部分有机化合物空气/颗粒物分配系数与正辛醇/空气分配系数的预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机化合物的空气/颗粒物分配系数(K_p)能表征有机化合物在大气中的分配和环境归趋,K_p的大小受到其正辛醇/空气分配系数(K_(OA))的显著影响。K_(OA)本身也是非常重要的理化性质参数,可以评价有机化合物在空气和多种环境有机相之间的分配,是进行生态风险评价的基础数据。实验测定K_p和K_(OA)会消耗大量的人力物力,受到标准样品缺乏的限制并滞后于有机化合物的合成和使用,因此有必要发展这两种参数的理论预测模型。
     首先以18种正构烷烃、21种多氯联苯(PCBs)、16种二噁英(PCDD/Fs)和13种多环芳烃(PAHs)为研究对象,应用半经验分子轨道PM3算法计算了这些化合物的16种理论分子描述符,分别采用偏最小二乘法(PLS)和支持向量机(SVM)进行回归分析,建立K_p的定量结构-活性关系(QSAR)模型,并以PCDD/Fs为例,建立K_p的温度依附性模型。
     所建立的模型具有较好的准确性和稳健性,误差随机分布,可用于应用域内化合物的logK_p值的预测。分子间色散力、电荷转移作用和分子位阻效应是影响化合物在空气相和颗粒物相间分配的主导因素,并且分子位阻对化合物在颗粒相中的分配起阻碍作用。PCDD/Fs的温度依附模型结果表明环境温度确实是影响有机化合物在两相之间分配的重要因素,温度在模型中以T~2的形式表现出来。
     PLS和SVM两种方法的模型结果对比表明,SVM方法能够更充分地提取化合物分子结构参数与其K_p值之间的信息,使得模型拟合和预测效果提高,也表明影响化合物分子在空气和颗粒物两相间分配的分子结构因素与K_p之间可能存在某些非线性关系。
     应用OMNISOL SM5.0模型计算246个有机化合物在正辛醇溶剂中的溶解自由能,并根据热力学平衡方程计算这些化合物的logK_(OA)值。
     计算值与实验值之间存在较好的相关性。受到计算软件发展的限制,能量计算本身存在一定误差,影响K_(OA)的计算准确性,但是在可以接受的计算精确度的前提下这种不准确性可以通过相应的线性关系进行校正。因此可以采用该方法计算有机化合物的K_(OA)以及更多的平衡分配系数。
The partition coefficient between particulate and gas phases (K_p) for organic pollutants areof great importance to characterize the behavior of organic pollutants in atmosphere, and thevalue of K_p is notably correlated to K_(OA), octanol/gas partition coefficient. K_(OA) is a veryimportant physicochemical parameter for describing the partition of organic chemicalsbetween air and environmental organic phases and is basic data needed by ecological riskassessment. Experimental determination of both K_p and K_(OA) are time- consuming, expensiveand limited by standard sample, which lag behind the synthesis and use of organic chemicals.It is thus of theoretical and practical importance to develop predicting models for K_p and K_(OA).
     Partial least squares (PLS) and support vector mechanism (SVM) regression with 16theoretical molecular structural descriptors calculated by PM3 arithmetic were used todevelop quantitative structure-activity relationship (QSAR) model for K_p of 18 aliphatichydrocarbons, 21 polycyclic aromatic hydrocarbons (PAHs), 16 polychlorinated biphenyls(PCBs) and 13 polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). The temperaturedependence model of PCDD/Fs was also developed to reveal the effect of environmentaltemperature on the partition process.
     The obtained models have good predictive ability, robustness, and nonsystematic residuals,which can be used for estimating K_p of chemicals within applicability domain. Intermoleculardispersion interactions, charge-transfer interactions and hindrance effects of molecular sizedetermine the values of K_p, with the hindrance effects playing a negative role in the partitionto particulate phase. The result of temperature dependence model of PCDD/Fs indicates thatenvironmental temperature is an important factor controlling the partition of organicchemicals between gas and particle phases, and included in the form of square in the model.
     The comparison of models developed by PLS and SVM indicates that SVM methord canextract the information of relationship between molecular structural parameters and K_p moreadequately than PLS, resulted in the model with better goofness-of-fitting and predictivepower. This phenomenon reveals that there may be some nonlinear relationship betweenmolecular structures which affect the partition and K_p.
     The values of logK_(OA) of 246 organic chemicals were obtained by thermodynamicequilibrium equation basing solvation free energy calculated using OMNISOL SM5.0.
     Though the calculated logK_(OA) values are not very exact because of the shortcoming ofsoftware, there is good correlationship between calculated and observed values of logK_(OA). Sowe can adjust the calculated values by this correlationship to obtain more accurate logK_(OA)values.
引文
[1] Mandalakis M, Tsapakis M, Tsoga Aet al. Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDDFs in the atmosphere of Athens (Greece). Atmospheric Environment, 2002, 36 (25): 4023-4035.
    [2] Heike K, McLachlan M S. Gas/partical partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere, 1999, 38 (14): 3411-3421.
    [3] Ligocki M P, Pankow, J F. Measurements of the gas/particle distributions of atmospheric organic compounds. Environmental Science and Technology, 1989, 23 (1): 75-83.
    [4] Park J-S, Kim J-G. Regional measurements of PCDD/PCDF concentrations in Korean atmosphere and comparison with gas-particle partitioning models. Chemosphere, 2002, 49 (7): 755-764.
    [5] Jang M, Kamens R M. A predictive model for adsorptive gas partitioning of SOCs on free atmospheric inorganic dust particles. Environmental Science and Technology, 1999, 33 (11): 1825-1831.
    [6] Lee R G M, Jones K C. Gas-particle partitioning of atmospheric PCDD/Fs: Measurements and observations on modeling. Environmental Science and Technology, 1999, 33 (20): 3596-3604.
    [7] Kaiser K L E. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology. SAR and QSAR in Environmental Research, 2007, 18 (1-2): 3-20.
    [8] 郝明途,林天佳,刘焱.大气细粒子研究进展.环境研究与监测,2006,19(2):6-10.
    [9] Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419 (6903): 215-223.
    [10] 袁杨森.北京市大气颗粒物中有机污染源的生物标志物示踪:(硕士学位论文).北京:中国地质大学,2007.
    [11] 刘永春,贺泓.大气颗粒物化学组成分析.化学进展,2007,19(10):1620-1631.
    [12] Toon O B. How pollution suppresses rain. Science, 2000, 287 (10): 1763-1765.
    [13] 王东利,张小鸣,刘玉敏.持久性有机污染物的环境行为及对人体健康的危害.国外医学卫生学分册,2003,30(4):169-173.
    [14] Gotz C W, Scheringer M, MacLeod Met al. Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals:model development and comarison. Environmental Science and Technology. 2007, 41(40): 1272-1278.
    [15] Pankow J F, Isabelle L M, Buchholz D A et al. Gas/particle partitioning of polycyclic aromatic hydrocarbons and alkanes to environmental tobacco smoke. Environmental Science and Technology, 1994, 28(2): 363-365.
    [16] Junge C. Basic considerations about trace constituents in the atmosphere as related to the fate of global pollutants. In: Suffet, I. H. (Ed.),. In Fate of Pollutants in the Air and Water. New York: Wiley Pr., 1977.
    [17] Yamasaki H, Kuwata K, Miyamoto H. Effects of temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environmental Science and Technology, 1982, 16 (4): 189-194.
    [18] Pankow J F. Review and comparative analysis of the theories on partitioningbetween the gas and aerosol particulate phases in the atmosphere. Atmospheric Environment, 1987, 22 (11): 2275-2283.
    [19]Bidleman T E. Atmospheric processes. Environmental Science and Technology, 1988,22(4): 361-367.
    [20] Pankow J F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmospheric Environment, 1994,28 (2): 185-188.
    [21] Goss K U, Schwarzenbach R P. Gas/Particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols. Environmental Science and Technology, 1997, 31(11): 3086-3092.
    [22]Dachs J, Eisenreich S J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environmental Science and Technology, 2000,34(17): 3690-3697.
    [23]Finizio A, Mackay D, Bidleman T et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment. 1997, 31(15): 2289-2296.
    [24]Harner T, Bidleman T F. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science and Technology, 1998, 32 (10): 1494-1502.
    [25]Xiao H, Wania F. Is vapor pressure or the octanol-air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmospheric Environment, 2003, 37 (20): 867-2878.
    [26]Tunkel J, Mayo K, Austin C et al. Practical considerations on the use of predictive models for regulatory purposes. Environmental Science and Technology, 2005, 39 (7): 2188-2199.
    [27]Venkataraman C, Thomas S, Kulkarni P. Size distributions of polycyclic aromatic hydrocarbons-gas/particle partitioning to urban aerosols. Journal of Aerosol Science, 1999,30 (6): 759-770.
    [28] Offenberg J H, Baker J E. The influence of aerosol size and organic carbon content on gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Atmospheric Environment, 2002, 36(7): 1205-1220
    [29]Kaupp H, McLachlan M S. Gas/particle pardoning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere, 1999,38(14): 3411-3421.
    [30] Sofuoglu A, Odabasi M, Tasdemir Y et al. Temperature dependence of gas-phase polycyclic aromatic hydrocarbon and organochlorine pesticide concentrations in Chicago air. Atmospheric Environment, 2001, 35 (36): 6503-6510.
    [31] Kim K-S, Masunaga S. Behavior and source characteristic of PCBS in urban ambient air of Yokohama, Japan. Environmental Pollution, 2005,138 (2): 290-298.
    [32] Tsapakis M, Stephanou E G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environmental Pollution, 2005,133 (1): 147-156.
    [33]Goss K-U. Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. Environmental Science and Technology, 1992,26 (11): 2287-2294.
    [34]Ruiz J, Bilbao F, Murillo M B. Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity. Environmental Science and Technology, 1998, 32 (8): 1079-1084.
    
    [35]Goss K-U. Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals. Environmental Science and Technology, 1993,27(10): 2127-2132.
    [36] Goss K-U, Schwarzenbach R P. Quantification of the effect of humidity on the gas/mineral oxide and gas/salt adsorption of Organic compounds. Environmental Science and Technology, 1999, 33 (22): 4073-4078.
    [37] Goss K-U. Adsorption of organic vapors on polar mineral surfaces and on a bulk water surface: development of an empirical predictive model. Environmental Science and Technology, 1994, 28(4): 640-645.
    [38] Dorris G M, Gray D G J. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. Journal of Colloid and Interface Science, 1980, 77 (2): 353-362.
    [39] Goss K-U. Considerations about the adsorption of organic molecules from the gas phase to surfaces: implications for inverse gas chromatography and the Prediction of Adsorption Coefficients. Joumal of Colloid and Interface Science, 1997, 190(1): 241-249.
    [40] Goss K-U. Conceptual model for the adsorption of organic compounds from the gas phase to liquid and solid surfaces. Environmental Science and Technology, 1997, 31(12): 3600-3605.
    [41] 孙聪,冯流.一种估算有机物空气/颗粒物分配系数的方法.科学通报,2005,50(10):961-963.
    [42] Harner T, Mackay D. Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs and DDT. Environmental Science and Technology, 1995, 29 (6): 1599-1606.
    [43] Harner T, Bidleman T F, Jantunen L M Met al. Soil-air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry, 2001, 20. (7): 1612-1621.
    [44] Falconer R L, Harner T. Comparison of the octanol-air partition coeffient and liquid-phase vapor pressure as descriptors for particle/gas partitioning using laboratory and field data for PCBs and PCNs. Atmospheric Environment, 2000, 34 (23): 4043-4046.
    [45] Platts J A, Abraham M H. Partition of volatile organic compounds from air and from water into plant cuticular matrix: An LFER analysis. Environmental Science and Technology, 2000, 34 (2): 318-323.
    [46] Opperhuizen A, Whitmore P M, Cass G R et al. Thermodynamics of fish/water and octan-l-ol partitioning of some chlorinated benzenes. Environmental Science and Technology, 1988, 22 (3): 286-292.
    [47] Mackay D, Wania F. Transport of contaminants to the Arctic: partitioning, processes and models. The Science of the Total Environment, 1995, 160/161(1): 25-38.
    [48] Halsall C J, Sweetman A J, Barrie L Aet al. Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmospheric Environment, 2001, 35 (2): 255-267.
    [49] 余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题.环境保护,2001(4):37-39.
    [50] Wania F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environmental Science and Technology, 2003, 37(7): 1344-1351.
    [51] Kelly B C, Ikonomou M G, Blair J D et al. Food Web-Specific Biomagnification of Persistent Organic Pollutants. Science, 2007, 317 (5835): 236-239.
    [52] Harner T, Bidleman T F. Measurement of octanol-air partition coefficients for polychlorinated biphenyls. Journal of Chemical and Engineering Data, 1996, 41 (4): 895-899.
    [53] Harner T, Bidleman T F. Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. Journal of Chemical and Engineering Data, 1998, 43(1): 40-46.
    [54]Harner T, Green N J L, Jones K. Measurement of octanol-air partition coefficients for PCDD/Fs: a tool in assessing air-soil equilibrium status. Environmental Science and Technology, 2000, 34 (2): 3109-3114.
    [55]Hamer T, Shoeib M. Measurements of octanol-air partition coefficients (K_(oa)) for polybrominated diphenyl ethers (PBDEs): predicting partitioning in the environment. Journal of Chemical and Engineering Data, 2002,47 (2): 282-232.
    [56] Shoeib M, Harner T. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides. Environmental Toxicology and Chemistry, 2002, 21 (5): 984-990.
    [57]Komp P, Mclachlan M S. Octanol/air partitioning of polychlorinated biphenyls. Environmental Toxicology and Chemistry, 1997,16 (12): 2433-2437.
    [58] Treves K, Shragina L, Rudich Y. Measurement of octanol-air partition coefficients using solid-phase microextraction (SPME)-application to hydroxy alkyl nitrates. Atmospheric Environment, 2001, 35 (33): 5843-5854.
    [59] Abraham H M, Le J, Acree W E et al. The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere, 2001,44 (4): 855-863.
    [60] Dallas A J. Fundamental solvatochromic and thermodynamic studies of complex chromatographic media: (Doctoral Dissertation). University of Minnesota, 1995.
    [61]Tse G, Sandier S I. Determination of infinite dilution activity coefficients and 1-octanol/water partition coefficients of volatile organic pollutants. Journal of Chemical and Engineering Data, 1994, 39 (2): 354-357.
    [62] Gruber D, Langenheim D, Gmehling J et al. Measurement of activity coefficients at infinite dilution using gas-liquid chromatography. 6. Results for systems exhibiting gas-liquid interface adsorption with 1-octanol. Journal of Chemical and Engineering Data, 1997,42 (5): 882-885.
    [63] Zhang X, Schramm K-W, Henning T A. A method to estimate the octanol-air partition coefficient of semivolatile organic compounds. Analytical Chemistry, 1999,71 (17): 3834-3838.
    [64] Su Y S, Lei, Y D, Daly G L et al. Determination of octanol-air partition coefficient (K_(oa)) values for chlorobenzenes and polychlorinated naphthalenes from gas chromatographic retention times. Journal of Chemical and Engineering Data, 2002,47 (3): 449-455.
    [65] Wania F, Lei G L, Harner T. Estimating octanol-air partition coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times. Analytical Chemistry, 2002, 74 (14): 3476-3483.
    [66] Lei D Y, Wania F, Masthers D et al. Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols. Journal of Chemical and Engineering Data, 2004,49 (4): 1013-1022.
    [67]Meylan W M, Howard P H. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry's constants. Chemosphere, 2005, 61 (5): 640-644.
    [68] Chen J W, Xue X Y, Schramm K-W et al. Quantitative structure-property relationships for octanol-air partition coefficients of polychlorinated biphenyls. Chemosphere, 2002,48 (5): 535-544.
    [69]Katritzky A R, Wang Y L, Sild S et al. QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partiion coefficients. Journal of Chemical Information and Computer Sciences, 1998, 38(4): 720-725.
    [70] 张丽.典型POPs的辛醇/空气分配系数的碎片常数模型研究:(硕士学位论文).大连:大连理工大学,2004.
    [71] Li X H, Chen J W, Zhang L et al. The fragment constant method for predicting octanol-air partition coefficients of persistent organic pollutants at different temperatures. Journal of Physical and Chemical Reference Data, 2006, 35 (3): 1365-1384.
    [72] Tunkel J, Mayo K, Austin C et al. Practical considerations on the use of predictive models for regulatory purposes. Environmental Science and Technology, 2005, 39 (7): 2188-2199.
    [73]Chen J W, Quan X, Zhao Y Z et al. Quantitative structure-property relationships for octanol-air partition coefficients of PCDD/Fs. Bulletin of Environmental Contamination and Toxicology, 2001, 66 (6): 755-761.
    [74] Chen J, Xue X Y, Quan X et al. Quantitative structure-property relationships for octanol-air partition coefficients of polychlorinated biphenyls. Chemosphere, 2002, 48 (5): 535-544.
    [75] Chen J W, Harner T, Yang P et al. Quantitative predictivemodels for octanol-air partition coefficients of polybrominated diphenyl ethers at different temperatures. Chemosphere, 2003, 51 (7): 577-584.
    [76] Chen J W, Harner T, Ding G H et al. Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants. Environmental Toxicology and Chemistry, 2004,23 (10): 2309-2317.
    [77] Staikova M, Wania F, Donaldson D J. Molecular polarizability as a single-parameter predictor of vapour pressures and octanol-air partitioning coefficients of non-polar compounds: a priori approach and results. Atmospheric Environment, 2004, 38 (2): 213-225.
    [78] Zhao H X, Zhang Q, Chen J P et al. Prediction of octanol-air partition coefficients of semivolatile organic compounds based on molecular connectivity index. Chemosphere, 2005, 59 (8): 1421-1426.
    [79]Puzyn T, Falandysz J. Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners. Atmospheric Environment, 2005, 39 (8): 1439-1446.
    [80] Duarte-Davidson R, Sewart A, Alcock R E et al. Exploring the balance between sources, deposition, and the environmental burden of PCDD/Fs in the U. K. terrestrial environment: An aid to identifying uncertainties and research needs. Environmental Science and Technology, 1997,31 (1): 1-11.
    [81]Hippelein M, Mclachlan M S. Soil/air partitioning of semivolatile organic compound. 1. Method development and influence of physical-chemical properties. Environmental Science and Technology, 1998, 32(2): 310-316.
    [82] Cousins I T, McLachlan M S, Jones K C. Lack of an aging effect on the soil/air partitioning of PCBs. Environmental Science and Technology, 1998, 32 (18): 2734-2740.
    [83]Hiatt M H. Leaves as an indicator of exposure to airborne volatile organic compounds. Environmental Science and Technology, 1999, 33 (22): 4126-4133.
    [84] Simonich S L, Hites R A. Organic pollutant accumulation in vegetation. Environmental Science and Technology, 1995, 29 (12): 2905-2914.
    [85] Tolls J, McLachlan M S. Partitioning of semivolatile organic compounds between air and Lolium multiflorum (Welsh ray grass). Environmental Science and Technology, 1994, 28 (1): 159-166.
    [86] Thomas G, Sweetman A J, Ockenden W Aet al. Air-pasture transfer of PCBs. Environmental Science and Technology, 1998, 32 (7): 936-942.
    [87] Komp P, McLachlan M S. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environmental Science and Technology, 1997, 31(10): 2944-2948.
    [88] Bohme F, Welsch-Pausch K, McLachlan M S. Uptake of airborne semivolatile organic compounds in agricultural plants: Field measurements Of interspecies variability. Environmental Science and Technology, 1999, 33 (11): 1805-1813.
    [89] Welke B, Ettlinger K, Riederer M. Sorption of volatile organic chemicals in plant surfaces. Environmental Science and Technology, 1998, 32 (8): 1099-1104.
    [90] Diamond M L, Gingrich S E, Fertuck K. Evidence for organic film on an impervious urban surface: characterization and potential teratogenic effects. Environmental Science and Technology, 2000, 34 (14): 2900-2908.
    [91] Won D, Corsi R L, Rynes M. New indoor carpet as an adsorptive reservoir for volatile organic compounds. Environmental Science and Technology, 2000, 34 (19): 4193-4198.
    [92] Batterman S, Zhang L, Wang S Get al. Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. The Science of the Total Environment, 2002, 284 (1-3): 237-247.
    [93] Macleod M, Mckone T E, Foster K Let al. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons. Environmental Science and Technology, 2004, 38 (23): 6225-6233.
    [94] Linkov I, Ames M R, Crouch E A C et al. Uncertainty in octanol-water partition coefficient: Implications for risk assessment and remedial costs. Environmental Science and Technology, 2005, 39 (18): 6917-6922.
    [95] Verhaar H J M, Solbe J, Speksnijder Jet al. Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere, 2000, 40 (8): 875-883.
    [96] Enterprise & Industry Directorate General and Environment Directorate Generalk, European Commission, REACH in brief. 2002, September. Available online at: http://ecb.jrc.it/REACH/.
    [97] 丁光辉.PLS和GA应用于部分有机污染物的QSAR研究:(博士学位论文).大连:大连理工大学,2006.
    [98] Hammett L P. Some relations between reaction rates and equilibrium constants. Chemical Reviews, 1935, 17 (1): 125-136.
    [99] Hammett L P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, 1937, 59 (1): 96-103.
    [100] Taft R M. Polar and steric substituent constants for aiiphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. Journal of the American Chemical Society, 1952, 74 (12): 3120-3128.
    [101] Hansch C, Maloney P P, Fujita T et al. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature, 1962, 194 (4824): 178-180.
    [102] Hansch C, Muir R M, Fujita T et al. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. Journal of the American Chemical Society, 1963, 85 (18): 2817-2824.
    [103] Fujita T, Iwasa J, Hansch C. A new substituent constant, n, derived from partition coefficients. Journal of the American Chemical Society, 1964, 86 (23): 5175-5180.
    [104] Free S M, Wilson J M. A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 1964, 7 (4): 395-399.
    [105] Cronin M T D, Walker J D, Jaworska J S et al. Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environmental Health Perspectives, 2003, 111 (10): 1376-1390.
    [106] Cronin M T D, Jaworska J S, Walker J D et al. Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environmental Health Perspectives, 2003, 111 (10): 1391-1401.
    [107] Walker J W L, Carlsen E, Simon-hettich H B. Globas government applications of analogues, SARs and QSARs to predict aquatic toxicity, chemical or physical properties, environmental fate parameters and health effects of organic chemicals. SAR and QSAR in Environmental Research, 2002, 13 (6): 607-616.
    [108] Organisation for Economic Co-Operation and Development (OECD). Report from the Expert Group on QSARs on the Principles for the Validation of QSARs, 2004. Available online at: http://appli 1 .oecd.org/olis/2004doc.nsf/linkto/env-jm-mono(2004)24
    [109] Organisation for Economic Co-Operation and Development (OECD). Guidance document on the validation of (Quantitative) Structure-Activity Relationships [QSAR] models, 2007. Available online at: http://www.oecd.org/dataoecd/55/22/38131728.pdf
    [110] Organisation for Economic Co-Operation and Development (OECD). Testing and assessment Report on the regulatory uses and applications in OECD member countries of (Quantitative) Structure-Activity Relationship[QSAR] models in the assessment of new and existing chemicals, 2006. Available online at: http://applil.oecd.org/olis/2006doc.nsf/linkto/env-jm-mono(2006)25
    [111] 王连生.有机污染化学(上册).北京:科学出版社,1990.
    [112] Goss K-U, Schwarzenbach R P. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science and Technology, 2001, 35 (7): 1-9.
    [113] Nguyen T H, Goss K-U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science and Technology, 2005, 39 (4): 913-924.
    
    [114] Kaliszan R. Quantitative structure-retention relationships applied to reversed-phase high- performance liquid chromatography. Journal of Chromatography A, 1993, 656 (1-2): 417-435.
    [115] Hansch C, Clayton J M. Lipophilic character and biological activity of drugs II: the parabolic case. Journal of Pharmaceutical Sciences, 1973,62 (1): 1-21.
    [116] Hermens J, Leeueanch P, Musch A. Quantitative structure-activity relationships and mixture toxicitystudies of chloro- and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata). Ecotoxicology and Environmental Safety, 1984, 8 (4): 388-394.
    [117] Schultz W T, Bryant S E, Lin D T. Structure-toxicity relationships for tetrahymana: aliphatic aldehydes. Bulletin of Environmental Contamination and Toxicology, 1994, 52 (2): 279-285.
    [118] Kamlet M J, Abraham M H, Doherty R M et al. Solubility properties in polymers and biological media. 4. Correlations of octanol/water partition coefficients with solvatochromic parameters. Journal of the American Chemical Society, 1984,106 (2): 464-466.
    [119] Kamlet M J, Doherty R M, Abboud J -L M et al. Solubility: a new look. Chemtech, 1986, 16(9): 566-576.
    [120] Kamlet M J, Doherty R M, Veith G D et al. Solubility properties in polymers and biological media. 7. An analysis of toxicant properties that influence inhibition of bioluminescence in Photobacterium phosphoreum (the Microtox test). Environmental Science and Technology, 1986,20 (7): 690-695.
    [121] Kamlet M J, Doherty R M, Taft R W et al. Solubility properties in polymers and biological media. 8. An analysis of the factors that influence toxicities of organic nonelectrolytes to the Golden Orfe Fish (Leuciscus idus melanotus). Environmental Science and Technology, 1987,21 (2): 149-155.
    [122] Kamlet M J, Doherty R M, Carr P W et al. Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environmental Science and Technology, 1988,22 (5): 503-509.
    [123] Leahy D E. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationship: octanol-water partition coefficients and aqueous solubilities. Journal of Pharmaceutical Sciences, 1986,75 (7): 629-639.
    [124] Sadek P C, Carr P W, Doherty R M. Study of retention processes in reversed-phase high-performance liquid chromatography by the use of the solvatochromic comparison method. Analytical Chemistry, 1985, 57 (14): 2971-2978.
    [125] Wilson L Y, Famini G R. Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices. Journal of Medicinal Chemistry, 1991,34 (5): 1668-1674.
    [126] Famini G R, Renski C A, Wilson L Y. Using theoretical descriptors in quantitative structure-activity relationships: some physicochemical properties. Journal of Physical Organic Chemistry, 1992, 5 (7): 395-408.
    [127] Chen J W, Feng L, Liao Y Y et al. Using AM1 Hamiltonian in quantitative structure-properties relationship studies of alkyl (1-phenylsulfonyl) cycloalkane-carboxylates. Chemosphere, 1996, 33 (3): 537-546.
    [128] Chen J W, Wang L S. Using MTLSER model and AM1 Hamiltonian in quantitative structure-activity relationship studies of alkyl (1-phenylsulfonyl) cycloalkane-carboxylates. Chemosphere, 1997,35 (3): 623-631.
    [129] Free S M, Wilson J M. A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 1964, 7 (4): 395-399.
    [130] Cramer R D, Patterson D E, Bunce J D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 1988, 110 (18): 5959-5967.
    [131] Marshall G R, Cramer Ⅲ R D. Three-dimensional structure-activity relationships. Trends in Pharmacological Sciences, 1988, 9 (8): 285-289.
    [132] Yoo S-E, Cha O-J. Prediction of LUMO energy and rate constant by comparative molecular field analysis (CoMFA). Journal of Computational Chemistry, 1995, 35 (4): 449-453.
    [133] Liu X, Yang Z, Wang L. CoMFA of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri. SAR and QSAR in Environmental Research, 2003, 14 (3): 183-190.
    [134] 王连生.有机污染化学.北京:高等教育出版社,2004.
    [135] Eriksson L, Johansson E. Multivariate design and modeling in QSAR. Chemometrics and Intelligent Laboratory Systems, 1996, 34 (1): 1-19.
    [136] Eriksson L, Johansson E, Muller Met al. On the selection of the training set in environmental QSAR analysis when compounds are clustered. Journal of Chemometrics, 2000, 14 (5-6): 599-616.
    [137] Schultz T W, Cronin M T D. Essential and desirable characteristics of ecotoxicity Quantitative Structure-Activity Relationships. Environmental Toxicology and Chemistry, 2003, 22 (3): 599-607.
    [138] 许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    [139] 栾峰.支持向量机和径向神经网络方法在化学、环境化学和药物化学中的应用:(博士学位论文).兰州:兰州大学,2006.
    [140] Cronin M T D, Schultz T W. Pitfalls in QSAR. Joumal of Molecular Stmcture-Theochem, 2003, 622 (1-2): 39-51
    [141] Cronin M T D, Schultz T W. Validation of Vibrio fischeri acute toxicity data: Mechanism of action-based QSARs for nonpolar narcotics and polar narcotic phenols. Science of The Total Environment, 1997, 204 (1): 75-88
    [142] Walker J D, Jaworska J, Comber M H Iet al. Guidelines for developing and using Quantitative Structure-Activity Relationships. Environmental Toxicology and Chemistry, 2003, 22 (8): 1653-1665
    [143] Cronin M T D, Schultz T W. Development of Quantitative Structure-Activity Relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: Comparative assessment of methodologies. Chemical Research in Toxicology, 2001, 14 (9): 1284-1295.
    [144] Burden F R, Winkler D A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chemical Research in Toxicology, 2000, 13 (6): 436-440.
    [145] Taft R W, Kamlet M J. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. Journal of the American Chemical Society, 1976, 98 (10): 2886-2894.
    [146] Furusjo E, Svenson A, Rahmberg Met. al. The importance of outlier detection and training set slection for reliable environmental QSAR prediction. Chemosphere, 2006, 63 (1): 99-108.
    [147] Dimitrov S, Dimitrova G, Pavlov T et al. A stepwise approach for defining the applicability domain of SAR and QSAR models. Journal of Chemical Information and Modeling, 2005, 45 (4): 839-849.
    [148] Netzeva T I, Saliner A G, Worth A P. Comparison of the applicaability domain of a Quantitative Structure-Activity Relationship for setrogenicity with a large chemical inventory. Environmental Toxicology and Chemistry, 2006, 25 (5): 1223-1230.
    [149] Sheridan R P, Feuston B P, Maiorov V N et al. Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR. Journal of Chemical Information and Computer Sciences, 2004,44 (6): 1912-1928.
    [150] Dimitrov S, Koleva Y, Schiltz T W et al. Interspecies Quantitative Structure- Activity Relationships model for aldehydes: Aquatic toxicity. Environmental Toxicology and Chemistry. 2004, 23 (2): 463-470.
    [151] Schultz T W, Hewitt M, Netzeva T I et al. Assessing Applicability Domains of Toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of Action. QSAR and Combinatorial Science, 2007,26 (2): 238-254.
    [152] Eriksson L, Jaworska J, Worth A P et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives,2003, 111 (10): 1361-1375.
    [153] Livingstone D J, Manallack D T, Tetko I V. Data modeling with neural networks: Advantages and limitations. Journal of Computer-Aided Materials Design, 1997,11 (2): 135-142.
    [154] Hawkins D M. The problem of overfitting. Journal of Chemical Information and Computer Sciences. 2004,44(1): 1-12.
    [155] Koossov E, Stanforth R. The quality of QSAR models problems and solutions.SAR and QSAR in Environmental Research, 2007,18 (1-2): 89-100.
    [156] Baumann K, Korff M, Albert H. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications. Journal of Chemometrics, 2002, 16 (7): 351-360.
    [157] Wehrens R, Putter H, Buydens L M C. The bootstrap: a tutorial. Chemometrics and Intelligent Laboratory Systemsems, 2000, 54 (1): 35-52.
    [158] Tropsha A, Gramatica P, Gombar V K. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR and Combinatorial Science, 2003,22 (1): 69-77.
    [159] Yasri A, Hartsough D. Toward an optimal procedure for variable selection and QSAR model building. Journal of Chemical Information and Computer Sciences, 2001,41 (5): 1218-1227.
    [160] Burden F R, Ford M G, Whitley D C et al. Use of automatic relevance determination in QSAR studies using bayesian neural networks. Journal of Chemical Information and Computer Sciences, 2000, 40 (6): 1423-1430.
    [161] Mitchell T J. An algorithm for the construction of "D-optimal" experimental design. Technometrics, 2000, 42 (1): 48-54.
    [162] Golbraikh A, Tropsha A. Beware of q~2. Journal of Molecular Graphics and Modelling, 2002, 20 (4): 269-276.
    [163] Lohmann R, Lee R G M, Green N J L et al. Gas-particle partitioning of PCDD/Fs in daily air samples. Atmospheric Environment, 2000, 34 (16): 2529-2537.
    
    [164] Oh J-E, Choi J-S, Chang Y-S. Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in atmosphere; evaluation of predicting models. Atmospheric Environment, 2001, 35 (24): 4125-4134.
    [165] Goss K-U, Schwarzenbach R P. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds. Environmental Science and Technology, 2001, 35 (1): 1-9.
    [166] Nguyen T H, Goss K-U, Ball W P. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environmental Science and Technology, 2005, 39 (4): 913-924,
    [167] 王慧文,偏最小二乘回归分析方法及其应用.北京:国防工业出版社,1999,150-155.
    [168] Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks. 1999, 10 (5): 988-999.
    [169] Chang C C, Lin C J. LIBSVM: a library for support vector machines, 2007. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [170] Liu F, He Y. Use of visible and near fnfrared spectroscopy and least squares-support vector machine to determine soluble solids content and pH of cola beverage. Journal of agricultural and food chemistry, 2007, 55 (22): 8883-8888.
    [171] 陈景文.有机污染物定量结构-性质关系与定量结构.活性关系.大连:大连理工大学出版社,1999.
    [172] Chambers C C, Hawkins G D, Cramer C J et al. Model for aqueous solvation based on class Ⅳ atomic charges and first solvation shell effects. Journal of Physical Chemistry, 1996, 100 (40): 16385-16398.
    [173] Hawkins G D, Liotard D A, Cramer C J et al. OMNISOL: Fast prediction of free energies of solvation and partition coefficients. Journal of Organic Chemistry, 1998, 63 (13): 4305-4313.
    [174] Still W C, Yempczyk A, Hawley R C et al. Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 1990, 129 (51): 6127-6129.
    [175] Karelson M, Katritzky A R, Zermer M C. AM1, PM3, and MNDO calculations of radical formation energies in the gas phase andin solution. The Journal of Organic Chemistry, 1992, 72 (26): 134-137.
    [176] Odabasi M, Cetin E, Sofuoglu A. Determination of octanol/air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas/particle partitioning in an urban atmosphere. Atmospheric Environment, 2006, 40(4): 6615-6625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700