几类重要蛋白质的结构及催化特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用分子力学和分子动力学方法,对三种蛋白体系进行了三维结构预测和分子对接的理论研究。主要内容包括:
     1.利用同源模建及分子动力学模拟,构建了酯酶Pir7b的空间三维结构,通过Pir7b与活性底物及非活性底物的对接研究,揭示了Pir7b底物基团专一性的原因,并预测一些实验上还未确定,但与底物结合及催化过程中起重要作用的氨基酸残基。
     2.通过同源模建和分子动力学模拟,构建了脂肪酶sqEH的空间三维结构。通过序列比对分析,推测出sqEH的催化三联体。进一步对三类环氧化物底物的对接研究表明,sqEH仅能有效的催化芳香类和脂肪类环氧化物,并对R型对映体表现出严格的特异性。
     3.通过同源模建和分子动力学模拟,构建了单链抗体scFv2F3的三维结构。经过对活性部位的表面分析,讨论了Ser52作为化学修饰活性位点的重要性,并利用突变得到具有谷胱甘肽过氧化物酶活性的抗体酶Se-scFv2F3的近似物Cys-scFv2F3。通过对Cys52临近残基进行突变,引入一个能增强抗体酶催化活性的催化三联体。进一步对Cys52的解离度计算表明,引入的催化三联体能较好的增强Cys52的解离度,提高其亲核进攻能力,为设计更具催化效力的新型抗体酶提供可靠的理论依据。
Molecular modeling is one of the important methods in computational chemistry, which can be used to build, display, simulate, and analyze molecular strucutures and to calculate properties of these structures. In this thesis, molecular mechanics and molecular dynamics methods are used to build three dimensional models for three enzymes and study their structural properties in detail. Some creative results were obtained from our investigation. The main results are outlined as follows:
     1. The 3D structure model of esterase Pir7b was constructed by using homology modeling and molecular dynamics simulations. Three substrates were docking to this protein, two of them were proved to be active, and some critical residues are identified, which have not been confirmed by the experiments. His87 and Leu17 considered as‘oxyanion hole’contribute to initiating the Ser86 nucleophilic attack. Gln187 and Asp139 can form hydrogen bonds with the anilid group to maintain the active binding orientation with the substrates. The docking model can well interpret the specificity of protein Pir7b towards the anilid moiety of the substrates and provide valuable structure information about the ligand binding to protein Pir7b.
     2. The 3D structure of a novel epoxide hydrolase from Aspergillus niger SQ-6 (sqEH) was constructed by using homology modeling and molecular dynamics simulations. Based on the 3D model, Asp191, His369 and Glu343 were predicted as catalytic triad. The putative active pocket is a hydrophobic environment and is rich in some important non-polar residues (Pro318, Trp282, Pro319, Pro317 and Phe242). Using three sets of epoxide inhibitors for docking study, the interaction energies of sqEH with each inhibitor are consistent with their inhibitory effects in previous experiments. Moreover, a critical water molecule which closes to the His369 was identified to be an ideal position for the hydrolysis step of the reaction. Two tyrosine residues (Tyr249 and Tyr312) are able to form hydrogen bonds with the epoxide oxygen atom to maintain the initial binding and position of the substrate in the active pocket. These docked complex models can well interpret the substrate specificity of sqEH, which could be relevant for the structural—based design of specific epoxide inhibitors.
     3. The single chain antibody scFv2F3 can be converted to selenium-containing Se-scFv2F3 by chemical mutation of the Ser residues. Taking antibody fragment 1NQB as a template, the catalytic domain of scFv2F3 was built by using homology modeling and molecular dynamics (MD) simulations. Based on the 3D model, we discussed the importance of Ser52 as the chemical modification site and redesigned the protein groups nearby Ser52 to introduce a catalytic triad. The following 10ns MD results show that the designed Ser52-Trp29-Gln72 catalytic triad is stable enough and high close to the local structural features of native glutathione peroxidases (GPX). Furthermore, the proton pKa shifts of residue 52 in Se-scFv2F3 model and its modified model were computed by using molecular dynamics free energy simulation (MDFE) to evaluate nucleophilic capability of the catalytic residue. Our results may be useful for creating a new abzyme with higher catalytic efficiency and stability.
引文
1沈同,王镜岩.生物化学[M].北京:高等教育出版社,1990.
    2 MEISTER A.Biochemistry of the amino acids[M]. New York:Academic Press,1957.
    3 MATHEWS C K,VAN HOLDE K E,AHERN K G.Biochemistry[M].3rd ed. San Francisco: Addison Wesley Longman,1999.
    4 MURRAY R K, GRANNER D K, MAYES P A, RODWELL V W.Harper's Biochemistry[M].25th ed. Stamford:Appleton & Lange,2000.
    5 BROCCHIERI L, KARLIN S. Protein length in eukaryotic and prokaryotic proteomes [J]. Nucleic Acids Research,2005,33:3390.
    6 DOOLITTLE R F. Reconstructing history with amino acid sequences [J]. Protein Science,1992,1:191.
    7 KABSCH W, SANDER C. A dictionary of protein secondary structure [J]. Biopolymers,1983,22:2577.
    8 HUNKAPILLER M W, STRICKLER J E, WILSON K J. Contemporary methodology for protein structure determination [J]. Science,1984,226:304.
    9 RICHARDS F M, KUNDROT C E. Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure [J]. Proteins,1988,3:71.
    10 FRISHMAN D, ARGOS P. Knowledge-based protein secondary structure assignment [J]. Proteins,1995,23:566.
    11 FREEDMAN R B, HIRST T R, TUITE M F. Protein disulphide isomerase: building bridges in protein folding [J]. Trends in Biochemical Sciences,1994,19:331.
    12 BRANDEN C, TOOZE J.Introduction to Protein Structure[M].2nd ed. New York:Garland Publishing,1999.
    13阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.
    14 WILSON K J. Micro-level protein and peptide separations [J]. Trends in Biochemical Sciences,1989,14:252.
    15 BRANDEN C,TOOZE J.Introduction to Protein Structure [M]. New York: Garland Publishing,1999.
    16 KENT S B. Chemical Synthesis of Peptides and Proteins [J]. Annual Review of Biochemistry,1988,57:957.
    17 GROVES J T. Artificial enzymes. The importance of being selective [J]. Nature,1997,389:329.
    18 BAIROCH A. The ENZYME database in 2000 [J]. Nucleic Acids Research, 200028:304.
    19吴诗光,周琳.对酶概念的再认识[N].生物学通报,2002(4).
    20 FISHER Z,HERNANDEZ PRADA J A,TU C,et al. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II [J]. Biochemistry,2005,44:1097.
    21 WAGNER AF,FOLKERS KA.Vitamins and coenzymes[M]. New York: Interscience Publishers,1975.
    22张小里,岑沛霖.伴有辅酶再生的多酶反应技术进展[J].化工进展,1996,6:50.
    23 JAEGER K E,Eggert T. Enantioselective biocatalysis optimized by directed evolution [J]. Current Opinion in Biotechnology,2004,15: 305.
    24 FERSHT A.Enzyme Structure and Mechanism[M].2nd ed. New York:W H Freeman & co,1985.
    25 FISCHER E. Einfluss der Configuration auf die Wirkung der Enzyme [J]. Berichte der Deutschen Chemischen Gesellschaft,1894,27:2985.
    26 KOSHLAND D E. Application of a Theory of Enzyme Specificity to Protein Synthesis [J]. Proceedings of the National Academy of Sciences,1958,44:98.
    27 BOYER R.Concepts in Biochemistry[M].2nd ed. New York ,Chichester, Weinheim,Brisbane,Singapore,Toronto:John Wiley & Sons,2002.
    28 VASELLA A, DAVIES G J, BOHM M. Glycosidase mechanisms [J]. Current Opinion in Chemical Biology,2002,6:619.
    29赵南明,周海梦等.生物物理学[M].北京:高等教育出版社,2000.
    30 MCCAMMON J A, GELIN B R,KARPLUS M. Dynamics of folded proteins [J]. Nature,1977,267:585.
    31 SARMA R H.Biomolecular Stereodynamics[M].New York:Adenine Press, 1981.
    32 LINDERSTROM-LANG K. Deuterium exchange between peptides and water [J]. Chemical Society (London) Special Publication,1955, 2:1.
    33 FEYNMAN RP,LEIGHTON R B,SANDS M. The Feynman Lectures in Physics. Addison-Wesley,1963.
    34 FRAUENFELDER H , PETSKO G A , TSERNOGLOU D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics [J]. Nature,1979,280:558-563.
    35 ARTYMIUK P J,et al. Crystallographic studies of the dynamic properties of lysozyme [J]. Nature,1979,280:563.
    36 ICHIYE T , KARPLUS M. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study [J]. Biochemistry, 1983,22:2884.
    37 DOBSON C M,KARPLUS M. Internal motion of proteins: Nuclear magneticresonance measurements and dynamic simulations [J]. Methods in Enzymology,1986,131:362.
    38 SMITH J,CUSACK S,PEZZECA U,et al. Inelastic neutron scattering analysis of low frequency motion in proteins: A normal mode study of the bovine pancreatic trypsin inhibitor [J]. Journal of Chemical Physics,1986,85:3636.
    39 BRüNGER A T,BROOKS C L,III,KARPLUS M. Active site dynamics of ribonuclease [J]. Proceedings of the National Academy of Sciences,1985,82:8458.
    40 FRAUENFELDER H,et al. Thermal expansion of a protein [J]. Biochemistry,1987,26:254.
    41 BRüNGER A T,KURIYAN J,KARPLUS M. Crystallographic R factor refinement by molecular dynamics [J]. Science,1987,235:458.
    42 BLUNDELL T L,SIBANDA B L,STERNBERG M J E,THORNTON J M. Knowledge-based prediction of protein structures and the design of novel molecules [J]. Nature,1987,326:347.
    43 ORENGO C A,JONES D T,THORNTON J M. Protein superfamilies and domain superfolds [J]. Nature,1994,372:631.
    44 MAY A C W,BLUNDELL T L. Automated comparative modelling of protein structures [J]. Current Opinion in Biotechnology,1994,5:355.
    45 BLUNDELL T L,CARNEY D,GARDNER S,et al. Knowledge-based protein modelling and design [J]. formerly European Journal of Biochemistry,1988,172:513.
    46 BROWNE W J,NORTH A C T,PHILLIPS D C,et al. A Possible Three-dimensional Structure of Bovineα-Lactalbumin based on that of Hen’s Egg-White Lysozyme [J]. Journal of Molecular Biology, 1969,42:65.
    47 PREVELIGE J P, FASMAN G.In Prediction of Protein Structure and the Principles of Protein Conformation[M].Fasman G ed. New York:Plenum,1989.
    48 THOMAS P D,DILL K A. An iterative method for extracting energy-like quantities from protein structures [J]. Proceedings of the National Academy of Sciences,1996,93:11628.
    49 LATHROP R H,SMITH T F. Global optimum protein threading with gapped alignment and empirical pair score functions [J]. Journal of Molecular Biology,1996,255:641.
    50 FISCHER D , EISENBERG D. Protein fold recognition using sequence derived predictions [J]. Protein Science,1996,5:947.
    51 SALI A,POTTERTONE L,YUAN F,et al. Evaluation of comparative protein modeling by MODELLER [J]. Proteins,1995,23:318.
    52 SIPPL M J. Knowledge-based potentials for proteins [J]. Current Opinion in Structural Biology,1995,5:229.
    53 SUN Z R, ZHANG C T,WU F H,et al. A vector projection method for predicting supersecondary motifs [J]. Journal of Protein Chemistry,1996,15:721.
    54 SUN Z R,RAO X Q,PENG L W,et al. Prediction of protein supersecondary structures based on artificial neural network method [J]. Protein Engineering,1997,10:763.
    55王彦力,来鲁华,韩玉真等.新型平均势函数在蛋白质反向折叠中的应用[J].生物物理学报,1995,11:67.
    56来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993.
    57 RUSSELL R B,Barton G J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels [J]. Proteins,1992,14:309.
    58 STERNBERG M J E.Protein structure prediction-a practical approach[M],Oxford:Oxford Press,1996.
    59 SANCHEZ R,SALI A. Comparative protein structure modeling in genomics [J]. Journal of Computational Physics,1999,151:388.
    60 DODGE C. The HSSP database of protein structure sequence alignments and family profiles [J]. Nucleic Acids Research,1998,26:313.
    61 LAZIKANI B,et al. Protein structure p rediction [J]. Current Opinion in Chemical Biology,2003,5:51.
    62曾炳佳,曹以诚,杜正平等.同源建模关键步骤的研究动态[J].生物学杂志,2008,25(2):7
    63 SKOULOUBRIS S,LABIGNE A,DE REUSE H. The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues [J]. Molecular Microbiology,2001,40: 596.
    64 SHORTEN D M,WATSON H C. Three-dimensional structure of tosyl-elastase [J]. Nature,1970,225:811.
    65 GREER, J. Model for haptoglobin heavy chain based upon structural homology [J]. Proceedings of the National Academy of Sciences 1980,77:3393.
    66 GREER J. Comparative Model-Building of the. Mammalian Serine Proteases [J]. Journal of Molecular Biology,1981,153:1027.
    67 GREER J. Model structure for the inflammatory protein C5a [J]. Science,1985,228,1055.
    68 BLUNDELL T L , SIBANDA B L , STERNBERG M J E , et al. Knowledge-Based Prediction of Protein Structures and the Design of Novel Molecules [J]. Nature,1987,326:347.
    69 MADHUSUDHAN M S,MARTI-RENOM M A,SANCHEZ R,et al. Variable gap penalty for protein sequence structure alignment [ J ].Protein Engineering, 2006,19:129.
    70 OHLSON T,WALLNER B,ELOFSSON A. Profile-profile methods provide improved fold-recognition: a study of different profile-profile alignment methods [J]. Proteins,2004,57:188.
    71 BAXEVANIS A D,OUELLETTE B F F.A Practical Guide to the Analysis of Genes and Proteins[M].In Bioinformatics, Wiley-Liss. Inc., 1998.
    72 NEEDLEMAN S B,WUNSCH C D. A general method applicable to the search for similarities in the amino acid sequence of two proteins [J]. Journal of Molecular Biology,1970,48:443.
    73 DEPIEREUX E , FEYTMANS E. Simultaneous and multivariate alignment of protein sequences: correspondence between physicochemical profiles and structurally conserved regions (SCR) [J]. Protein Engineering,1991,4,603.
    74 PONDER J W,RICHARDS F M. Tertiary templates for proteins : Use of packing criteria in the enumeration of allowed sequences for different structural classes [J]. Journal of Molecular Biology,1987,193:775.
    75 PONDER J W,RICHARDS F M. Internal Packing and Protein Structural Classes [J]. Cold Spring Harbor symposia on quantitative biology,1987,52:421.
    76 MCGREGOR M J,ISLAM S A,STERNBERG M J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins [J]. Journal of MolecularBiology,1987,198:295.
    77 SUMMERS N L,CARLSON W D,KARPLUS M. Analysis of side-chain orientations in homologous proteins [J]. Journal of Molecular Biology,1987, 196:175.
    78 FISER A,DO R K,SALI A. Modeling of loop s in p rotein structures [J]. Protein Science,2000,9:1753.
    79 FERNANDEZ-FUENTES N,OLIVA B,FISER A. A supersecondary structure library and search algorithm for modeling loop s in p rotein structures [J]. Nucleic Acids Research,2006,34:2085.
    80 MAS M T,SMITH K C,YARMUSH D L,et al. Modeling the anti-CEA antibody combining site by homology and conformational search [J]. Proteins,1992,14:483.
    81 HUANG E S,KOEHL P,LEVITT M,et al. Accuracy of side-chain prediction upon near-native protein backbones generated by ab initio folding methods [J]. Proteins,1998,33:204.
    82 BROOKS B R,BRUCCOLERI R E,OLAFSON B D,et al. CHARMM: A program for macromolecular energy, minmimization, and dynamics calculations [J]. Journal of Computational Chemistry,1983,4:187.
    83 MACKERELL A D,BASHFORD D,BELLOTT M,et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins [J]. The Journal of Physical Chemistry B,1998,102,3586.
    84 MACKERELL A D,WIORKIEWICZKUCZERA J,KARPLUS M. An all-atom -99-empirical energy function for the simulation of nucleic acids [J]. Journal of the American Chemical Society,1995,117:11946.
    85 MOMANY F A,RONE R. Validation of the General Purpose QUANTA 3.2/CHARMm Force Field [J]. Journal of Computational Chemistry,1992,13:888.
    86 CORNELL W D,CIEPLAK P,BAYLY C I,et al. A second generation force field for the simulation of proteins, nucleic acids and organic molecules [J]. Journal of the American Chemical Society,1995,117: 5179.
    87 WEINER P K,KOLLMAN P A. AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions [J]. Journal of Computational Chemistry,1981,2:287.
    88 DAUBER-OSGUTHORPE P,ROBERTS V A,OSGUTHORPE D J,et al. Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase- trimethoprim, a drug-receptor system [J]. Proteins: Structure, Function and Genetics,1988,4:31.
    89 HAGLER A T,EWIG C S. On the use of quantum energy surfaces in the derivation of molecular force fields [J]. Computer Physics Communications,1994,84:131.
    90 MAPLE J R,HWANG M J,STOCKFISCH T P,et al. Derivation of Class II force fields. 3. Characterization of a quantum force field for the alkanes [J]. Israel Journal of Chemistry,1994,34:195.
    91 HERMANS J,BERENDSEN H J C,VAN GUNSTEREN W F,et al. A Consistent Empirical Potential for Water-Protein Interactions [J]. Biopolymers 1984,23:1513.
    92 OTT K H,MEYER B. Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations [J]. Journal of Computational Chemistry,1996,17:1068.
    93 MORRIS A L,MACARTHUR M W,HUTCHINSON E G,et al. Stereochemical quality of protein structure coordinates [J]. Proteins,1992,12:345.
    94 EISENBERG D,LüTHY R,BOWIE JU. VERIFY3D: assessment of protein models with three-dimensional profiles [J]. Methods in Enzymology,1997,277:396.
    95 BOWIE J U,LüTHY R,EISENBERG D. A method to identify protein sequences that fold into a known three-dimensional structure [J]. Science,1991,253:164-170.
    96 GRIBSKOV M,MCLACHLAN A D,EISENBERG D. Profile analysis: Detection of distantly related proteins [J]. Proceedings of the National Academy of Sciences,1987,84:4355.
    97 GRIBSKOV M,LüTHY R,EISENBERG D. Profile analysis [J]. Methods in Enzymology,1990,183:146.
    98 LüTHY R,BOWIE J U,EISENBERG D. Assessment of protein models with three-dimensional profiles [J]. Nature,1992,356:83.
    99 EISENBERG D,WESSON M,YAMASHITA M. Interpretation of proteinfolding and binding with atomic solvation parameters [J]. Chemica Scripta,1989,29:217.
    100 BERNSTEIN F C,KOETZLE T F,WILLIAMS G J B,et al. The Protein Data Bank: A Computer-based Archival File for Macromolecular Structures [J]. Journal of Molecular Biology,1977,112:535.
    101 ALLINGER N L,BURKERT U.Molecular Mechanics[M]. Washington:American Chemical Society,1982.
    102 BECKER O,MACKERELL A D,ROUX J B,et al.Computational Biochemistry and Biophysics[M].New York:Marcel Dekker,2001.
    103 MACKERELL A D. Empirical Force Fields for Biological Macromolecules: Overview and Issues [J]. Journal of Computational Chemistry,2004,25:1584.
    104 ALDER B J,WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method [J]. Journal of Chemical Physics,1959,31:459.
    105 STREETT W B,TILDESLEY D J,SAVILLE G. Multiple time-step methods in molecular dynamics [J]. Molecular Physics,1978,35:639.
    106 TUCKERMAN M E,BERNE B J,MARTYNA G J. Molecular dynamics algorithm for multiple time scales: Systems with long range forces [J]. Journal of Chemical Physics,1991,94:6811.
    107 MCCAMMON J,GELIN J B, KARPLUS M. Dynamics of folded proteins [J]. Nature,1977,267:585.
    108 FRENKEL D,SMIT B.Understanding Molecular Simulation : from algorithms to applications[M]. San Diego , California:Academic Press,2002.
    109 MSI manual, Forcefield-Based Simulations General Theory & Methodology,1997.
    110 ANDREW R L.Molecular Modeling: Principles and Applications[M]. London: Addison Wesley Longman Limited,1996.
    111唐敖庆,杨忠树,李前树.量子化学[M].北京:科学出版社,1982.
    112王志中.现代量子化学计算方法[M].长春:吉林大学出版社,1998.
    113 BORN M,OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik,1927,84:457.
    114陈凯先,蒋华良,嵇汝运.计算机辅助药物设计─原理、方法及应用[M].上海:上海科学技术出版社,2000.
    115 ANDREWS D H. The Relation Between the Raman Spectra and the Structure of Organic Molecules [J]. Physical Review,1930,36:544.
    116 WESTHEIMER F H,MEYER J E. The Theory of the Racemization of Optically Active Derivatives of Diphenyl [J]. Journal of Chemical Physics,1946,14:733.
    117 BARTON D H R. Interactions between non-bonded atoms, and the structure of cis-decalin [J]. Journal of the Chemical Society,1948,70:340.
    118 WESTHEIMER F H.Steric Effect in Organic Chemistry[M]. New York: John Wiley and Sons,1956.
    119 HENDRICKSON J B. Molecular Geometry. I. Machine Computationof the Common Rings [J]. Journal of the Chemical Society,1961,83:4537.
    120 ALLINGER N L,MILLER M A,CATLEDGE F A,et al. Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrickson-Wiberg method [J]. Journal of the Chemical Society,1967,89:4345.
    121 LIFSON S,WARSHEL A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules [J]. Journal of Chemical Physics,1968,49:5116.
    122 BURKERT U,ALLINGER N L.Molecular Mechanics [M].Washington D. C: American Chemical Society,1982.
    123 LEVITT M,LIFSON S. Refinement of protein conformations using a macromolecular energy minimization procedure [J]. Journal of Molecular Biology,1969,46:269.
    124 FLECHER R,REEVES C M. Function minimization by conjugate gradients [J]. The Computer Journal,1964,7:149.
    125 FLECHER R.Practical Methods of Optimization[M].New York: John Wiley & Sons,1980.
    126 POWELL M J D. Restart procedures for the conjugate gradient method [J]. Mathematical Programming,1977,12:241.
    127 BROYDEN C G. The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm [J]. International Journal of Applied Mathematics,1970,6:222.
    128 FLECHER R. A new approach to variable metric algorithms [J]. The Computer Journal,1970,13:317.
    129 GOLDFARB D A. A family of variable metric methods derived by variational means [J]. Mathematics of Computation,1970,24:23.
    130 SHANNO D F. Conditioning of quasi-Newton methods for function minimization [J]. Mathematics of Computation,1970, 24:647.
    131 ALDER B J,WAINWRIGHT T E. Phase Transition for a Hard Sphere System [J]. Journal of Chemical Physics,1957,27:1208.
    132 FERMI E.Collected Papers[M]. Chicago:University of Chicago Press,1965.
    133 RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon [J]. Physical Review,1964,136:405.
    134 VERLET L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review,1967,159:98.
    135 DUAN Y,KOLLMAN P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution [J]. Science,1998,282:7401.
    136 ZHONG Q,JIANG Q,MOORE P B,et al. Molecular dynamics simulation of a synthetic ion channel [J]. Biophysical Journal,1998,74:3.
    137 ZHONG Q,MOORE P B,NEWNS D M,et al. Molecular dynamics study of the LS3 voltage-gated ion channel [J]. FEBS Letters,1998,427:267.
    138 MI H,TUCKERMAN M E,SCHUSTER D I,et al. A molecular dynamics study of HIV-1 protease complexes with C60 and fullerene-based anti-viral agents [J]. Proceedings of the Electrochemical Society,1999,99:256.
    139 TUCHERMAN M E,MARTYNA G J. Understanding Modern Molecular Dynamics: Techniques and Applications [J]. The Journal of Physical Chemistry B,2000,104:159.
    140 ALLEN M P,TILDESLEY D J.Computer Simulation of Liquids[M].New York: Clarendon Press, 1987.
    141 GEAR C W.Numerical Initial Value Problems in Ordinary Differential Equations[M]. New Jersey : Prentice-Hall, Englewood Cliffs,1971.
    142 HOCKNEY R W. The potential calculation and some applications [J]. Methods in Computational Physics,1970,9:136.
    143 POTTER D.Computational Physics[M]. New York:Wiley,1972.
    144 SWOPE W C,ANDERSIN H C,BERENS P H,et al. A Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: appliclation to small water clusters [J]. Journal of Chemical Physics,1982,76:637.
    145 BEEMAN D. Some Multistep Methods for Use in Molecular Dynamics Calculations [J]. Journal of Computational Physics,1976,20,130.
    146 WOODCOCK L V. Isothermal molecular dynamics calculations for liquid salts [J]. Chemical Physics Letters,1970,10:257.
    147 HAILE J M,GUPTA S. Extensions of the molecular dynamics simulation method. II. Isothermal systems [J]. Journal of Chemical Physics,1983,79:3067.
    148 HOOVER W G,EVANS D J,HICKMAN R B,et al. Lennard-Jones triple-point bulk and shear viscosity. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics [J]. Physical Review A,1980,22,1690.
    149 EVANS D J,MORRIS G P. Isothermal-Isobaric Molecular Dynamics. Chemical Physics [J]. 1983,77:63.
    150 EVANS D J. Computer“experiment”for nonlinear thermodynamics of Couette flow [J]. Journal of Chemical Physics,1983,78:3297.
    151 VAN SWOL F,WOODCOCK L V,CAPE J N. Melting in two-dimensions: determination of phase transition boundaries [J]. Journal of Chemical Physics,1980,73:913.
    152 BROUGHTON J Q,GILMER G H,WEEKS J D. Constant Pressure Molecular Dynamics Simulations of the 2D r-12 System: Comparison with Isochores and Isotherms [J]. Journal of Chemical Physics,1981,75:5128.
    153 BROWN D,CLARKE J H R. A Comparison of Constant Energy, Constant Temperature and Constant Pressure Ensenbles in Molecular Dynamics Simulations of Atomic Liquid [J]. Molecular Physics,1984,51:1243.
    154 ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. Journal of Chemical Physics,1980,72:2384.
    155 HAILE J M,GRABEN H W. Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic-isobaric ensemble [J]. Journal of Chemical Physics,1980,73:2412.
    156徐筱杰,陈丽蓉.化学及生物体系中的分子识别[J].化学进展,1996,8:189.
    157 KOSHLAND D E. Application of a theory of enzyme specificity to protein synthesis [J]. Proceedings of the National Academy of Sciences,1958, 44:98.
    158 KUNTZ I D. Structure-based strategies for drug design and discovery [J]. Science,1992,257:1078.
    159 KUNTZ I D,MENG E C,SHOICHET B K. Structure-based molecular design [J]. Accounts of Chemical Research,1994,27:117.
    160 KUNTZ I D,BLANEY J M,OATLEY S J,et al. A geometric approach to macromolecule-ligand interactions [J]. Journal of Molecular Biology, 1982,161:269.
    161 SHOICHET B K,BODIAN D L,KUNTZ I D. Molecular docking using shape descriptors [J]. Journal of Computational Chemistry,1992,13:380.
    162 MENG E C,SHOICHET B K,KUNTZ I D. Automated docking with grid-based energy evaluation [J]. Journal of Computational Chemistry,1992,13:505.
    163 MENG E C,GSCHWEND D A,BLANEY J M,et al. Orientational sampling and rigid-body minimization in molecular docking [J].Proteins,1993, 17:266.
    164 ALLEN F H,BELLARD S,BRICE M D,et al. The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information [J]. Acta Crystallographica,1979,35:2331.
    165 RUSINKO A,SHERIDAN R P,NILAKATAN R,et al. Using CONCORD to construct a large database of three-dimensional coordinates from connection tables [J]. Journal of Chemical Information and Computer Sciences, 1989,29:251.
    166 MORRIS G M,GOODSELL D S,HALLIDAY R S,et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. Journal of Computational Chemistry,1998,19:1639.
    167 Affinity 98.0 Usre Guide, Version 98.0, MSI, San Diego, 1998.
    168 SMITH J A,ME′TRAUX J P. Pseudomonas syringae patho var syringae induces systemic resistance to Pyricularia oryzae in rice [J]. Physiological and Molecular Plant Pathology,1991,39:451.
    169 REIMMANN C,HOFMANN C,MAUCH F,et al. Characterization of a rice gene induced by Pseudomonas syringae pv.syringae: Requirement for the bacterial lemA gene function [J]. Physiological and Molecular Plant Pathology,1995,46:71.
    170 ZHANG L,BIRCH R G. Mechanisms of biocontrol by Pantoea dispersa of sugar cane leaf scald disease caused byXanthomonas albilineans [J]. Journal of Applied Microbiology,1997,82:448.
    171 WASPI U, MISTELI B, HASSLACHER M,et al. The defense-related rice gene Pir7b encodes an alpha/beta hydrolase fold protein exhibiting esterase activity towards naphthol AS-esters [J]. European Journal of Biochemistry,1998,254:32.
    172 NARDINI M, DIJKSTRA B W. Alpha/beta hydrolase fold enzymes: the family keeps growing [J]. Current Opinion in Structural Biology,1999,9: 732.
    173 FOJAN P, JONSON PH, PETERSEN M T N,et al. What distinguishes an esterase from a lipase: a novel structural approach [J]. Biochimie, 2000,82:1033.
    174 HAKULINEN N, TENKANEN M, ROUVINEN J. Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: Insights into the deacetylation mechanism [J]. Journal of Structural Biology,2000,132:180.
    175 ALTSCHUL S F,MADDEN T L,SCHAFFER A A,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Research,1997,25:3389.
    176 FOROUHAR F,YANG Y,KUMAR D,et al. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity [J]. Proceedings of the National Academy of Sciences,2005,102:1773.
    177 ZUEGG J,GRUBER K,GUGGANIG M,et al. Three-dimensional structures of enzyme-substrate complexes of the hydroxynitrile lyase from Hevea brasiliensis [J]. Protein Science,1999,8:1990.
    178 KUMAR D,KLESSIG D F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity [J]. Proceedings of the National Academy of Sciences,2003,100:16101.
    179 KLESSIG D F,DURNER J,NOAD R,et al. Nitric oxide and salicylic acid signaling in plant defense [J]. Proceedings of the National Academy of Sciences,2000,97:8849.
    180 GRUBER K,GARTLER G,KRAMMER B,et al. Reaction mechanism of hydroxynitrile lyases of the alpha/beta-hydrolase superfamily: the three-dimensional structure of the transient enzyme-substrate complex certifies the crucial role of LYS236 [J]. Journal of Biological Chemistry,2004,279:20501.
    181 RAGHAVA G.P.S. Protein secondary structure prediction using nearest neighbor and neural network approach [J]. Protein Structure Prediction Center,2000,4:75.
    182 GARNIER J,OSGUTHORPE D J,Robson B. Analysis of the Accuracy and Implications of Simple Methods for Predicting the Secondary Structure of Globular Proteins [J]. Journal of Molecular Biology,1978,120:97.
    183 ZHANG C T,ZHANG R. A graphic approach to evaluate algorithms of secondary structure prediction [J]. Journal of Biomolecular Structure and Dynamics,2000,17:829.
    184 GEOURJON C,DELEAGE G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Computer Applications in the Biosciences,1995,11: 681.
    185 HAN C L,ZHANG W,DONG H T,et al. A novel gene of beta chain of the IFN-gamma receptor of Huiyang chicken: cloning, distribution, and CD assay [J]. Journal of Interferon and Cytokine Research,2006,26: 441.
    186 HIGGINS D G,BLEASBY A J,FUCHS R. CLUSTAL V: improved software for multiple sequence alignment [J]. Computer Applications in the Biosciences,1992,8:189.
    187 InsightII, Homology User Guide, SanDiego:Biosym/MSI, 2000.
    188 HAKULINEN N , TENKANEN M , ROUVINEN J. Three-dimensional structure of the catalytic core of acetyl xylan esterase from Trichoderma reesei: insights into the deacetylation mechanism [J]. Journal of Structural Biology,2000,132:180.
    189 KE Y Y,CHEN Y C,LIN T H. Structure of the virus capsid protein VP1 of enterovirus 71 predicted by some homology modeling and molecular docking studies [J]. Journal of Computational Chemistry,2006,27:1556.
    190 YANG H,AHN J H,IBRAHIM R K,et al. The three-dimensional structure of Arabidopsis thaliana O-methyltransferase predicted by homology-based modelling [J]. Journal of Molecular Graphics and Modelling,2004,23:77.
    191 LASKOWSKI R A,MOSS D S,THORNTON J M. Main-chain bond lengths and bond angles in protein structures [J]. Journal of Molecular Biology, 1993,231:1049.
    192 Insight II Profiles-3D, MolecularSimulations Inc., San Diego,2000.
    193 LüTHY R,BOWIE J,EISENBERG D. Assessment of protein models with three-dimensional profiles [J]. Nature,1992,356:83.
    194 SIPPL M J. Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures [J]. Journal of Computer-Aided Molecular Design,1993,7,473.
    195 FRISCH M J,TRUCKS G W,SCHLEGEL H B. Gaussian 03 (Revision A.1) Gaussian Pittsburgh,2003.
    196 Affinity. San Diego: Molecular Simulations Inc,2000.
    197 BARTLETT P A,SHEA G T,TELFER S J,et al. In Molecular Recognition:Chemical and Biological Problems. Roberts, S. M., Ed. London:Royal Society of Chemistry,1989.
    198 SHOICHET B K,BODIAN D L,KUNTZ I D. Molecular docking using shape descriptors [J]. Journal of Computational Chemistry,1992,13:380.
    199 MCCAMMON J A,HARVEY S C.Dynamics of Proteins and Nucleic Acids[M]. Cambridge:Cambridge University Press,1987.
    200 SIMMERLING C,STROCKBINE B,ROITBERG A E. All-atom structure prediction and folding simulations of a stable protein [J]. Journal of the American Chemical Society,2002,124:11258.
    201 HORNAK V,OKURA,RIZZO R C,et al. HIV-1 protease flaps spontaneously open and reclose in molecular dynamics simulations [J]. Proceedings of the National Academy of Sciences,2006,103:915.
    202 CASE D A,THOMAS E,CHEATHAM III,et al. The Amber biomolecular simulation programs [J]. Journal of Computational Chemistry,2005,26:1668.
    203 PONDER J W,CASE D A. Force fields for protein simulations [J]. Advances in Protein Chemistry,2003,66:27-85.
    204 SAGUI C,DARDEN T A. In Simulation and Theory of Electrostatic Interactions in Solution [M]. Pratt, L. R., Hummer, G., Eds. Melville, New York:American Institute of Physics,1999.
    205 BAUDOUIN E,CHARPENTEAU M,ROBY D,et al. Functional expression of a tobacco gene related to the serine hydrolase family. Esterase activity towards short-chain dinitrophenyl acylesters [J]. European Journal of Biochemistry,1997,248:700.
    206 ARAND M,OESCH F.Enzyme Systems That Metabolise Drugs and Other Xenobiotics[M]. New York:Wiley,2002.
    207 ARMSTRONG R N. Kinetic and chemical mechanism of epoxide hydrolase [J]. Drug Metabolism Reviews,1999,31:71.
    208 OESCH F. Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds [J]. Xenobiotica,1973,3:305.
    209 ARAND M,WAGNER H,OESCH F. Asp333, Asp495 and His523 form the catalytic triad of rat soluble epoxide hydrolase [J]. Journal of Biological Chemistry,1996,271:4223.
    210 LACOURCIERE G M,ARMSTRONG R N. The catalytic mechanism of microsomal epoxide hydrolase involves an ester intermediate [J]. Journal of the American Chemical Society,1993,115:10466.
    211 WEIJERS C A G M,DE BONT J A M. Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis [J]. Journal of Molecular Catalysis B: Enzymatic,1999,6:199.
    212 ARMSTRONG R N, CASSIDY C S. New structural and chemical insight into the catalytic mechanism of epoxide hydrolases [J]. Drug Metabolism Reviews,2000,32:327.
    213 RINK R,FENNEMA M,SMIDS M,et al. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1 [J]. Journal of Biological Chemistry,1997,272:14650.
    214 ARAND M,HEMMER H,DURK H,et al. Cloning and molecular characterization of a soluble epoxide hydrolase fromAspergillus niger that is related to mammalian microsomal epoxide hydrolase [J]. Biochemical Journal,1999,344:273.
    215 WOJTASEK H,PRESTWICH G D. An insect juvenile hormone-specific epoxide hydrolase is related to vertebrate microsomal epoxide hydrolases [J]. Biochemical and Biophysical Research Communications,1996,220:323.
    216 READY J M,JACOBSEN E N. Highly Active Oligomeric (salen)Co Catalysts for Asymmetric Epoxide Ring Opening Reactions [J]. Journal of the American Chemical Society,2001,123:2687.
    217 BELL P A, KASPER C B. Expression of rat microsomal epoxide hydrolase in Escherichia coli. Identification of a histidyl residue essential for catalysis [J]. Journal of Biological Chemistry,1993,268:14011.
    218 LAUGHLIN L T,TZENG H F,LIN S,et al. Mechanism of microsomal epoxide hydrolase. Semifunctional site-specific mutants affecting the alkylation half reaction [J]. Biochemistry,1998,37:2897.
    219 MOUSSOU P , ARCHELAS A , FURSTOSS R. Microbiological transformations 41: screening for novel epoxide hydrolase [J]. Journal of Molecular Catalysis B: Enzymatic,1998,5:447.
    220 MOUSSOU P,ARCHELAS A,BARATTI J,et al. Microbiological transformations. Part 39: Determination of the regioselectivity occurring during oxirane ring opening by epoxide hydrolases: a theoretical analysis and a new methodfor its determination [J]. Tetrahedron:Asymmetry,1998,9:1539.
    221 CLEIJ M , ARCHELAS A , FURSTOSS R. Microbiological transformations. Part 42: A two-liquid-phase preparative scale process for an epoxide hydrolase catalysed resolution of para-bromo-α-methyl styrene oxide. Occurrence of a surprising enantioselectivity enhancement [J]. Tetrahedron:Asymmetry,1998,9:1839.
    222 LIU Y,WU S,WANG J,et al. Cloning, expression, purification, and characterization of a novel epoxide hydrolase from Aspergillus niger SQ-6 [J]. Protein Expression and Purification,2007,53:239.
    223 ZOU J,HALLBERG B M,BERGFORS T,et al. Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases [J]. Structure,2000,8,111.
    224 GUI C,ZHU W,CHEN G,et al. Understanding the regulation mechanisms of PAF receptor by agonists and antagonists: molecular modeling and molecular dynamics simulation studies [J]. Proteins,2007,67:41.
    225 CASE D A,DARDEN T A,CHEATHAM T E,et al.AMBER 8[M].San Francisco:University of California,2004.
    226 PASTOR R W,BROOKS B R,SZABO A. An analysis of the accuracy of Langevin and molecular dynamics algorithms [J]. Molecular Physics,1988,65:1409.
    227 TUCCINARDI T,MANETTI F,SCHENONE S,et al. Construction and validation of a RET TK catalytic domain by homology modeling [J]. Journal of Chemical Information and Modeling,2007,47:644.
    228 LASKOWSKI R A,MACARTHUR M W,MOSS D S,et al. PROCHECK: a program to check the stereochemical quality of protein structures [J]. Journal of Applied Crystallography,1993,26:283.
    229 Binding site analysis user guide. San Diego, USA: Accelrys Inc,2000.
    230 SHEEHAN D,MEADE G,FOLEY V M,et al. Structure, function and evolution of glutathione transferases : implications for classification of non-mammalian members of an ancient enzyme superfamily [J]. Biochemical Journal,2001,360:1.
    231 DIRR H W,REINEMER P,HUBER R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function [J]. European Journal of Biochemistry,1994,220:645.
    232 ARMSTRONG R N. Structure, catalytic mechanism, and evolution of the glutathione transferases [J]. Chemical Research in Toxicology,1997,10:2.
    233 WU Z P , HILVERT B. Selenosubtilisin as a glutathione peroxidase mimic [J]. Journal of the American Chemical Society,1990,112:5647.
    234 BOSCHI-MULLER S,MULLER S,DORSSELAER A V,et al. Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity [J]. FEBS letters,1998,439:241.
    235 SU D , REN X , YOU D , et al. Generation of three selenium-containing catalytic antibodies with high catalytic efficiency using a novel hapten design method [J]. Archives of Biochemistry and Biophysics,2001,395:177.
    236 REN X,GAO S,YOU D,et al. Cloning and expression of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency [J]. Biochemical Journal,2001,359:369.
    237 FLOHE L.The selenoprotein glutathione peroxidase. In: Glutathione: Chemical, Biochemical and Medical Aspects[M]. New York: Wiley,1989.
    238 MUGESH G,PANDA A,SINGH H B,et al. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study [J]. Journal of the American Chemical Society,2001,123:839.
    239 MAIORINO M,AUMANN K D,BRIGELIUS-FLOHéR,et al. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx) [J]. Biological Chemistry Hoppe-Seyler,1995,376:651.
    240 PEI X Y,HOLLIGER P,MURZIN A G,et al. The 2.0-A resolution crystal structure of a trimeric antibody fragment with noncognate VH-VL domain pairs shows a rearrangement of VH CDR3 [J]. Proceedings of the National Academy of Sciences,1997,94:9637.
    241 WARSHEL A,SUSSMAN F,KING G. Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process [J]. Biochemistry,1986,25:8368.
    242 KOLLMAN P. Free energy calculations: applications to chemical and biochemical phenomena [J]. Chemical Reviews,1993,93:2395.
    243 SIMONSON, T.Free Energy Calculations. In Computational Biochemistry and Biophysics[M]. Bechker, O., Mackerell, A. D., Roux, B., Watanabe, M., Eds. New York:Marcel Dekker,2001.
    244 SIMONSON T,CARLSSON J,CASE D A. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models [J]. Journal of the American Chemical Society,2004,126:4167.
    245 PEI X Y,HOLLIGER P,MURZIN A G,et al. The 2.0-A resolution crystal structure of a trimeric antibody fragment with noncognate VH-VL domain pairs shows a rearrangement of VH CDR3 [J]. Proceedings of the National Academy of Sciences,1997,94:9637.
    246 PERISIC O,WEBB P A,HOLLIGER P,et al. Crystal structure ofa diabody, a bivalent antibody fragment [J]. Structure,1994,2:1217.
    247 KIM Y R,KIM J S,LEE S H,et al. Heavy and light chain variable single domains of an anti-DNA binding antibody hydrolyze both double- and single-stranded DNAs without sequence specificity [J]. Journal of Biological Chemistry,2006,281:15287.
    248 You T J,Maxwell D S,Kogan T P,et al. A 3D structure model of integrin alpha 4 beta 1 complex: I. Construction of a homology model of beta 1 and ligand binding analysis [J]. Biophysical Journal,2002,82:447.
    249 Dong Q,Wang X,Lin L,et al. Analysis and prediction of protein local structure based on structure alphabets [J]. Proteins,2008,72:163.
    250 Chothia C , Lesk A M. Canonical structures for the hypervariable regions of immunoglobulins [J]. Journal of Molecular Biology,1987,196:901.
    251 Chothia C,Lesk A M,Tramontano A,et al. Conformations of immunoglobulin hypervariable regions [J]. Nature,1989,342:877.
    252 Roux B,Simonson T. Implicit solvent models [J]. Biophysical Chemistry,1999,78:1.
    253 Bashford D , Case D A. Generalized born models of macromolecular solvation effects [J]. Annual Review of Physical Chemistry,2000,51:129.
    254 Still W C,Tempczyk A,Hawley R,et al. Semianalytical treatment of solvation for molecular mechanics and dynamics [J]. Journal of the American Chemical Society,1990,112:6127.
    255 Hummer G,Szabo A. Free energy differences from computer simulations of initial and final states [J]. Journal of Chemical Physics,1996,105:2004.
    256 Bartlam M,Wang G,Yang H,et al. Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1 [J]. Structure,2004,12:1481.
    257 Wilson I A,Stanfield R L. Antibody–antigen interactions [J]. Current Opinion in Structural Biology,1993,3:113.
    258 Haynes M R,Stura E A,Hilvert D,et al. Routes to catalysis: structure of a catalytic antibody and comparison with its natural counterpart [J]. Science,1994,263:646.
    259 Zhang K,Zang T Z,Yang W,et al. Single chain antibody displays glutathione S-transferase activity [J]. Journal of Biological Chemistry,2006,281:12516.
    260 Stanfield R L,Wilson I A. Antigen-induced conformational changes in antibodies: a problem for structural prediction and design [J]. Trends in Biotechnology,1994,12:275.
    261 Chothia C , Lesk A M. Canonical structures for the hypervariable regions of immunoglobulins [J]. Journal of Molecular Biology,1987,196:901.
    262 Scheerer P,Borchert A,Krauss N,et al. Structural basis for catalytic activity and enzyme polymerization of phospholipidhydroperoxide glutathione peroxidase-4 (GPx4) [J]. Biochemistry,2007,46:9041.
    263 Epp O,Ladenstein R,Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution [J]. European Journal of Biochemistry,1983,133:51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700