西藏冈底斯晚古生代火山岩岩石学、地球化学及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冈底斯作为重要的中、新生代岛弧岩浆岩带,历来是青藏高原最热门的地质研究领域。中、新生代岩浆岩在冈底斯带出露最多,研究程度相对较高。近年来的地质大调查发现,冈底斯带在石炭—二叠纪也有大量火山岩喷发,但对这套火山岩的研究却很少,对冈底斯带晚古生代的构造意义缺乏研究。作者在地质调查资料的基础上,对冈底斯晚古生代火山岩的重点区域西藏八宿县然乌乡、波密县、林周县的石炭、二叠纪火山—沉积岩系进行了详细地质剖面测量、系统采样和观察。对火山岩样品采用ICP-MS、ICP-AES(TJA IRIS)等离子质谱,MAT-262热电离质谱等先进分析仪器和手段,获取岩石的常量元素、微量元素、稀土元素、Sr-Nd-Pb同位素等地球化学数据。通过对各类资料的综合对比分析,对冈底斯石炭、二叠纪火山岩时空分布、岩石地球化学及其形成的大地构造背景、动力学机制等问题进行了探讨,取得以下有意义的重要成果。
     (1)本文首次对冈底斯带石炭纪火山岩的区域展布、地球化学和形成环境进行了系统研究。诺错组(C_1)、来故组(C_2)和拉嘎组(C_2)火山岩作为夹层,夹在深海—浅海相碎屑岩中。石炭纪火山岩主要为浅变质安山玄武岩、玄武安山岩和英安岩、流纹岩等,具有双峰式火山岩特点。常量元素地球化学研究表明,石炭纪火山岩具有拉斑玄武岩特点,与典型MORB和岛弧玄武岩相比,具有MgO含量低,TiO_2、Al_2O_3、P_2O_5等含量高等特点,稀土和微量元素为LREE和LILE富集型分配模式,与岛弧玄武岩存在差异,与大陆拉斑玄武岩有相似之处。石炭纪酸性火山岩属于亚碱性系列,稀土和微量元素地球化学特征与陆内流纹岩相似。岩石地球化学和共生的沉积岩系特征表明,石炭纪火山岩形成于伸展背景下的大陆边缘裂陷环境,为陆内裂谷型双峰式火山岩组合。冈瓦纳大陆北缘在早石炭世已发生局部裂谷作用。石炭纪火山活动的特点是断续出现、持续时间长、火山岩喷溢的厚度小,火山作用的强度远小于典型的火山裂谷型大陆边缘。初步研究表明,冈底斯地区石炭纪并非典型的火山裂谷边缘,应属被动裂谷,为不完整的裂谷演化过程。
     (2)同位素和微量元素地球化学特征表明,石炭纪火山岩源区位于60—100 km的石榴石橄榄岩稳定区和尖晶石橄榄岩稳定区。然乌诺错组(C_1)玄武岩的地壳物质混染程度较大,波密地区诺错组和西部拉嘎组(C_2)玄武岩受地壳混染相对较低。源区发生过复杂的混合作用,然乌一带涉及到原始地幔、富集地幔EMⅡ和冈瓦纳大陆北缘下地壳的混合;波密地区的源区混合主要涉及原始地幔和冈瓦纳北缘上地壳。石炭纪火山岩的源区地幔具有典型Dupal异常,可能是由于冈瓦纳古陆的壳源物质俯冲、再循环进入古老地幔所致。
     (3)本文对冈底斯带二叠纪火山岩的地层学特征、地球化学和形成环境进行了系统研究。二叠纪火山岩在冈底斯东段属于洛巴堆组,以玄武岩为主;在冈底斯西段属于中、上二叠统下拉组,岩石类型有玄武岩、英安岩、安山岩等。玄武岩常量元素地球化学的显著特点是Al_2O_3含量较高、MgO含量低,与岛弧高铝玄武岩相似。火山岩均表现为LREE和LILE富集型的微量元素和稀土元素分配曲线,Nb、Ta负异常显著,与岛弧火山岩相似。岩石地球化学研究表明,二叠纪火山岩形成于岛弧环境中,为古特提斯洋壳俯冲、消减的产物。冈底斯在二叠纪进入岛弧演化阶段。早二叠世由于古特提斯洋壳向南的俯冲、消减作用,冈底斯带演化为洋内弧环境,形成拉斑玄武岩。中晚二叠世演化为陆缘岛弧—安底斯型活动大陆边缘环境,形成钙碱性系列火山岩。二叠纪末期和早、中三叠世,冈底斯带已隆升成陆相剥蚀区。
     (4)Sr、Nd、Pb同位素地球化学特征表明,洛巴堆组玄武岩形成于不均匀地幔源区,都存在Dupal异常,但林周—勒青拉玄武岩Dupal异常更明显。唐家乡洛巴堆组玄武岩源区发生过略亏损地幔和下地壳成分的混合过程,为混合源区,源区为深度50 km左右的上地幔。林周—勒青拉剖面洛巴堆组玄武岩和措勤来故组玄武岩源区深度为50~100 km,为EMⅡ型富集地幔,源区未发生混合作用,岩浆上升和演化过程中可能存在地壳混染作用。
     (5)本文对石炭—二叠纪冈底斯带的构造—岩浆演化作了深入总结。在时间演化坐标上,各类成分特征指数演化曲线在早/中石炭世、石炭纪/二叠纪和早/中二叠世界面上发生显著变化,分别与三次构造活动有关。早石炭世为被动大陆边缘初始裂陷阶段;晚石炭世为大陆边缘裂谷活动强烈阶段,壳—幔物质发生强烈交换;冈底斯带在二叠纪为俯冲消减带,进入岛弧演化阶段。
     (6)通过对古特提斯构造域火山—沉积建造进行了区域对比,指出古特提斯东段和西段在晚古生代具有不同的构造演化过程。古特提斯西段石炭纪发生南、北大陆碰撞,形成海西期Variscan造山带,晚石炭世之后逐渐转入陆内演化阶段。东段在石炭纪仍为伸展阶段,处于浅海环境。东段未出现海西造山带,直到中晚二叠世由于岛弧造山而局部隆起。早中石炭世,劳亚大陆与冈瓦纳大陆发生初始碰撞。碰撞首先开始于冈瓦纳非洲西北部(摩洛哥)和劳亚大陆东南部的Armorican。石炭纪强烈的造山作用形成欧洲中南部的海西期Variscan造山带,东西向的挤压作用在美洲、非洲—阿拉伯,甚至澳大利亚东部均受到广泛影响,造成了隆升、逆冲和沉积盆地转化的过程。晚石炭世,劳亚大陆与冈瓦纳大陆发生全面的右旋剪切碰撞,沿Variscan造山带聚合成一个超级大陆Pangea。碰撞从西向东进行,石炭纪中期在北美为残留洋,东特提斯仍为开阔海域。晚石炭世在欧洲为同造山和晚造山期花岗岩侵入和流纹岩喷发。在冈底斯和喜马拉雅地区,石炭纪为伸展背景下的陆缘裂谷盆地,局部伴随火山岩喷发。特提斯东段的印度北缘和泛华夏大陆群之间未发生石炭纪的碰撞,不存在类似于欧洲的海西期造山带。石炭—二叠纪期间,泛华夏大陆群是古特提斯东部位于劳亚大陆和冈瓦纳大陆之外的独立地块。本文研究区位于冈瓦纳北缘的外喜马拉雅带(特提斯),晚古生代主要受古特提斯洋拉张、消减过程的控制,在早石炭世至中二叠世均为浅海相沉积,直到晚二叠世才发生隆升,未发生明显的海西期造山。北喜马拉雅带和冈底斯带在早石炭世及其以前的沉积和构造环境相似。早石炭世以后,冈底斯带逐渐向活动大陆边缘和岛弧演化,大部分地区海水逐渐变浅,到晚二叠世成为滨浅海相或陆相;北喜马拉雅带则随着新特提斯洋盆的扩张,在二叠纪逐渐演化为离散型被动大陆开阔陆棚—深海盆地相沉积。两者在生物面貌和区系上也逐渐分异。
     冈底斯带在晚古生代作为冈瓦纳大陆北缘的一部分,经历了从稳定的被动边缘到陆缘弧的演化过程,其中石炭、二叠纪火山岩记录了这一构造演化过程的重要信息。本文的研究弥补了冈底斯带地质研究的不足,有重要的意义。
As an important Mesozoic and Cenozoic magmatic arc, the Gangdise has attracted attentionsof many geologists.The widely- exposed Mesozoic and Cenozoic magmatic rocks have been wellstudied. Geologic survey and investigations in recent years have confirmed that there were volcaniceruptions in Carboniferous and Permian times in the Gangdise region. The late Paleozoic volcanicrocks however, still lack for petrological study. The author, funded by a geologic survey project anda "973" project, carded out investigations on the late Paleozoic rocks in the Gangdise zone. Basedon geologic, data of geologic mapping at 1:250,000 and 1:200,000 and preyiously published articles,the author measured the volcanic-sedimentary geologic sections in Ranwu of Basu County, Bomi,and Linzhou for Carboniferous and Permian volcanic rocks. After systemic sampling anddescription, the author did geochemical analysis with advanced apparatuses such asICP-MS, ICP-AES(TJA IRIS), MAT-262 to obtain major element, trace element, REE andSr-Nd-Pb isotopic components. By comprehensive geochemical study and comparison with thevolcanic and sedimentary sequences around the realm of paleo-Tethys, the author obtained primaryimprovements for the Permo-Carbiniferons volcanic rock distributions, petrochemistry and theirtectonic settings.
     (1) This paper described for the ftrst time the regional distribution geochemistry and tectonicsetting for Gangdise Carboniferous volcanic rocks. The Nuocuo Fm (C_1), Laigu Fm (C_2) and LagaFm (C_2) have volcanic rock interbeddings in marine clastic rocks. Major rock types aremeta-basalts, dacite and rhyolite, as a bimodal series. Major element geochemical study suggestthat the Carboniferous volcanic rocks are characterized by tholeiite with lower MgO and higherTiO_2、Al_2O_3、P_2O_5 contents compared with MORB. These are different from the arc basalts andsimilar to continental basalts. The Carboniferous silicic volcanic rocks belongs to sub-alcali serieswith similar geochemistry to continental rhyolite. Petrochemistry of volcanic rocks and paleo-faciescharacteristics of sedimentary rocks suggest that Carboniferous volcanic rocks erupted inextensional environment at marginal riffs. As parts of northern Gondwanaland, the Gangdise and northem Himalayas have similar extensional situation. Carboniferous rifting in Gangdise.Carboniferous volcanic activities lasted for long period but formed only a small quantity of lavacompared with those in volcanic rifted margins. Therefore, the gangdise zone did not form avolcanic rifted margin in Carboniferous but just a passive rifted margin. The Carboniferous riftingincluded double phases with hi-model volcanic activities. Post-rift thermal uplift appear as in mostcases of volcanic rifted margins. It was an incomplete or immature process of rift evolution. Theregion of Gangdise was affected by both the intensional Variscan orogenic regime and theextensional regime situated within the passive margin of the paleo-Tethys. This could be the reasonfor the typical marginal rifting process in the Gangdise.
     (2) Sr, Nd and Pb isotopic geochemical studies suggested that the source region situated inthe gamet zone and spinal zone of upper mantle with 60-100 km depth. The mantle source of thebasalts in the Nuocuo Formation in Ranwu might have experienced crustal assimilation beforemelting. The basalts Nuocuo Formation in Bomi and that in Laga Formation in Cuoqin haverelatively lower degrees of crust involvements in source regions. Source regions have experiencedcomplex mixing process. The primary mantle, EMⅡand lower crust have been involved in themixing process in Ranwu, while in Bomi, primary mantle and upper crust were involved. TypicalDupal has been recognized that could be resulted by crust recycling into the old mantle.
     (3) The Gangdise Permian volcanic rocks, stratigraphy geochemistry and tectonic setting aresystematically studied in this paper. The Permian volcanic rocks in the eastem Gangdise zone occurmainly in the Luobadui Formation of lower to middle Permian. To the western part of Gangdise,the middle and upper Permian volcanic rocks Occur in the Xiala Formation, with basalt, dacite andandesite, he volcanic rocks in the Luobadui Formation are basalt belonging to tholeiite series. Thebasalt in the Leqingia section has higher content of Al_2O_3 than those of continental flood basalt(CFB) and close to arc basalt and lower MgO content than that of CFB but close to archigh-aluminum basalt. The Permian volcanic rocks have enriched LREE and LILE contents andprofound Nb, Ta negative anormaly on spider diagrams. Geochemical studies suggest that the lowerand middle Permian Luobadui basalts and upper Permian silicic rocks generated in volcanic arcsituation which were related to the paleo-Tethys southward subduction. Reactivated subductionhappened in early Permian to form a oceanic arc and Tangjiaxiang arc basalt. It evolved tocontinental island arc and Andean type continental in middle and late Permian. The Gangdiseregion evolved to a strip of erosional land in latest Permian and early Triassic. The rifting innorthern Himalayas continued in Permian and the Cimmeride and Sibumasu blocks driftednorthward in middle and late Permian to form the neo-Tethys along northern Gondwanaland.
     (4) Sr, Nd, and Pb isotopic geochemistry reveal that the Luobadui basalts formed in differentupper mantle regions with Dupal anormaly. A mixing process happened between depleted mantleand lower crust for the Tangjiaxiang basalt at depth of 50 km±. The Leqingla and Cuoqin basaltwere formed by EMⅡmantle sources at depth of 50-100 km without evidence for mixing process.
     (5) This paper summarized the Permo-Carboniferous tectono-magmatic evolution in theGangdise and compared with other parts of the paleo-Tethys realm. Typical features display sharpcontacts at the boundaries of C_2/C_1, P/C and P_(23)/P_1, which correlated with three tectonic events. The northem passive margin of Gondwanaland began initial rifting in early Carboniferous andevolved to strong rifting stage in late Carboniferous with speeding up crust-mantle exchange. ThePermian volcanic rocks with imprints of subduction zone and crustal involvements imply the thirdphase of tectonic evolution in the Gangdise zone that became a volcanic arc.The wastern Tethysclosed in Carboniferous and formed Hercynian Variscan orogeny. It evolved into continental in lateCarboniferous. The eastern Tethys kept as extensional shallow marine environments inCarboniferous time. Paleo-Tethys subduction began in Permian to the north of Gangdise, while theHimalaya kept as extensional rifting period.
     (6) This paper analysed and compared volcanic-sedimentary sequences around paleo-Tethy.We suggest that the eastern and western parts of paleo-Tethys are different in geologic evolution inlate Paleozioc. In the early Carboniferous, the Laurussia and Gondwanaland began initial contactwhich merged in the composite called Pangea in mid-Carboniferous. The Variscan collisional stressand subsequent uplift felt as far as America, Africa-Arobia and eastern Australia. EarlyCarboniferous magmatism occurred as bi-model volcanic activities in south Europe, north Americaand the region of Gangdise and as alkali intrusions in northwest Hinalaya. These imply a transitionprocess of passive margin to rifting margin. In late Carboniferous, syn-orogenic and post-orogenicgranite intrusions and rhyolite eruption in Europe represents the formation of Pangea continent.Meanwhile, the eastern Tethys still remained an open seaway, where the northern Gondwanalandkeep rifting. The Hercynian continental collide and orogenesis did not happen between northernIndia and Cathaysia continents. In Carboniferous and Permian, the Cathaysia remained asindependent continents to the east of Gondwanaland and Laurussia. The Gangdise as the northernmargin of Gondwanaland occurred as shallow marine environment until middle Permian. It evolvedinto a subduction and continental arc in late Permian. The north Himalaya and Gangdise havesimilar_tectonic setting until Carboniferous. The Gangdise evolved to island arc and Andean typecontinental margin since middle Carboniferous. The north Himalaya however, became aextensional passive margin while the neo-Tethys incipient opening and widening since middlePermian.
     As part of northern Gandwana, in late Paleozoic time, the Gangdise evolved from passivemargin to continental arc. The Permo-Carboniferous volcanic rocks recorded the process.
引文
常承法,郑锡澜,1973.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨.中国科学(D辑),2:190-201
    常承法,潘裕生,郑锡澜等,1982.青藏高原地质构造.北京:科学出版社,1-91
    陈智梁,1994.特提斯地质一百年.见:特提斯地质.北京:地质出版社,18:1-19
    陈玉禄,张宽忠,李关清等,2005.班公湖-怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义.地质通报,24(7):621-624
    程立人,张予杰,张以春,2004.西藏申扎地区古生代地层研究新进展.地质通报,23(9-10):1018-1022
    丁林,来庆洲,2003.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约.科学通报,48(8):836-842
    葛文春,林强,孙德有等,2000.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学—中国地质大学学报,25(2):172-178
    高洪学,宋子季,1995.西藏泽当蛇绿混杂岩研究新进.中国区域地质,4:316-322
    高山,1999.关于大陆地壳化学组成研究中某些问题的讨论.地球科学—中国地质大学学报,24(3):228-233
    高山,Mihai N Ducea,金振民等,1998.下地壳拆沉作用及大陆地壳演化.高校地质学报,4(3):241-249
    高山,金振民,1997.拆沉作用(delamination)及其壳—幔演化动力学意义.地质科技情报,16(1):1-9
    耿全如,茅燕石,1991.新疆东天山细碧角斑岩系的岩相学、矿物学特征和成因.中国地质科学院成都地质矿产研究所所刊,15:119-132
    耿全如,潘桂棠,金振民等,2005.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学—中国地质大学学报,30(6):748-7608
    耿全如,潘桂棠,郑来林等,2004.藏东南雅鲁藏布蛇绿混杂岩带的物质组成及形成环境.地质科学,39(3):388-406
    郝杰,柴育成,李继亮,1999.雅鲁藏布江蛇绿岩的形成与日喀则弧前盆地沉积演化.地质科学,34(1):1-9
    和钟铧,杨德明,郑常青等,2005.西藏冈底斯带门巴地区印支期花岗岩地球化学特征及其构造意义.地质通报,24(4):354-359
    贺同兴,鲁良兆,李树勋,1988.变质岩岩石学.北京:地质出版社,117-129
    黄汲清,陈炳蔚,1987.中国及邻区特提斯海的演化.北界:地质出版社,1-74
    金成伟,周云生,1978.喜马拉雅和冈底斯山弧形山系中的岩浆岩带及其形成模式.地质科学,(4):297-312
    金振民,姚玉鹏,2004.超越板块构造—我国构造地质学要做些什么?地球科学—中国地质大 学学报,29(6):644-650
    金振民,章军锋,Green H.W.II,金淑燕,2001.大洋深俯冲带流变性质及其地球动力学意义—来自地幔岩高温高压实验的启示.中国科学D辑,31(12):969-976
    孔华,金振民,谢窦克,1998.大陆下地壳的研究进展综述.地球物理学进展,13(4):9-22
    李才,王天武,李惠民等,2003.冈底斯地区发现印支期巨斑花岗闪长岩—古冈底斯造山的存在证据.地质通报,22(5):364-366
    李昌年 编著,1992.火成岩微量元素岩石学.武汉:中国地质大学出版社,10—90
    李春,1982.亚洲大地构造图及说明书.北京:地图出版社,13-28
    李光明,高大发,黄志英等,2002.西藏当雄纳龙晚古生代裂谷盆地的识别及其意义.沉积与特提斯地质,22(1):83-87
    李海平,张满江,1995.西藏桑日地区桑日群火山岩岩石地球化学特征.西藏地质,13:84-92
    李璞,1955.西藏东部地质的初步认识.科学通报,7月号,科学出版社
    李曙光,1994.εNd—La/Nb、Ba/Nb、Nb/Th图对地幔不均一性研究的意义—岛弧火山岩分类及EMII端元的分解.地球化学,23(2):105-114
    李廷栋,肖序常,李光岑等,1985.略论青藏高原地壳构造和地壳演化.大自然探索,第二期
    李廷栋,2000.青藏高原地质调查研究历史之回顾.青海地质科技信息,2:1-4
    李廷栋,2002.青藏高原地质科学研究的新进展.地质通报,21(7):371-376
    李样辉,王成善,吴瑞忠,2002.西藏中部拉萨地块古生代、中生代的超层序研究.沉积学报,20(2):179-187
    李样辉,吴铬,王成善等,2001.西藏措勤盆地古生代—中生代岩相古地理演化.成都理工学院学报,28(4):331-339
    林强,葛文春,孙德有等,2000.大兴安岭中生代两类流纹岩与玄武岩的成因联系.长春科技大学学报,30(4)322-328
    刘增乾,焦淑沛,张以茀等,1986.青藏高原及邻区地质图(1:15000000)及说明书.地质出版社
    刘增乾,徐宪,潘桂棠等,1990.青藏高原大地构造与形成演化.北京:地质出版社,1-174
    楼雄英,傅恒,李洪德,2003.西藏波密地区晚古生代地层层序及盆地演化分析.沉积与特提斯地质,23(3):55-59
    路远发,2004.Geokit:一个用VBA构建的地球化学工具软件包.地球化学,33(5):459-464
    莫宣学,路凤香,沈上越等,1993.三江特提斯火山作用与成矿.北京:地质出版社,1-267
    莫宣学,董国臣,赵志丹等,2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290
    莫宣学,赵志丹,邓晋福等,2003.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148
    潘桂棠,陈智梁,李兴振等,1997.东特提斯地质构造形成演化.北京:地质出版社,1-184
    潘桂棠,丁俊,姚东生等,2004.青藏高原及邻区地质图(1:150万)和说明书.成都:成都地图出版社
    潘桂棠,王立全,李兴振等2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质,21(3):1-26
    潘桂棠,莫宣学,侯增谦等,2006.冈底斯造山带的时空结构及演化.岩石学报,22(3): 521-533
    潘桂棠,王立全,朱弟成,2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报 22(7):12-19
    潘桂棠,李兴振,王立全等,2002.青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701-707
    邱家骧(主编),1985.岩浆岩岩石学.北京:地质出版社,72-160
    邱家骧,林景仟主编,1991.岩石化学.北京:地质出版社,64-155
    邱瑞照,周肃,邓晋福等,2004.西藏班公湖—怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定-兼论班公湖-怒江蛇绿岩带形成时代.中国地质,31(3):262-268
    曲永贵,王永胜,张树岐等,2003.西藏申扎地区晚三叠世多布日组地层剖面的启示—对冈底斯印支运动的地层学制约.地质通报,22(7):470-473
    任纪舜,王作勋,陈炳蔚等(主编),1999.中国及邻区大地构造图(1:500万).北京:地质出版社
    宋谢炎,王玉兰,曹志敏等,1998.峨眉山玄武岩峨嵋地裂运动与幔热柱.地质地球化学,1:47-52
    孙书勤,汪云亮,张成江,2003.玄武岩类岩石大地构造环境的Th、Nb、Ta判别,地质论评,49(1):40-47
    孙珍,周蒂,曾佐勋等,2000.大陆裂谷作用的物理模拟.地质科技情报,19(1):23-26
    王全海,王保生,李金高等,2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估.地质通报,21(1):35-40
    王焰,钱青,刘良等,2000.不同构造环境中双峰式火山岩的主要特征.岩石学报,16 (2):169-173
    汪云亮,张成江,修淑芝,2001.玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别.岩石学报,17(3):413-421
    王玉净,王建平,刘彦明等,2002.西藏丁青蛇绿岩特征、时代及其地质意义.微体古生物学报,19(4):417-420
    王绍兰,王冠民,陈清华,1999.西藏措勤盆地下二叠统昂杰组沉积相分析.岩相古地理,19(6):44-48
    王旺章,汪云亮,曾昭贵等,1996.峨眉山玄武岩母岩浆的性质及其成因类型.矿物岩石,16(1):17-23
    魏启荣,沈上越,莫宣学等,2003.三江中段Dupal同位素异常的识别及其意义.地质地球化学,31(1):36-41
    吴浩若,1984.西藏南部白垩纪深海沉积层:冲堆组及其地质意义.地质科学,1:26-33
    西藏藏族自治区地质矿产局,1993.西藏藏族自治区区域地质志.北京:地质出版社,348-1206
    夏代祥,刘世坤,腾云等,1997.西藏自治区岩石地层.中国地质大学出版社,118-162
    夏代祥,1986.班公湖—怒江、雅鲁藏布江带中段演化历史的剖析.青藏高原地质文集(9):123-138
    夏林圻,2001.造山带火山岩研究.岩石矿物学杂志,20(3):225-232
    肖龙,徐义刚,梅厚钧等,2003.云南宾川地区峨眉山玄武岩地球化学特征:岩石类型及随时间演化规律.地质科学,38(4):478-494
    肖序常,李廷栋,李光岑,1988.喜马拉雅岩石圈构造演化.北京:地质出版社,201-210
    肖序常,李廷栋,2000.青藏高原的构造演化与隆升机制.广东科技出版社,239-268
    许志琴,姜枚,杨经绥等,2004.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉,地学前缘,11(4):329-343
    许志琴,杨经绥,梁凤华等,2005.喜马拉雅地体泛非—早古生代造山事件年龄记录.岩石学报,21(1):1-12
    杨巍然,纪克诚,孙继源等,1995.大陆裂谷研究中的几个前沿课题.地学前缘,2(1~2):93-102
    尹光侯,侯世云,1998.西藏碧土地区怒江缝合带基本特征与演化.中国区域地质,17(3):247-254
    殷鸿福,徐道一,吴瑞棠,1988.地质演化突变观.中国地质大学出版社,1-201
    张本仁,2001.大陆造山带地球化学研究:Ⅰ岩石构造环境地球化学判别的改进.西北地质,34(3):1-17
    张国伟,董云鹏,姚安平,2001.造山带与造山作用及其研究的新起点.西北地质,34(3):1-9
    张旗,张宗清,孙勇等,1995.陕西商县—丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学.岩石学报,11(1):43-54
    张旗,周德进,李秀云等,1995.云南双沟蛇绿岩的特征和成因.岩石学报,vol.11,Suppl.,190-202
    张旗,周国庆,2001.中国蛇绿岩.科学出版社,1-110
    张招崇,王福生,郝艳丽等,2005.峨眉山大火成岩省和西伯利亚大火成岩省地球化学特征的比较及其成因启示.岩石矿物学杂志,24(1):12-20
    张招崇,王福生,2003.峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨.地球科学—中国地质大学学报,28(4):431-439
    章邦桐,陈培荣,凌洪飞等,2004.赣南中侏罗世玄武岩Pb-Nd-Sr同位素地球化学研究:中生代地幔源区特征及其构造意义.高校地质学报,10(2):145-156
    张志远,张定辉,刘世荣等,1996.云南省岩石地层.中国地质大学出版社,101-208
    赵文津,纳尔逊K.D.,车敬凯等,1996.喜马拉雅地区深反射地震—揭示印度大陆北缘岩石圈的复杂结构.地球学报,17(2):138-152
    赵振华,1997.微量元素地球化学原理.北京:科学出版社,57-60
    郑有业,高顺宝,程力军等a,2004,西藏冲江大型斑岩铜(铝金)矿床的发现及意义.地球科学—中国地质大学学报,29(3):333-339
    郑有业,薛迎喜,程力军b,2004.西藏驱龙超大型斑岩铜(钼)矿床的发现、特征及意义.地球科学—中国地质大学学报,29(1):103-108
    周德进,沈丽璞,张旗等,1995.滇西古特提斯构造带玄武岩Dupal异常.地球物理学进展,10(2):39-44
    周详,曹佑功,1984.西藏板块构造—建造图及说明书.北京:地质出版社,1-20
    周幼云,江元生,王明光,2002.西藏措勤—申扎地层分区二叠系敌布错组的建立及其特征.地质通报,21(2):79-82
    周志广,刘文灿,梁定益,2004.藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖 层与统一变质基底的关系.地质通报,23(7):655-663
    周云生,张旗,梅厚钧等,1981.西藏岩浆活动和变质作用.科学出版社,1-359
    朱弟成,潘桂棠,莫宣学等,2004.藏南特提斯喜马拉雅带中段二叠纪一白垩纪的火山活动(Ⅰ):分布特点及其意义,地质通报,23(7):645-654
    朱弟成,潘桂棠,莫宣学等,2003.青藏高原及邻区新生代火山岩Sr-Nd-Pb同位素特征.沉积与特提斯地质,23(3):1-11
    朱弟成,潘桂棠,莫宣学等,2005.特提斯喜马拉雅中段桑秀组玄武岩的地球化学和岩石成因.地球化学,34(1):7-19
    朱同兴,潘桂棠,冯心涛等,2002.藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义.地质通报,21(11):717-722
    朱同兴,周铭魁,冯心涛,2005.西藏喜马拉雅北坡显生宙多重地层及盆地演化.北京:地质出版社,1-201
    Acharyya S. K., 1998. Break-up of the greater Indo-Australian continent and accretion of blocks framing south and East Asia. Journal of geodynamics, 26(1): 149-170
    Acharyya S. K., 2000. Break Up of Australia-India-Madagascar Block, Opening of the Indian Ocean and Continental Accretion in Southeast Asia With Special Reference to the Characteristics of the Peri-Indian Collision Zones. Gondwana Research, 3(4): 425-443
    Acharyya, S. K., 1979. India and Southeast Asia in Gondwanaland fit. Tectonophys, 56: 261-276
    Acharyya, S. K., 1990. Pan-Indian Gondwana plate break-up and evolution of the Northern and Eastem collision margins of the Indian Plate. Journal of Himmalayan Geology, 1: 75-91
    Acharyya, S. K., 1996. Accretion of Indo-Australian Gondwanic blocks along Peri-Indian collision margins In: Proc. 9th Int. Gondwana Symp. Hyderabad, India, 1994, Oxford IBH Publ. Delhi, 1029-1049
    Ahmadand M. and Shrovastava J. P., 2004. Iron-Titanium Oxide Geothermometry and Petrogenesis of Lava Flows and Dykes from Mandla Lobe of the Eastern Deccan Volcanic Province, India. Gondwana Research, 7(2): 563-577
    Alavi M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in noethern Iran. Journal of Geodynamics, 21(1): 1-33
    Ali J. R., Thompson G. M., Zhou M. F., et al., 2005. Emeishan large igneous province, SW China. Lithos, 79: 475-489
    Allegre C. J. and Minster J. F., 1978, Quantitative models of trace element in igneous petrology, Earth and Planetary Sciences Letters 38: 1-25
    Allen C. M., Wooden J. L., Chappell B. W., 1997. Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting. Lithos 42: 67-88
    Baud A., Marcoux J., and Stampfli G., 1989. Late Permian -Early Triassic Tethyan margin of India: Evolution from rifting to drifting (Salt-range, Kashmir, Zanskar traverse). Proceedings of the 28th International Geologic Congress, vol. 1, 103
    Beck R. A., Burbank D. W., 1995, Sercombe W. J. et al, Stratigrphic evidence for ror an early collision between northwest India and Asia, Nature, 373: 55-58
    Benek R., Kramer W., McCann T., Scheck M., Negendank J. F. W., Korich D., 1996. Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophysics, 266: 379-404
    Bhat M. I. and Ahmad T., 1990. Petrogenesis and the Mantle source characteristicsn of the Abor volcanic rocks, Eastem Himalayas. Journal of geological society of India, 36: 227-246
    Bhat M. I., Zainuddin S. M. and Rais A., 1981. Panjal trap chemistry and the birth of Tethys. Geological magazine, 118(4): 367-375
    Bickle M. J., Bettenay L. F., Chapman H. J. et al., 1989. The age and origin of younger granitic plutons of the Shaw Batholith in. the Archean Pilbara Block, Westem. Australia. Contributions to Mineralogy and Petrology, 101: 361-376
    Breitkreuz C. and Kennedy A., 1999. Magmatic flare-up at the Carboniferous/Permian boundary in the NE German Basin revealed by SHRIMP zircon ages. Tectonophysics 302: 307-326
    Breitkreuz C., Kennedy A., Marion G. et al., 2004. Far East Avalonia: its chronostratigraphic structure revealed by SHRIMP-zircon data from late Carboniferous volcanic rocks (drill cores from Germany, Poland and Denmark). Session T31. 03, in the abstracts of the 32nd International Geological Congress
    Bumby A. J., Guiraud R., 2005. The geodynamic setting of the Phanerozoic basins of Africa. Journal of African Earth Sciences 43: 1-12
    Buslov M. M., Fujiwara Y., Iwata K., and Semakov N. N., 2004. Late Paleozoic-Early Mesozoic Geodynamics of Central Asia. Gondwana Research, 7 (3): 791-808
    Cabanis B. and Lecolle M., 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination de series volcaniques et la raise en evindence des proeessus de melange et/ou de contamination crustale. C. R. Acad. Sci. Ser. Ⅱ, 309: 2023-2029
    Caprarelli G., Leitch E. C., 1998. Magmatic changes during the stabilisation of a cordilleran fold belt: the Late Carboniferous-Triassic igneous history of eastem New South Wales, Australia. Lithos, 45: 413-430
    Carmina V., Giuseppe C., Jean B., 2004. Permian to Triassic sequence from selected continental areas of southwestern Europe. Session G22. 05, in the abstracts of the 32nd International Geological Congress
    Cavazza W., Roure F., Spakman W., et al. (eds), 2004. The transmed atlas the Mediterranean region from crust to mantle. Springer, Bologna, Paris, Utrecht, Lausanne, and Basle, 60-80
    Cawood P. A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69: 249-279
    Chen C. Y., Frey EA., Rhodes J. M., et al., 1996. Temporal geochemical evolution of Kilauea volcano: comparison of Hilina and Puna basalt. In: Basu A., Hart S. R. (Eds.), Reading the Isotopic Code. American Geophysical Union Monograph, vol. 95. American Geophysical Union, Washington DC, 161-181
    Chen F., Hegner E., Todt W., 2000. Zircon ages, Nd isotopic and chemical compositions of 1427-1446
    Gaetani M., A. Zanchi A., Angiolini L., et al., 2004. The Carboniferous of the Western Karakoram (Pakistan). Journal of Asian Earth Sciences, 23: 275-305
    Gaetani M., Garzanti E., and Tintori A., 1990. Permo-Carboniferous stratigraphy in SE Zanskar and NW Lahul (NW Himalaya, India). Eclogae Geologicae Helvetiae, 83 (1): 143-161
    Garland F., Hawkesworth C. J., Mantovani M. S. M., 1995. Description and petrogenesis of Parana rhyolites, southern Brazil. Journal of petrology, 36: 1193-1127
    Garzanti E., Gaetani M., 2002. Unroofing history of Late Paleozoic magmatic arcs within the "Turan Plate" (Tuarkyr, Turkmenistan). Sedimentary Geology 151: 67-87
    Garzanti E., Sciunnach D., 1997. Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth and Planetary Science Letters, 148: 359-365
    Garzanti, E., Fort, P. L., Sciunnach, D., 1999. First report of Lower Permian basalts in south Tibet: tholiitic magmatism during break-up and incipient opening of Neotethys. Journal of Asian earth sciences, 17: 533-546
    Gehrels G. E., DeCeUes P. G., Martin A., et al., 2003. Initiation of the Himalayan orogen as an Early Paleozoic Thin-skinned Thrust Belt. GAS Today, 13(9): 4-9
    Geng Q. R., Pan G. T., Zheng L. L. et al., 2006. The Eastern Himalayan syntaxis: major tectonic domains, ophiolitic melanges and geologic evolution. Journal of Asian Earth Sciences, 2006, 27: 265-285
    Guiraud R. and Bosworth W., 1999. Phanerozoic geodynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics, 315: 73-108
    Guiraud R., Bosworth W., Thierry J., Delplanque A., 2005. Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Sciences 43: 83-143
    Harris N. B. W., Xu R. H., Lewis C. L., 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Gomud. IN: The geologic evolution of Tibet. Report of the 1985 royal society-Academia Sinica geotraverse of the Qinghai-Xizang plateau. Cambridge University press, 263-285
    Hart S. R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753-757
    Hart S. R., 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90: 273-296
    Hawkesworth C. J., Lightfoot P. C., Fedorenko V. A., 1995. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos, 34: 61-88
    Hess, P. C., 1989. Origins of igneous rocks. Harvard University Press, 109-275
    Him A., Jiang M., Sapin M. et al, 1995, Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375: 571-574
    Holm, P. E., 1985. The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chemical geology, 51: 303-323
    Honegger K., Dietrich V., Frank K., Gansser A., Thoni M., Trommsdorff V., 1982. Magmatism and Deccan Trap lavas: implications of geochemical and mineral chemical variations. Journal of Petrology, 31(5): 1165-1200
    Luhr J. F., Haldar D., 2006, Barren Island Volcano (NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination. Journal of Volcanology and Geothermal Research 149: 177-212
    McCulloch M. T., Jaques A. L., Nelson D. R., et al., 1983. Nd and Sr isotopes in kimberlites and lamproites from western Australia: an enriched mantle origin. Nature, 302: 400-403
    Mckenzie D and Bickle M J, 1988, The volume and composition of melt generated by extension of the lithosphere, Journal of Petrology, 29: 625-679
    Menzies M. A., Ebinger C., Klemperer S., 2000. Volcanic rifted margins, Penrose Conference Report. GSA TODAY, August, 8-11
    Meschede M. 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb—Zr—Y diagram. Chemical Geology, 56: 207-218
    Metcalfe I., 1992. Orodovician to Permian evolution of Southeast Asian terranes: NW Australian Gondwana connections In: Audley-Charles M. G. and Hallam A. (Eds.), Global Perspectives on Ordovician Geology. Balkema, Rotterdam, 293-305
    Metcalfe I., 2004. Reconstruction of Eastern Tethys in space and time. Session G05. 09, in the abstracts of the 32nd International Geological Congress
    Miyashiro A., 1975. Classification, characteristics and origin of ophiolites. Journal of geology, 83: 249-281
    Mizusaki A. M. P., Petfini R., Bellieni P., Comin-Chiaramonti P., Dias J., De Min A. and Piccirillo E. M., 1992. Basalt magmatism along the passive continental margin of SE Brazil (Campos basin). Contributions to Mineralogy and Petrology, 111(2): 143-160
    Muttoni G., Kent D. V., Garzanti E., et al., 2003. Early Permian Pangea "B" to Late Permian Pangea "A". Earth and Planetary Science Letters, 215: 379-394
    Nemeth Z., 2004. Hercynian suture zone in Gemericum: contribution to reconstruction of geodynamic evolution and metallogenetic events of inner western Carpathians. Session T31. 04, in the abstracts of the 32rid International Geological Congress
    Nikishin A. M., Ziegler P. A., Abbott D., et al., 2002. Permo-Triassic intraplate magmatism and rifting in Eurasia: implications for mantle plumes and mantle dynamics. Tectonophysics, 351: 3-39
    Nelson K. D., Zhao W. J., Brown L. D. et al, 1996, Partially molten middle crust beneath Southern Tibet: Synthesis of Project INDEPTH results. Science, 274: 1684—1696
    Pandeli E., 2004. The Paleozoic basement through the 500 Ma-long history of the northern Apennines (Italy). Session T31. 04, in the abstracts of the 32nd International Geological Congress
    Panjasawatwong Y., Zaw K., Chantaramee S. et al., 2006. Geochemistry and tectonic setting of the Central Loci volcanic rocks, Pak Chom area, Loci, northeastern Thailand. Journal of Asian
    Rowley D. B., 1996, Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145: 1-13
    Ruppel C., 1995. Extensional process in continental lithosphere. Journal of Geophysical Research, 100(12): 24187-24215
    Saunder A. D., Storey M., Kent R. W. and Norry M. J., 1992. Consequences of plume-lithosphers interactions. In: Magmatism and the causes of continental breakup. Storey B. C., Alabaster T. and Pankhurst R. J. (eds.), Geological society special publication, 68: 41-60
    Saunders A. D., England R. W., Reichow M. K. et al., 2005. A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia. Lithos 79: 407-424
    Schaltegger U., Schneider J-L, Maurin J-C., Corfu F., 1996. Precise U-Pb chronometry of 345-340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth and Planetary Science Letters, 144: 403-419
    Schneider J. W., Breitkreuz C., KSrner F., et al., 2004. Correlation of Carboniferous/Permian volcanism by combined biostragraphic and isotopic data. Session G22. 01, in the abstracts of the 32nd International Geological Congress
    Sciunnach D. & Garzanti E., 1997. Detrital chromian spinels record tectono-magmatic evolution from Carboniferous rifting to Permian spreading in Neotethys (India, Nepal and Tibet). In: From rifting to drifting in present-day and fossil ocean basins (Messiga B. & Tribuzio R. Eds.), Ofioliti, v. 22/1, pp. 101-110, Firenze.
    Sears J. W., G. M. St. George, J. C. Winne, 2005. Continental rift systems and anorogenic magmatism. Lithos, 80: 147-154
    Senger A. M. C. and K. Burke, 1978. Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophysic research letters, 5: 419-421
    Sengupta S., Acharyya S. K., & De Smeth, 1996. Geochemical characteristics of the Abor volcanic rocks, NE Himalaya, India: nature and early Eocene magmatism. Journal of the Geological Society, London, 153: 695-704
    Shukuno H., Tamura Y., Tani K., et al., 2006. Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu - Bonin arc, Japan. Journal of Volcanology and Geothermal Research, in press
    Smith A. G., 1999. Gondwana: its shape, size and position from Cambrian to Triassic times. Journal of Arican Earth Sciences, 28(1): 71-97
    Smith I. E. M., Worthington T. J., Price R. C. et al., 2006. Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc. Journal of Volcanology and Geothermal Research, in press
    Spisiak J., Voz J., Voz O., 2004. Permian and cretaceous rift-related vocanism in the western Carpathians. Session G20. 09, in the abstracts of the 32nd International Geological Congress
    Storey M., Alabaster T. and Pankhurst R. J. (eds.), 1992. Magmatism and the causes of continental breakup. Geological society, London, special publication, 1992: 61-89
    Storey M., Mahoney J., Saunders A. D., et al., 1995. Timing of hot-spot related volcanism and the breakup of Madagascar and India. Science, 267, 852-855
    Sun, S. S. and McDough, W. F., 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. and Norry M. J. (eds), Magmatism in ocean basins. Geological society. London. Special publication, 42, 313-345
    Sung Hyo Yun, Joo Dung Lee, Sang Won Lee et al., 1997. Petrology of volcanic rocks in Geoje Island, Korea. Journal of Petrological Society of Korea, 6(1): 1-18
    Sun-Lin Chung and Shen-sun Sun, 1992. A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109: 133-145
    Tahirkheli R. A. Khan, 1996, Tectonostratigraphic domains of northern collisional belts in Pakistan (geologic map). Graphic publisher, Karachi-Rawalpindi.
    Taponnier P., Xu Z., Roger F., Meyer B., Amaud N., Wittlinger G., Yang J., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(23): 1671-1677
    Tobisch O. T., Collerson K. D., Bhattacharyya T., 1994. Structural relationships and Sr—Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India: implications for the evolution of the Aravalli craton. Precambrian Research, 65(1-4): 319-339
    Ulrych J., Pesek J., Stepankova -Svobodova J., et al., 2006. Permo-Carboniferons volcanism in late Variscan continental basins of the Bohemian Massif (Czech Republic): geochemical characteristic. Chemic der Erde, 66: 37-56
    Ulrych J., Fediukb F., Langa M., Martinet P., 2004. Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: petrological and geochemical characteristics. Chemic der Erde 64: 127-153
    Vannay J. -C. and Spring L., 1993. Geochemistry of the continental basalts within the Tethyan Himalaya of Lahul-Spiti and SE Zanskar (NW India). In: Trelor P. J. and Searle M. P. (eds.): Himalayan tectonics. Geological society special publication (London), 74: 237-249
    Veevers J. J., Tewari R. C., 1995. Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea. Geology, 23(5): 467-470
    Veevers J. J., 2004. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, 68: 1-132
    Veevers J. J., Clare A., and Wopfner H., 1994. Neocratonic magmatic-sedimentary basins of post-Variscan Europe and post-Kanimblan eastern Australia generated by right-lateral transtension of Permo-Carboniferous Pangaea: Basin Research, 6: 141-157
    Vozarova A., 2004. Sandstone petrology of the western Carpathian late Paleozoic sequence (Slovakia): implications fro the tectonic evolution. Session G21. 14, in the abstracts of the 32nd International Geological Congress
    Wang X., Metcalfe I., Jian P., He L., Wang C., 2000. The Jinshajiang-Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences 18: 675-690
    Wang X. D., Shen S. Z., Sugiyama T., et al., 2003. Late Palaeozoic corals of Tibet (Xizang) and West Yunnan, Southwest China: successions and palaeobiogeography. PALEOS, 191: 385-397
    Wang X. D., Shi G. R., Sugiyama T., 2002. Permian of west Yunnan, southwest China: a biostratigratigraphic synthesis. Journal of Asian Earth Sciences, 20: 647-656
    White R. and McKenzie D., 1989. Mantle plums and flood basalts. Journal of geophysical research, 100: 17543-17585
    Wignall P. B., 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53: 1-33
    Wilson M. and Guiraud R., 1998. Petroleum geology of north Africa. In: Macgregor D. D., Moody R. T. J. and Clark-Lowes D. D. (eds.), Geological society, London, special publication. 132: 231-263
    Wilson M., 1989. Igneous petrology. Oxford University Press, London, 1-441
    Winchester J A, Floyd P A, 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical geology, 20(4): 325-343
    Wood D. A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50: 11-30
    Wooden J. L., Czamanske G. K., Fedorenko V. A. et al., 1993. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril'sk area, Siberia. Geochimica et Cosmochimica Acta, 57: 3677-3704
    Xu R. H., Scharer U., Allegre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. Journal of Geology, 93: 41-57
    Yang K., Mo X., and Zhu Q., 1994. Tectono-volcanic belts and late Palaezoic-early Mesozoic evolution of southwestern Yunnan, China. Journal of Southeast Asian Earth Sciences, 1994. 10(3/4): 245-262
    Yang Kaihui, Mo Xuanxue, Zhu Qinwen, 1994. Tectono-volcanic belts and late Palaezoic-early Mesozoic evolution of southwestern Yunnan, China. Journal of Southeast Asian Earth Sciences, 10(3/4): 245-262
    Yin A., Harrison, T. M., 2000. Geologic evolution of the Himalayan-Tibet orogen. Annual Review of Earth Planetary Science Letters, 28, 211-280
    Youbi N., Bellon H., Maury R., Cotten J., 2004. The microdioritic dikes and sills of Jbilet massif (western Morocco): petrology, geochemistry, 40K-40Ar ages, and geodynamic implications. Session T31. 04, in the abstracts of the 32nd International Geological Congress
    Zanchi A., Gritti D., 1996. Multistage structural evolution of Northern Karakorum (Hunza region, Pakistan). Tectonophysics, 260: 145-165
    Zhao W. J., Nelson K. D., Project INDEPTH team, 1993, Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557-559
    Zhu B., Dong Y., Hu Y., et al., 2004. Geochemical evidence for Emeishan mantle plume developed from Paleo-Tethyan subduction. Session G10. 08, in the abstracts of the 32nd International Geological Congress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700