基于混沌的化学计量学新算法研究及基于量子化学计算的构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定量构效关系(QSAR)研究是化学计量学的重要分支。神经网络是一个优异的非线性建模工具,但其突出的缺点就是潜在的预收敛到局部最优点或过拟合导致的错误预报模式;遗传算法用于优化过程其目的是为了避免陷入局部最优点,但事实上由于在传统遗传算法的进化过程中只有少数最好的成员被保留下来用于产生子代成员,经过一定代数的进化后群体成员的多样性就会显著下降,也很可能过早收敛到局部最优点。为了克服这些缺点,混沌动力学模型被引入到了化学计量学算法的研究之中。混沌映射自身固有的对初始状态的敏感性,形似随机实有确定轨道永不回头的绝对遍历运行机制,为更好的化学计量学方法研究带来了曙光。混沌动力学数学模型可以直接用作搜索算法训练神经网络,但这一方法还有待研究。混沌动力学模型用于遗传算法的突变操作,可以使传统遗传算法群体成员多样性逐渐消失的现象得到解决,它克服了传统GA中可能的近亲繁衍情况,这正是传统GA过早收敛导致局部最优的原因。该策略不仅很大程度上克服了传统遗传方法可能的局部最优问题,而且混沌的不可捉摸的行为特征也使得该算法有效地克服了神经网络训练的过拟合问题。该方法的有效性在基于物理化学和量子化学参数的四面体卤化物的振动频率预测、基于物理化学参数的八面体六卤化物的振动频率预测、基于物理化学参数的氟相分配系数预测、以及基于量子化学密度泛函计算的氯氟碳化合物代替品的大气寿命预测中都得到了体现。尤其是在对大气寿命的预测上,由于数据结构不好,传统遗传算法很容易产生过拟合现象,但混沌突变的遗传算法很好地避免了该现象的发生。
     基于“优生”这一新概念提出了一个新的优势进化算法,该方法能够快速收敛,它采取的全局撒网快速收敛的策略很好地解决了遗传算法在局部最优点附近的游荡式行为所造成的时间浪费,之所以它有如此的特征可能和它潜在的方向选择性有关。结合混沌来初始化优势进化算法的群体成员,还设计了基于混沌初始化群体成员的循环优势进化方法,该方法在混沌保证每次优势进化绝对不同的初始群体成员的情况下,不仅具有了优势进化的快速收敛优点而且有混沌映射保证群体成员的高度多样性,从而可以快速探测很多局部最优点,大大提高了找到全局最优点的机会,用它训练神经网络预测四卤化物振动频率研究充分体现了该策略的优越性。该方法可以应用到很多的优化问题之中,有很高的借鉴价值。
     基于量子化学模拟计算,对四苯基铁卟啉及其7个卤素取代衍生物在催化氧
    
    摘要(ABSTRACT)
    化烷烃反应中的催化活性作为QSAR研究。分析了这些分子的电子结构特点及与
    催化活性的关系。详细讨论了氧分子在这些分子表面的活化模拟过程。发现较低
    的HOMO能级和铁原子上较大电子密度有利于铁叶琳具有较高的催化活性。四个
    苯基平面保持与叶琳的马鞍面交叉也有利于具有高催化活性。
     量子化学参数的运用能够提高QSAR研究的效果并且为QSAR研究提供了又
    一个手段。量子化学分子模拟可以使QSAR研究提高到一个新的理论高度,同时
    量子化学模拟也能在QSAR的基础上做出更有针对性、更深层次的研究。两者结
    合的魅力在前面提到的研究体系中得到了充分的体现。
Quantitative Structure-Activity Relationship (QSAR) is one of the important branches in chemometrics. The artificial neural network, a powerful modeling method for the nonlinear statistical studies, has some drawbacks like the possible premature convergence to the local optima and overfitting to the samples in the training set. One of the motives of the use of genetic algorithm (GA) in an optimization procedure is to avoid sinking into local optima. Actually, only a few fittest members of the whole population of a generation can survive during GA's selection operation. After some generations the population diversity would be greatly reduced and the algorithm might lead to a premature convergence to a local optimum. To circumvent these shortcomings, the chaotic dynamic system is introduced in the studies of chemometric algorithms. The chaotic mapping itself is very sensitive to the initial state in a manner similar to the statistical randomness but with its underlying patterns appearing to be phantasmagoric i
    n a deterministic style. The characteristic feature of chaos itself being able to search the space of interest exhaustedly has been employed to improve the performance of chemometric algorithms studied. We hope the usage of chaotic concept will shed some light onto the algorithm studies. Although the chaotic mapping model can be directly used as an algorithm in training an ANN, the efficiency of such an approach seems to be insufficient. A chaotic system applied as mutation operation in GA could significantly enhances GA's potential in terms of maintaining the population diversity during the evolutionary process. This scheme effectively prevents the incest during the evolution of the general GA leading to misleading local optima. The effectiveness of such a chaotic concept based algorithm has been proved clearly and demonstrated in overcoming the convergence to local optima and also the overfitting to training samples often appearing in traditional neural network training. The effectiveness over tradational
    GA in training ANN of the proposed scheme have been demonstrated in predictions of the vibration frequencies of the tetrahedral tetrahalide species, of the vibration frequencies of the octahedral hexahalide species, of the fluorophilicity, and of the atmospheric lifetime of the substitutes of chlorofluorocarbans (CFCs) based on physico-chemical and semi-empirical quantum chemical parameters and density functional theory (DFT) calculations.
    The newly proposed prepotency evolution (PE) algorithm based on the concept of
    
    
    
    
    "prepotency" has a higher convergence speed comparing to the conventional genetic algorithm. The PE begins with an initial population distributing in the whole space of interest and converges with a high speed and does not jazz around local optima like the traditional genetic algorithms. This manner may result from its underlying direction selection for its evolution. To take advantage of the chaotic mapping, a repetition prepotency evolution algorithm with a population initialized by chaotic numbers is developed in which the chaotic mapping is an uncommon seeding-machine to produce different initial 'chromosome' populations never appeared before for PE algorithm. The combination of chaotic mapping and PE makes PECA be able to probe lots of optima rapidly and effectively owing to the quick convergence speed of PE and relatively high population diversity guaranteed by chaotic mapping. When this scheme is tested in ANN training to predict the vibration frequencies of tetrahedral tetrahalide species, the result
    s show that it greatly enlarges the opportunity to find the global optimum. This scheme can also be introduced in many other optimization procedures and will possibly carry out better results.
    The QSAR study of catalytic activity of iron-tetraphenylporphyrin chloride (Fe(TPP)Cl) and its 7 halogenated complexes in the oxidation reaction of isobutene was performed based on quantum chemistry calculation. The electronic structural characteristics, and their relationship wit
引文
[1] 俞汝勤.化学计量学导论.长沙:湖南教育出版社,1991.
    [2] 梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科技出版社,1997.
    [3] 许禄.化学计量学方法.北京:科学出版社,1995.
    [4] 陆晓华.化学计量学.武汉:华中理工大学出版社,1997.
    [5] 梁逸曾,俞汝勤.分析化学手册(第十分册)化学计量学.北京:化工出版社,2000.
    [6] Yu R Q. Chemometrics in china. Chemo. Intell. Lab. Sys. 1992, 14(1): 23-29.
    [7] 梁逸曾,俞汝勤.化学计量学在我国的发展,化学通报,1999,(10):14-19.
    [8] Svozil D, Kvasnicka V, Pospichal J. Introduction-to multi-layer feed-forward neural networks. Chemo. Intel. Lab. Sys. 1997, 39(1): 43-62.
    [9] 许禄,胡昌玉.化学中的人工神经网络.化学进展.2000,12(1):18-31.
    [10] McCulloch W S, Pitts W. A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys. 1943, (5): 115-133.
    [11] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 1982, 79(8): 2254-2558.
    [12] Hopfield J J. Neurons with graded response have collective computational properties like those of two state neurons. Proc. Natl. Acad. Sci. 1984, 81(10): 3088-3092.
    [13] Hopfield J J. Tank D W. Neural computation of decisions in optimization problems. Bio Cybern. 1985, 52(2): 141-152.
    [14] Hopfield J J. Tank D W. Computing with neural circuits: A model. Science. 1986, 233: 625-633.
    [15] Rumelhart D E, Hinton G E Williams R J. Parallel Distributed Processing: Exploration in the Microstructures of Cognition. Cambridge, MIT Press, 1986.
    [16] Corma A, Serra J M, Argente E et al. Application of Artificial Neural Networks to Combinatorial Catalysis: Modeling and Predicting ODHE Catalysts. ChemPhysChem 2002, 3(11): 939-945.
    [17] Prasad Y J, Bhagwat S S. Simple neural network models for prediction of physical properties of organic compounds. Chem. Eng. Tech.
    
    2002, 25(11): 1041-1046.
    [18] Viterbo V D de, Belchior J C. Artificial neural networks applied for studying metallic complexes. J. Comput. Chem. 2001, 22(14): 1691-1701.
    [19] Selzer P, Gasteiger J, Thomas H et al. Rapid Access to Infrared Reference Spectra of Arbitrary Organic Compounds: Scope and Limitations of an Approach to the Simulation of Infrared Spectra by Neural Networks. Chem. Eu. J. 2000, 6(5): 920-927.
    [20] Schaper K-J. Free-Wilson-Type Analysis of Non-Additive Substituent Effects on THPB Dopamine Receptor Affinity Using Artificial Neural Networks. Quantitative Structure-Activity Relationships 1999, 18(4): 354-360.
    [21] Acioli P H, Silva G M. Investigating charge transport in molecular switches with neural networks. J. Comput. Chem. 1999, 20(10): 1060-1066.
    [22] Klocker J, Wailzer B, Buchbauer G et al. Bayesian Neural Networks for Aroma Classification. J. Chem. Inf. Comput. Sci. 2002, 42(6): 1443-1449.
    [23] Vaananen T, Koskela H, Hiltunen Y et al. Application of Quantitative Artificial Neural Network Analysis to 2D NMR Spectra of Hydrocarbon Mixtures. J. Chem. Inf. Comput. Sci. 2002, 42(6): 1343-1346.
    [24] Mosier P D, Jurs P C J. QSAR/QSPR Studies Using Probabilistic Neural Networks and Generalized Regression Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42(6): 1460-1470.
    [25] Polanski J, Zouhiri F, Jeanson L et al. Use of the Kohonen Neural Network for Rapid Screening of Ex Vivo Anti-HIV Activity of Styrylquinolines. J. Med. Chem. 2002, 45(21): 4647-4654.
    [26] Manallack D T, Pitt W R, Gancia E et al. Selecting Screening Candidates for Kinase and G Protein-Coupled Receptor Targets Using Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42(5): 1256-1262.
    [27] Agrafiotis D K, Cedeno W, Lobanov V S. On the Use of Neural Network Ensembles in QSAR and QSPR. J. Chem. Inf. Comput. Sci. 2002, 42(4): 903-911.
    [28] Olivier E, Eldridge R B. Prediction of the Trayed Distillation Column Mass-Transfer Performance by Neural Networks. Ind. Eng. Chem. Res. 2002, 41(14): 3436-3446.
    [29] Tetko I V. Neural Network Studies. 4. Introduction to Associative Neural
    
    Networks. J. Chem. Inf. Comput. Sci. 2002, 42(3): 717-728.
    [30] Mattioni B E, Jurs P C. Prediction of Glass Transition Temperatures from Monomer and Repeat Unit Structure Using Computational Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42(2): 232-240.
    [31] Gao L, Loney N W. New Hybrid Neural Network Model for Prediction of Phase Equilibrium in a Two-Phase Extraction System. Ind. Eng. Chem. Res. 2002, 41(1): 112-119.
    [32] Aires-de-Sousa J, Hemmer M C, Gasteiger J. Prediction of ~1H NMR Chemical Shifts Using Neural Networks. Anal. Chem. 2002, 74(1): 80-90.
    [33] Serra J R, Jurs P C, Kaiser K L E. Linear Regression and Computational Neural Network Prediction of Tetrahymena Acute Toxicity for Aromatic Compounds from Molecular Structure. Chem. Res. Toxicol. 2001, 14(11): 1535-1545.
    [34] Tsutsumi A, Chen W, Hasegawa T et al. Neural Networks for Prediction of the Dynamic Heat-Transfer Rate in Bubble Columns. Ind. Eng. Chem. Res. 2001, 40(23): 5358-5361.
    [35] English N J, Carroll D G. Prediction of Henry's Law Constants by a Quantitative Structure Property Relationship and Neural Networks. J. Chem. Inf. Comput. Sci. 2001, 41(5): 1150-1161.
    [36] Wailzer B, Klocker J, Buchbauer G et al. Prediction of the Aroma Quality and the Threshold Values of Some Pyrazines Using Artificial Neural Networks. J. Med. Chem. 2001, 44(17): 2805-2813.
    [37] Tetko I V, Kovalishyn V V, Livingstone D J. Volume Learning Algorithm Artificial Neural Networks for 3D QSAR Studies. J. Med. Chem. 2001, 44(15): 2411-2420.
    [38] Rughooputh S D D V, Rughooputh H C S. Neural Network Based Chemical Structure Indexing. J. Chem. Inf. Comput. Sci. 2001, 41(3): 713-717.
    [39] Pigram G M, MacDonald T R. Use of Neural Network Models To Predict Industrial Bioreactor Effluent Quality. Environ. Sci. Technol. 2001, 35(1): 157-162.
    [40] Harrington P B, Urbas A, Wan C. Evaluation of Neural Network Models with Generalized Sensitivity Analysis. Anal. Chem. 2000, 72(20): 5004-5013.
    [41] Braunheim B B, Miles R W, Schramm V L et al. Prediction of Inhibitor Binding
    
    Free Energies by Quantum Neural Networks. Nucleoside Analogues Binding to Trypanosomal Nucleoside Hydrolase. Biochem. 1999, 38(49): 16076-16083.
    [42] Shaffer R E, Rose-Pehrsson S L. Improved Probabilistic Neural Network Algorithm for Chemical Sensor Array Pattern Recognition. Anal. Chem. 1999, 71(19): 4263-4271.
    [43] Sarabia L A, Ortiz M C, Todeschini R et al. Application of the Kohonen artificial neural network in the identification of proteinaceous binders in samples of panel painting using gas chromatography-mass spectrometry. Analyst. 2003, 128 (3): 281-286.
    [44] Holland J H. Outline for logical theory of adaptative systems. J. ACM. 1962, 3: 297-314.
    [45] Holland J H. Adaptation in Nature and Artificial Systems. University of Michigan Press, Ann Arbor, MI, Internal Report. 1975.
    [46] 刘勇,康立山,陈毓屏.非数值并行算法—遗传算法.北京:科学出版社,2000.
    [47] Hibbert D B. Genetic algorithms in chemistry. Chemo. Intel. Lab. Sys. 1993, 19(2): 277-293.
    [48] Hibbert D B, Sandall J P B. Mechanism of the hydrolysis of adenosine 5'-triphosphate: a statistical evaluation of kinetic data. J. Chemometrics 1989, 3(6): 569-577.
    [49] Hibbert D B. A hybrid genetic algorithm for the estimation of kinetic parameters. Chemo. Intel. Lab. Sys. 1993, 19(2): 319-329.
    [50] Lavine B K, Moores A J. Genetic algorithm in analytical chemistry. Anal. Lett. 1999, 32(3): 433-145.
    [51] Vivó-Truyols G, Torres-Lapasió JR, Garrido-Frenich A, Garcia-Alvarez-Coque M C. A hybrid genetic algorithm with local search. Chemo. Intel. Lab. Sys. 2001, 59 (1-2): 107-120.
    [52] Lavine B K, Davidson C E, Moores A J. Innovative genetic algorithms for chemoinformatics. Chemo. Intel. Lab. Sys. 2002, 60 (1-2): 161-171.
    [53] Hemmateenejad B, Miri R, Akhond M, Shamsipur M. QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods. Chemo. Intel. Lab. Sys. 2002, 64 (1): 91-99.
    
    
    [54] Balland L, Estel L, Cosmao J-M, Mouhab N. A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters. Chemo. Intel. Lab. Sys. 2000, 50 (1): 121-135.
    [55] Ros F, Pintore M, Chrétien J R. Molecular descriptor selection combining genetic algorithms and fuzzy logic: application to database mining procedures. Chemo. Intel. Lab. Sys. 2002, 63 (1): 15-26.
    [56] Dieterle F, Kieser B, Gauglitz G. Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance. Chemo. Intel. Lab. Sys. 2003, 65 (1): 67-81.
    [57] Meiler J, Will M. Genius: A Genetic Algorithm for Automated Structure Elucidation from ~(13)C NMR Spectra. J. Am. Chem. Soc. 2002, 124(9):1868-1870.
    [58] Guo Q, Wu W, Questier F et al. Sequential Projection Pursuit Using Genetic Algorithms for Data Mining of Analytical Data. Anal. Chem. 2000, 72(13): 2846-2855.
    [59] Ravi G, Gupta S K, Ray M B. Multiobjective Optimization of Cyclone Separators Using Genetic Algorithm. Ind. Eng. Chem. Res. 2000, 39(11): 4272-4286.
    [60] Ge Y, Head J D. Global Optimization of H-Passivated Si Clusters with a Genetic Algorithm. J. Phys. Chem. B. 2002, 106(28): 6997-7004.
    [61] Lloyd L D, Johnston R L, Roberts C et al. Geometry Optimisation of Aluminium Clusters Using a Genetic Algorithm. ChemPhysChem 2002, 3(5): 408-415.
    [62] Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J. Chemo. 2001, 15(7): 559-569.
    [63] Gardiner E J, Willett P, Artymiuk P J. Protein docking using a genetic algorithm. Proteins. 2001, 44(1): 44-56.
    [64] Szustakowski J D, Weng Z. Protein structure alignment using a genetic algorithm. Proteins. 2000, 38(4): 428-440.
    [65] 刘增良.模糊技术与神经网络技术选编.北京:北京航空航天大学出版社,1999.
    [66] Kim K-j, Han I. Application of a hybrid genetic algorithm and neural network approach in activity-based costing. Expert Sys. Appl. 2003, 24(1): 73-77.
    [67] Huang K, Zhan X-L, Chen F-Q et al. Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm. Chem.
    
    Eng. Sci. 2003, 58(1): 81-87.
    [68] Burden F R, Rosewarne B S, Winkler D A. Predicting maximum bioactivity by effective inversion of neural networks using genetic algorithms. Chemo. Intel. Lab. Sys. 1997, 38 (2): 127-137.
    [69] Dieterle F, Kieser B, Gauglitz G. Genetic algorithms and neural networks for the quantitative analysis of ternary mixtures using surface plasmon resonance. Chemo. Intel. Lab. Sys. 2003, 65 (1): 67-81.
    [70] Hunger J, Huttner G. Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks. J. Comput. Chem. 1999, 20(4): 455-471.
    [71] Jiang J-H, Wang J-H, Song X-H, R-Q Yu. Network training and architecture optimization by a recursive approach and a modified genetic algorithm. J. Chemometrics 1996, 10(3): 253-267.
    [72] Cundari T, Deng J, Zhao Y. Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithms. Ind. Eng. Chem. Res. 2001, 40(23): 5475-5480.
    [73] Tarca L A, Grandjean B P A, Larachi F. Integrated Genetic Algorithm-Artificial Neural Network Strategy for Modeling Important Multiphase-Flow Characteristics. Ind. Eng. Chem. Res. 2002, 41(10): 2543-2551.
    [74] Hervas C, Algar J A, Silva M. Correction of Temperature Variations in Kinetic-Based Determinations by Use of Pruning Computational Neural Networks in Conjunction with Genetic Algorithms. J. Chem. Inf. Comput. Sci. 2000, 40(3): 724-731.
    [75] Kumar A, Hand V C. Feasibility of Using Neural Networks and Genetic Algorithms To Predict and Optimize Coated Paper and Board Brightness. Ind. Eng. Chem. Res. 2000, 39(12): 4956-4962.
    [76] Meiler J, Will M. Automated Structure Elucidation of Organic Molecules from ~(13)C NMR Spectra Using Genetic Algorithms and Neural Networks. J. Chem. Inf. Comput. Sci. 2001, 41(6): 1535-1546.
    [77] Nandi S, Mukherjee P, Tambe S S et al. Reaction Modeling and Optimization Using Neural Networks and Genetic Algorithms: Case Study Involving TS-1-Catalyzed Hydroxylation of Benzene. Ind. Eng. Chem. Res. 2002, 41(9):
    
    2159-2169.
    [78] Kim J H, Stringer J. Applied Chaos. New York: John Wiley & Sons, INC. 1992.
    [79] 张济忠.分形.北京:清华大学出版社,1997.
    [80] Moon F C. Chaotic and Fractal Dynamics: A introduction for Applied Scientists and Engineers. New York: John Wiley & Sons, INC. 1992.
    [81] May R M. Simple Mathematical Models with very Complicated Dynamics. Nature 1976, 26: 459-467.
    [82] Feigenbaum M J. Qualitative Universality for a Class of Nonlinear Transformations. J. Statist. Phys. 1978, 19(1): 25-52.
    [83] Hansch C, Hoekman D, Gao H. Comparative QSAR: Toward a Deeper Understanding of Chemicobiological Interactions. Chem. Rev. 1996, 96(3): 1045-1076.
    [84] Hansch C, Hoekman D, Leo A et al. Chem-Bioinformatics: Comparative QSAR at the Interface between Chemistry and Biology. Chem. Rev. 2002, 102(3): 783-812.
    [85] Kurup A, Garg R, Hansch C. Comparative QSAR Study of Tyrosine Kinase Inhibitors. Chem. Rev. 2001, 101(8): 2573-2600.
    [86] Selassie C D, Garg R, Kapur S et al. Comparative QSAR and the Radical Toxicity of Various Functional Groups. Chem. Rev. 2002, 102(7): 2585-2606.
    [87] Gao H, Katzenellenbogen J A, Garg R, Hansch C. Comparative QSAR Analysis of Estrogen Receptor Ligands. Chem. Rev. 1999, 99(3): 723-744.
    [88] Escher B I, Hermens J L M. Modes of Action in Ecotoxicology: Their Role in Body Burdens, Species Sensitivity, QSARs, and Mixture Effects. Environ. Sci. Technol. 2002, 36(20): 4201-4217.
    [89] Colon D, Weber E J, Baughman G L. Sediment-Associated Reactions of Aromatic Amines. 2. QSAR Development. Environ. Sci. Technol. 2002, 36(11): 2443-2450.
    [90] Philip D M, Peter C J. QSAR/QSPR Studies Using Probabilistic Neural Networks and Generalized Regression Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42(6): 1460-1470.
    [91] Wang Liansheng, Han Shuokui. Quantitative Structure-Activity Relationship. Beijing: Chemical Industry Press, 1999.
    
    
    [92] Khadikar P V, Karrnarkar S, Agrawal V K. A Novel PI Index and Its Applications to QSPR/QSAR Studies. J. Chem. Inf. Comput. Sci. 2001, 41(4): 934-949.
    [93] Lucic B, Lukovits I, Nikolic S et al. Distance-Related Indexes in the Quantitative Structure-Property Relationship Modeling. J. Chem. Inf. Comput. Sci. 2001, 41(3): 527-535.
    [94] Rughooputh S D D V, Rughooputh H C S. Neural Network Based Chemical Structure Indexing. J. Chem. Inf. Comput. Sci. 2001, 41(3): 713-717.
    [95] Randic M, Basak S C. On Use of the Variable Connectivity Index ~1X~f in QSAR: Toxicity of Aliphatic Ethers. J. Chem. Inf. Comput. Sci. 2001, 41 (3): 614-618.
    [96] Gupta S, Singh M, Madan A K. Superpendentic Index: A Novel Topological Descriptor for Predicting Biological Activity, J. Chem. Inf. Comput. Sci. 1999, 39(2): 272-277.
    [97] Ren B. A New Topological Index for QSPR of Alkanes. J. Chem. Inf. Comput. Sci. 1999, 39(1): 139-143.
    [98] Katritzky A R, Sild S, Karelson M. General Quantitative Structure-Property Relationship Treatment of the Refractive Index of Organic Compounds. J. Chem. Inf. Comput. Sci. 1998, 38(5): 840-844.
    [99] Karelson M, Lobanov V S, Katritzky A R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96(3): 1027-1044.
    [100] Kvesdi I, Dominguez-Rodriguez F M, rfi L et al. Application of neural networks in structure-activity relationships. Med. Res. Rev. 1999, 19(3): 249-269.
    [101] Famini G R, Loumbev V P, Frykman E K et al. Using Theoretical Descriptors in a Correlation Analysis of Adenosine Activity. Quantitative Structure-Activity Relationships 1998, 17(6): 558-564.
    [102] Andersson P M, Sjstrm M, Wold S. Comparison between physicochemical and calculated molecular descriptors. J. Chemometrics 2000, 14(5-6): 629-642.
    [103] Thanikaivelan P, Subramanian V, Raghava Rao J et al. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 2000, 323(1-2): 59-70.
    [104] Matta C F. Application of the quantum theory of atoms in molecules to selected physico-chemical and biophysical problems: Focus on correlation with
    
    experiment. J. Comput. Chem. 2003, 24(4): 453-463.
    [105] Hunger J, Huttner G.. Optimization and analysis of force.field parameters by combination of genetic algorithms and neural networks. J. Comput. Chem. 1999, 20(4): 455-471.
    [106] Wales D J, Scheraga H A. Global Optimization of Clusters, Crystals, and Biomolecules. Science 1999, 285: 1368-1372.
    [107] Given J A, Gilson M K. A hierarchical method for generating low-energy conformers of a protein-ligand complex. Proteins 1998, 33(4): 475-495.
    [108] Vieth M, Hirst J D, Dominy B N et al. Assessing search strategies for flexible docking. J. Comput. Chem. 1998, 19(14): 1623-1631.
    [109] Klein C T, Mayer B, Kohler G et al. Systematic step size variation: Efficient method for searching conformational space of polypeptides. J. Comput. Chem. 1998, 19(13): 1470-1481.
    [110] Andricioaei I, Straub J E. Global optimization using bad derivatives: Derivative-free method for molecular energy minimization. J. Comput. Chem. 1998, 19(13): 1445-1455.
    [111] Martino J A, Olson W K. Modeling protein-induced configurational changes in DNA minicircles. Biopoly. 1997, 41(4): 419-430.
    [112] Standley D M, Gunn J R, Friesner R A et al. Tertiary structure prediction of mixed α/β proteins via energy minimization. Proteins 1998, 33(2): 240-252.
    [113] Moret M A, Pascutti P G, Bisch P M et al. Stochastic molecular optimization using generalized simulated annealing. J. Comput. Chem. 1998, 19(6): 647-657.
    [114] Diller D J, Verlinde C L M J. A critical evaluation of several global optimization algorithms for the purpose of molecular docking. J. Comput. Chem. 1999, 20(16): 1740-1751.
    [115] Klepeis J L, Floudas C A, Morikis D et al. Predicting peptide structures using NMR data and deterministic global optimization J. Comput. Chem. 1999, 20(13): 1354-1370.
    [116] Kinoshita M, Sugai Y. Methodology of predicting approximate shapes and size distribution of micelles: Illustration for simple models. J. Comput. Chem. 2002, 23(15): 1445-1455.
    
    
    [117] Cai W, Shao X. A fast annealing evolutionary algorithm for global optimization. J. Comput. Chem. 2002, 23(4): 427-435.
    [118] Kamiya N, Higo J. Repeated-annealing sampling combined with multicanonical algorithm for conformational sampling of bio-molecules. J. Comput. Chem. 2001, 22(10): 1098-1106.
    [119] Foreman K W, Phillips A T, Rosen J B et al. Comparing search strategies for finding global optima on energy landscapes. J. Comput. Chem. 1999, 20(14): 1527-1532.
    [120] Bakken V, Helgaker T. The efficient optimization of molecular geometries using redundant internal coordinates. J. Chem. Phys. 2002, 117(20): 9160-9174.
    [121] Baysal C, Meirovitch H, Navon I M. Performance of efficient minimization algorithms as applied to models of peptides and proteins. J..Comput. Chem. 1999, 20(3): 354-364.
    [122] Niesse J A, Mayne H R. Global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method. J. Comput. Chem. 1997, 18(9): 1233-1244.
    [123] Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature 2000, 406:39-42.
    [124] Collett M, Collett T S, BISCH S et al. Local and global vectors in desert ant navigation. Nature 1998, 394:269-272.
    [125] Syswerda G. Uniform in Genetic Algorithms, ICGA' 89, p. 2. Morgan Kaufmann, CA. 1989.
    [126] Eshelmen L J, Schaffer J D. Preventing Premature Convergence in Genetic Algorithms by Preventing incest, ICGA'91, p.115. Morgan Kaufmann, CA. 1991.
    [127] Lorenze E N. Deterministic Nonperiodic flow. J Atmos. Sci. 1963, 20(1): 130-141.
    [128] 何振亚.神经智能.长沙:湖南科技出版社,1997.
    [129] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.
    [130] Waizum K, Musuda H, Einaga H et al. Application of Density Functional Calculations to the Structures and Formation Energies of [MCl_4]~(2-) Complexes
    
    (M=Cr, Mn, Fe, Co, Ni, Zn). Bull. Chem. Soc. Jpn. 1993, 66(12): 3648-3651
    [131] Giricheva N I, Girichev G V. Molecular Structure of Niobium Tetra-and Oxytrihalides. J Mol. Struc. 1999, 484(1-3): 1-9.
    [132] Joubert L, Picard G, Silvi B et al. Electron Localization Function View of Bonding in Selected Aluminum Fluoride Molecules. J. Mol. Struct.: THEOCHEM 1999, 463(1-2): 75-80.
    [133] Ehrhardt B K, Ystenes M. ab initio Calculation of Geometry and Vibrational Frequencies of Isovalence-electronic Tetrahedral Species XCl_4~ε and Ybr_4~ε {X=K, Ca, Ga-Kr; Y=Ne-Ca, Ga-Kr}. Spectochimica Acta. 1995, 51A(4): 699-707.
    [134] Bytheway I, Wong M W. The Prediction of Vibrational Frequencies of Inorganic Molecules Using Density Functional Theory. Chem. Phys. Lett. 1998, 282(3-4): 219-226.
    [135] Stewart J J P. Optimization of Parameters for Semi-empirical Methods. Ⅰ. Method. J Comput. Chem. 1989, 10(2): 209-220.
    [136] Stewart J J P. Optimization of Parameters for Semi-empirical Methods. Ⅱ. Applications. J Comput. Chem. 1989, 10(2): 221-234.
    [137] Molina M J, Rowland F S. Stratospheric sink for chlorofluoromethanes: Chlorine atom catalyzed destruction of ozone. Nature 1974, 249:810-814.
    [138] Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClO_x/NO_x interaction. Nature 1985, 315:207-210.
    [139] Wallington T J, Schneider W F, Worsnop D R et al. The environmental impact of CFC replacements--HFCs and HCFCs. Environ. Sci. Technol. 1994, 28(7): 320A-324A.
    [140] Montzka S A, Myers R C, Butler J H et al. Global tropospheric distribution and calibration scale of HCFC-22. Geophys. Research Lett. 1993, 20(7): 703-706.
    [141] Orkin V L, Huie R E, Kurylo M J. Atmospheric Lifetimes of HFC-143a and HFC-245fa: Flash Photolysis Resonance Fluorescence Measurements of the OH Reaction Rate Constants. J. Phys. Chem. 1996, 100(21): 8907-8912.
    [142] Mogelberg T E, Sehested J, Bilde M et al. Atmospheric Chemistry of CF_3CFHCF_3 (HFC-227ea): Spectrokinetic Investigation of the CF_3CFO_2 CF_3 Radical, Its Reactions with NO and NO_2, and Fate of the CF_3CFO CF_3 Radical. J. Phys. Chem. 1996, 100(21): 8882-8889.
    
    
    [143] Fang T D, Taylor P H, Dellinger B. Absolute Rate Measurements of the Reaction of OH Radicals with HCFC-21 (CHFCl_2) and HCFC-22 (CHF_2Cl) over an Extended Temperature Range. J. Phys. Chem. 1996, 100(10): 4048-4054.
    [144] Giessing A M B, Feilberg A, Mogelberg T E et al. Atmospheric Chemistry of HFC-227ca: Spectrokinetic Investigation of the CF_3CF_2CF_2O_2 Radical, Its Reactions with NO and NO_2, and the Atmospheric Fate of the CF_3CF_2CF_2O Radical. J. Phys. Chem. 1996, 100(16): 6572-6579.
    [145] Chen J, Young V, Niki H et al. Kinetic and Mechanistic Studies for Reactions of CF_3CH_2CHF_2 (HFC-245fa) Initiated by H-Atom Abstraction Using Atomic Chlorine. J. Phys. Chem. A 1997, 101(14): 2648-2653.
    [146] Fontana G, Causà M, Gianotti V et al. Computational studies of the reaction of the hydroxyl radical with hydrofluorocarbons (HFCs)-and hydrofluoroethers (HFEs). J. Fluorine Chem. 2001, 109(2): 113-121.
    [147] Giesy J P, Kannan K. Perfluorochemical Surfactants in the Environment. Environ. Sci. Technol. 2002, 36(7): 147A-152A.
    [148] Powell R L. CFC phase-out: have we met the challenge? J. Fluorine Chem. 2002, 114(2): 237-250.
    [149] Nimitz J S, Skaggs S R. Estimating tropospheric lifetimes and ozone-depletion potentials of one- and two-carbon hydrofluorocarbons and hydrochlorofluorocarbons. Environ. Sci. Technol. 1992, 26(4): 739-744.
    [150] Lu Q Z, Shen G L, Yu R Q. Genetic Training of Network Using Chaos Concept: Application to QSAR Studies of Vibration modes of Tetrahedral Halides. J. Comput. Chem. 2002, 23(14): 1349-1357.
    [151] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. 1996, B 54(24): 16533-16539.
    [152] Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J, Chem. Phys. 1993, 98(7): 5648-5652.
    [153] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann Jr R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R,Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski
    
    J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, and Pople J A. Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.
    [154] Scientific Assessment of Ozone Depletion, 1998, a report of the World Meteorological Organization's Global Ozone Research and Monitoring Project.
    [155] Environmental Protection Agency, Federal Register, 1995, Vol. 60 No. 90, pp. 25007.
    [156] Rocaboy C, Bauer W, Gladysz J A. Convenient Syntheses of a Family of Easily Recoverable Fluorous Primary, Second, and Tertiary Aliphatic Amines NH_(3-x)((CH_2)_m(CF_2)_7CF_3)_x (m=3-5; x=1-3); Fine Tuning of Basicities and Fluorous Phase Affinities. Eur. J. Org. Chem. 2000, 2000(14): 2621-2628.
    [157] Horvath I T, Rabai J. Facile Catalyst Separation without Water: Fluorous Biphase Hydroformylation of Olefins. Science. 1994, 266: 72-75.
    [158] Horvath I T. Fluorous Biphase Chemistry. Acc. Chem. Res. 1998, 31(10): 641-650.
    [159] Barthel-Rosa L P, Gladysz J A. Chemistry in Fluorous Media: A User's Guide to Practical Considerations in the Application of Fluorous Catalysts and Reagents. Coord. Chem. Rev. 1999, 190-192: 587-605.
    [160] Wende M, Meier R, Gladysz J A. Fluorous Catalysis without Fluorous Solvents: A Friendlier Catalyst Recovery/Recycling Protocol Based upon Thermomorphic Properties and Liquid/Solid Phase Separation. J. Am. Chem. Soc. 2001, 123(46): 11490-11491.
    [161] Gladysz J A. Are Teflon Ponytails the Coming Fashion for Catalysts? Science 1994, 266: 55-56.
    [162] Rocaboy C, Rutherford D, Bennett B L et al. Strategy and design in fluorous phase immobilization: A systematic study of the effect of 'pony tails' (CH_2)_3(CF_2)_(n-1)CF_3 on the partition coefficients of benzenoid compounds. J. Phys. Org. Chem. 2000, 13(10): 596-603.
    
    
    [163] Kiss L E, Kovesdi I, Rabai J. An improved design of fluorophilic molecules: prediction of the lnp fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks. J. Fluorine Chem. 2001, 108(1): 95-109.
    [164] Huque T T, Jones K, Saunders R A, Platts JA. Statistical and theoretical studies of fluorophilicity. J. Fluorine Chem. 2002, 115(2): 119-128.
    [165] Cerius2 (version 4.2), 2000. Molecular Simulations Inc.
    [166] Rogers D, Hopfinger A J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. Chem. Inf. Comput. Sci. 1994, 34(4): 854-866.
    [167] Leardi R, Boggia R, Terrile M. Genetic algorithm as a strategy for feature selection. J. Chemometrics 1992, 6(4): 267-281.
    [168] Friedman J. Technical Report 102, Standford University: Standford, CA. 1988.
    [169] http://www.organik.uni-erlangen.de/gladysz/research/partition.html.
    [170] Viswanadhan V N, Ghose A K, Revankar G R et al. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comp. Sci. 1989, 29(1): 163-172.
    [171] Norrington F E, Hyde R M, Williams S G et al. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975, 18(6): 604-607.
    [172] Delgoda R, Pulfer J D. A Guided Monte Carlo Search Algorithm for Global Optimization of Multidimensional Functions. J. Chem. Inf. Comput. Sci. 1998, 38(6): 1087-1095.
    [173] Tarsal A, Grand jean B P A, Larachi F. Integrated Genetic Algorithm-Artificial Neural Network Strategy for Modeling Important Multiphase-Flow Characteristics. Ind. Eng. Chem. Res. 2002, 41(10): 2543-2551.
    [174] So S-S, Karplus M. Evolutionary Optimization in Quantitative Structure-Activity Relationships: An Application of Genetic Neural Networks.
    
    J. Med. Chem. 1996, 39(7): 1521-1530.
    [175] Li T Y, Yorke J A. Period Three Implies Chaos. Am. Math. Mon. 1975, 82(10): 995-992.
    [176] Prigogine I, Stengers I. Order out of Chaos: Man's New Dialogue with Nature. New York: Bantam Books, 1984.
    [177] Hart-Davis J, Battioni P, Boucher J-L et al. New Catalytic Properties of Iron Porphyrins: Model Systems for Cytochrome P450-Catalyzed Dehydration of Aldoximes. J. Am. Chem. Soc. 1998. 120(48): 12524-12530.
    [178] Nam W, Lim M H, Moon S K et al. Participation of Two Distinct Hydroxylating Intermediates in Iron(Ⅲ) Porphyrin Complex-Catalyzed Hydroxylation of Alkanes. J. Am. Chem. Soc. 2000, 122(44): 10805-10809.
    [179] Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 1979, 101(4): 1032-1033.
    [180] Groves J T, Kruper W J J. Preparation and characterization of an oxoporphinatochromium(Ⅴ) complex. J. Am. Chem. Soc. 1979, 101(25): 7613.
    [181] Guo C, Song J, Chen X et al. A new evidence of the high-valent oxo-metal radical cation intermediate and hydrogen radical abstract mechanism in hydrocarbon hydroxylation catalyzed by metalloporphyrins. J. Mol. Cataly. A: Chem. 2000, 157(1-2): 31-40.
    [182] Balahura R J, Sorokin A, Bernadou J et al. Origin of the Oxygen Atom in C-H Bond Oxidations Catalyzed by a Water-Soluble Metalloporphyrin. Inorg. Chem. 1997, 36(16): 3488-3492.
    [183] Tabushi I, Yazaki A. P-450-tpye dioxygen activation using hydrogen/colloidal platinum as an effective electron donor. J. Am. Chem. Soc. 1981, 103(24): 7371-7373.
    [184] Hendrickson D N, Kinnaird M G, Suslick K S. Photochemistry of (5,10,15,20-tetraphenylporphyrinato)iron(Ⅲ) halide complexes, Fe(TPP)(X). J. Am. Chem. Soc. 1987, 109(4): 1243-1244.
    [185] Doro F G, Lindsay Smith J R, Ferreira A G et al. Oxidation of alkanes and alkenes by iodosylbenzene and hydrogen peroxide catalysed by halogenated manganese porphyrins in homogeneous solution and covalently bound to silica.
    
    J. Mol. Cataly. A: Chem. 2001, 164(1-2): 97-108.
    [186] Schiavon M A. Iamamoto Y, Nascimento O R et al. Catalytic activity of nitroand carboxy-substituted iron porphyrins in hydrocarbon oxidation: Homogeneous solution and supported systems. J. Mol. Cataly. A: Chem. 2001, 174(1-2): 213-222.
    [187] Grinstaff M W, Hill M G, Labinger J. et al. Mechanism of Catalytic Oxygenation of Alkanes by Halogenated Iron Porphyrins. Science 1994, 264:1311-1313.
    [188] Lyons J E, Ellis P E, Myers H K. Halogenated Metalloporphyrin Complexes as Catalysts for Selective Reactions of Acyclic Alkanes with Molecular Oxygen. J. Catal. 1995, 155(1): 59-73.
    [189] Murahashi S-I, Naota T, Komiya N. Metalloporphyrin-catalyzed oxidation ofalkanes with molecular oxygen in the presence of acetaldhyde. Tetrahedron Lett. 1995, 36(44): 8059-8062.
    [190] Bartoli J F, Brigoud O, Battioni P et al. Hydroxylation of linear alkanes catalysed by iron porphyrins: Particular efficacy and regioselectivity of perhalogenated porphyrins. Chem. Commun. 1991, 1991(7): 440.
    [191] Scherlis D A, Estrin D A. Hydrogen Bonding and O_2 Affinity of Hemoglobins. J. Am. Chem. Soc. 2001, 123 (34): 8436-8437.
    [192] Rovira C, Kunc K, Hutter J et al. Equilibrium Geometries and Electronic Structure of Iron-Porphyrin Complexes: A Density Functional Study. J. Phys. Chem. A. 1997, 101(47): 8914-8925.
    [193] Oliveira K M T, Trsic M. Comparative theoretical study of the electronic structures and electronic spectra of Fe~(2+)-, Fe~(+3)-porphyrin and free base porphyrin. J. Mol. Struct. THEOCHEM, 2001, 539(1-3): 107-117.
    [194] Schulz G E, Schirmer R H. Principles of Protein structure. New York: Springer-Verlag, Inc. 1979, chap. 10, p.217.
    [195] Collman J P, Hoard J L, Kim N et al. Synthesis, stereochemistry, and structure-related. J. Am. Chem. Soc. 1975, 97(10): 2676-2681.
    [196] Silva C, Czarnecki K, Ryan M D. Visible and resonance Raman spectra of low valent iron porphyrins. Inorg. Chim. Acta 1999, 287 (1): 21-26.
    [197] Donohoe R J, Atamian M, Bocian D F. Characterization of singly reduced iron(Ⅱ) porphyrins. J. Am. Chem. Soc. 1987, 109(19): 5593-5599.
    
    
    [198] Tulinsky A, Chen B M L. The crystal and molecular structure of chloro-.alpha., .beta., .gamma., .delta.-tetraphenylporphinatomanganese(Ⅲ). J. Am. Chem. Soc. 1977, 99(11): 3647-3651.
    [199] Goff H, La Mar G N, Reed C A. Nuclear magnetic resonance investigation of magnetic and electronic properties of "intermediate spin" ferrous porphyrin complexes. J. Am. Chem. Soc. 1977, 99(11): 3641-3646.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700