zhao Yongsheng : The Landfill problems and countermeasures in China – A case study
    in Changchun City
    ZHAO Yuqi, 1990: Groundwater Resources management in Changchun City (in
    Chinese) Jilin Science Press, 112p.
    ZHU Cai-Xia, 2001: A study on groundwater developmental environment of Changchun
    City Journal of Jilin Geology (in Chinese) volume 20 number 1 March 2001,53-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700