人血管内皮抑素诱导内皮细胞凋亡的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮抑制素自1997年被分离和发现以后,引起了世界各国科学家极大的研究兴趣,目前有上千篇文章关于血管内皮抑制素的各种报道,研究范围覆盖生物活性、蛋白结构与功能、作用分子机理等。血管内皮抑制素能够在体内外抑制肿瘤新生血管生成,目前已成为临床治疗肿瘤的最有效的内源性血管生成抑制剂类分子之一。血管内皮抑制素能够诱导内皮细胞发生凋亡,被认为是其抑制新生血管生成的重要机理之一。但是,目前对于这一过程的具体分子机理还不是非常清楚。在本文的研究中,我们通过研究血管内皮抑素诱导的内皮细胞凋亡,试图阐明在内皮细胞内与凋亡相关的信号转导通路及分子作用机理。我们证明血管内皮抑制素能够诱导人微血管内皮细胞在体外发生凋亡,诱导细胞色素c释放到细胞浆中,激活下游的Caspase-9。同时,细胞内ATP水平减少、线粒体跨膜电位降低、细胞内活性氧的产生等实验证明线粒体失活参与了凋亡的调控。进一步研究发现血管内皮抑素诱导线粒体通透性转变孔开放,而线粒体外膜上的VDAC1蛋白在调控开放过程中发挥重要作用,血管内皮抑素诱导VDAC1蛋白量增加。当我们干扰VDAC1后,发现血管内皮抑素的促凋亡作用受到抑制。而过量表达VDAC1后,Caspase-9的激活,活性氧的释放等凋亡事件发生的几率增加,证明VDAC1在血管内皮抑素促进细胞凋亡的过程中发挥重要的调控作用。同时,我们发现血管内皮抑素能够诱导己糖激酶HK2表达量下调,诱发了VDAC1的蛋白量上调以及相应的细胞凋亡。我们进一步证明血管内皮抑素诱导VDAC1发生磷酸化,VDAC1上的Ser-12, Ser-103可能是发生磷酸化的位点。功能实验证明,Ser-12和Ser-103的去磷酸化突变体抑制血管内皮抑素诱导的VDAC1的蛋白量的增加、线粒体通透性转变孔的开放和Caspase-3的激活,证明了VDAC1的磷酸化在血管内皮抑素诱导凋亡中所起的关键作用。我们的研究完善了对于血管内皮抑素诱导的内皮细胞凋亡机理的理解,对抗新生血管生成药物的临床应用具有一定的指导意义。
Endostatin is a proteolytic fragment of the C-terminal of collagen XVIII. Since its discovery in 1997, there are more than 1000 papers published on endostatin. It has been found that endostatin can inhibit angiogenesis in vitro and in vivo. Moreover, endostatin has potent therapeutic effect as one of the most powerful endogenous angiogenesis inhibitors in clinical studies.
     Though the pro-apoptotic activity of endostatin is predictable to its anti-angiogenic function, the exact mechanism remains controversial. In the present study, we elucidate the mechanism of endostatin-induced endothelial cell apoptosis. Our results show that endostatin induces apoptosis in human microvascular endothelial cells (HMECs). In addition, endostatin induces cytochrome c release and caspase-9 activation, which initiate that the apoptosis process is involved in mitochondria. Further ATP production, mitochondrial membrane potential, ROS release and tubule formation assays show that endostatin promotes the mitochondrial permeability transition pore (mPTP) opening via voltage dependent anion channel 1 (VDAC1), a major component of mitochondrial outer membrane. Knocking down VDAC1 attenuates endostatin-induced apoptosis, while over-expression of VDAC1 enhances the sensitivity of endothelial cells to endostatin. These results indicate VDAC1 play an important role in regulating endostatin-induced endothelial cell apoptosis. Moreover, we reveal that endostatin induces the reduction of hexokinase 2, which in turn promotes VDAC1 accumulation and the subsequent apoptosis. We also show that endostatin induces VDAC1 phosphorylation, which may inhibit the degradation of intracellular VDAC1. Further mPTP opening and caspase-3 activation assays indicate that two serine residues of VDAC1, Ser-12 and Ser-103, can modulate VDAC1 protein level and thus the sensitivity to apoptosis stimuli. Our findings are novel and significant, and will have a strong impact to the understanding of the molecular mechanisms of angiogenesis inhibitors such as endostatin. Furthermore, the identification of VDAC1 and HK2 in angiogenesis regulation provides more potential targets for anti-cancer therapeutics.
引文
[1] Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med, 1999, 77:527-543.
    [2] Carmeliet P. Angiogenesis in health and disease. Nat Med, 2003, 9:653-660.
    [3] Carmeliet P. Common mechanisms of nerve and blood vessel wiring. Nature, 2005, 436:193-200
    [4] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995, 1:27-31.
    [5] Ferrara N K. Angiogenesis as a therapeutic target. Nature, 2005, 438:967-974.
    [6] Hanahan D, Christofori G, Naik P, et al. Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer, 1996, 32A:2386-2393.
    [7] Jain R K, Schlenger K, Hockel M, et al. Quantitative angiogenesis assays: progress and problems. Nat Med, 1997, 3:1203-1208.
    [8] Ferrara N K. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev, 2004, 25:581-611.
    [9] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971, 285:1182-1186.
    [10] Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases. Nature, 2000, 407: 249-257.
    [11] Cao Y. Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol, 2001, 33:357-369.
    [12] Cao Y. Endogenous angiogenesis inhibitors: angiostatin, endostatin, and other proteolytic fragments. Prog Mol Subcell Biol, 1998, 20:161-176.
    [13] Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov, 2007, 6:273-286.
    [14] Abdollahi A, Lipson KE., Sckell A, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res, 2003, 63:8890-8898
    [15] Folkman J. Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res, 2006, 312:594-607.
    [16] Maniotis A J, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999, 155:739-752.
    [17] McDonald D M, Foss A J. Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev, 2000, 19:109-120.
    [18] McDonald D M, Munn L, Jain R K. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol, 2000, 156:383-388.
    [19] Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 2002, 1:219-227.
    [20] Saharinen P, Petrova TV. Molecular regulation of lymphangiogenesis. Ann N Y Acad Sci, 2004, 1014:76-87.
    [21] Saharinen P, Tammela T, Karkkainen M J, et al. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol, 2004, 25:387-395.
    [22] Hanahan D. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86:353-364.
    [23] Folkman J, Shing Y. Angiogenesis. J Biol Chem, 1992, 267:10931-10934.
    [24] Yancopoulos G D, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature, 2000, 407:242-248
    [25] Maisonpierre P C, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie-2 that disrupts in vivo angiogenesis. Science 1997, 277:55-60.
    [26] Sun L. Tumor-suppressive and promoting function of transforming growth factor beta. Front Biosci, 2004, 9:1925-1935.
    [27] Pasquale E B. Eph receptor signalling casts a wide net on cell behaviour. Nature Rev Mol Cell Biol, 2005, 6:462-475.
    [28] Shing Y, Folkman J, Sullivan R, et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science, 1984, 223:1296-1299.
    [29] Botta M, Manetti F, Corelli F. Fibroblast growth factors and their inhibitors. Curr Pharm Des, 2000, 6:1897-1924.
    [30] Reuss B, von Bohlen, Halbach O. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res, 2003, 313:139-157.
    [31] Folkman J, Shing Y. Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol, 1992, 313:355-364.
    [32] Luttun A. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature Med, 2002, 8:831-840.
    [33] Safran M K. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest, 2003, 111:779-783
    [34] Kerbel R F. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2002, 2:727-739.
    [35] Dvorak H F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol, 2002, 20: 4368-4380.
    [36] Lonser R R, Glenn G M, Walther M, et al. von Hippel–Lindau Disease. Lancet 2003, 361:2059-2067.
    [37] Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003, 9: 669-676.
    [38] LeCouter J, Moritz DR, Li B, et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science, 2003, 299:890-893.
    [39] Kim K J, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993, 362:841-844.
    [40] Prewett M, Huber J, Li Y, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res, 1999, 59:5209-5218.
    [41] Millauer B, Shawver L K, Plate K H, et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 1994, 367:576-579.
    [42] Wood J M, Bold G, Buchdunger E, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res, 2000, 60:2178-2189.
    [43] Gerber H P, Kowalski J, Sherman D, et al. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res, 2000, 60:6253-6258.
    [44] Davis S, Aldrich T H, Jones P F, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 1996, 87:1161-1169.
    [45] Yancopoulos G D, Klagsbrun M, Folkman J. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell, 1998, 93:661-664.
    [46] Oliner J, Min H, Leal J, et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell, 2004, 6:507-516.
    [47] Tsunawaki S, Sporn M, Ding A, et al. Deactivation of macrophages by transforming growth factor-beta. Nature, 1988, 334:260-262.
    [48] Martiny-Baron G, Korff T, Schaffner F, et al. Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 2004, 6:248-257.
    [49] Gupta S K, Hassel T, Singh J P. A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4. Proc Natl Acad Sci U S A, 1995, 92:7799-7803
    [50] Kolber D L, Knisely T L, Maione T E. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4. J Natl Cancer Inst, 1995, 87:304-309.
    [51] Good D J, Polverini P J, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA, 1990, 87:6624-6628.
    [52] Luster A D, Greenberg S M, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med, 1995, 182:219-231.
    [53] O'Reilly M S, Holmgren L, Shing Y, et al. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol, 1994, 59:471-482.
    [54] O'Reilly M S, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997, 88: 277-285.
    [55] Schuch G, Oliveira-Ferrer L, Loges S, et al. Antiangiogenic treatment with endostatin inhibits progression of AML in vivo. Leukemia 2005, 19:1312-1317.
    [56] Boehm T, Folkman J, Browder T, et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997, 390:404-407
    [57] Barinaga M. Designing therapies that target tumor blood vessels. Science, 1997, 275:482-484.
    [58] Cohen J. Behind the headlines of endostatin's ups and downs. Science, 1999, 283:1250-1251.
    [59] Shichiri M H. Antiangiogenesis signals by endostatin. Faseb J 2001, 15: 1044-1053.
    [60] Abdollahi A, Hahnfel P, Maercker C, et al. Endostatin's antiangiogenic signaling network. Mol Cell, 2004, 13:649-663.
    [61] Wahl M L, Kenan D J, Gonzalez-Gronow, et al. Angiostatin's molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem, 2005, 96:242-261.
    [62] Bratt A, Birot O, Sinha I, et al. Angiomotin regulates endothelial cell–cell junctions and cell motility. J Biol Chem, 2005, 280:34859-34869
    [63] Hohenester E, Sasaki T, Olsen B R, et al. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution. EMBO J, 1998, 17:1656-1664.
    [64] Ding Y H, Javaherian K, Lo K M, et al. Zinc-dependent dimers observed in crystals of human endostatin. Proc Natl Acad Sci U S A, 1998, 95:10443-10448.
    [65] Li B, Wu X, Zhou H, et al. Acid-induced unfolding mechanism of recombinant human endostatin. Biochemistry, 2004, 43:2550-2557.
    [66] Ricard-Blum S, Feraud O, Lortat-Jacob H, et al. Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations. J Biol Chem, 2004, 279:2927-2936.
    [67] Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci U S A, 2001, 98:1024-1029.
    [68] Kumar C C. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets, 2003, 4:123-131.
    [69] Sudhakar A, Sugimoto H, Yang C, et al. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. . Proc Natl Acad Sci U S A, 2003, 100:4766-4771.
    [70] Shi H, Huang Y, Zhou H, et al. Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood, 2007, 110(8):2899-2906.
    [71] Huang Y, Shi H, Zhou H, et al. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood, 2006, 107(9):3564-3571.
    [72] Karumanchi S A, Jha V, Ramchandran R, et al. Cell surface glypicans are low-affinity endostatin receptors. Mol Cell, 2001, 7:811-822.
    [73] Yu Y, Moulton K S, Khan M K, et al. E-selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci U S A 2004, 101: 8005-8010.
    [74] MacDonald N J, Shivers W Y, Narum D L, et al. Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J Biol Chem, 2001, 276:25190-25196.
    [75] Dixelius J, Cross M J, Matsumoto T, et al. Endostatin action and intracellular signaling: beta-catenin as a potential target? Cancer Lett, 2003, 196:1-12.
    [76] Wickstrom S A, Alitalo K & Keski-Oja J. Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 2002, 62:5580-5589
    [77] Sund M, Hamano Y, Sugimoto H, et al. Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA, 2005, 102:2934-2939.
    [78] Stupack D G, Cheresh D A. Apoptotic cues from the extracellular matrix: regulators of angiogenesis. Oncogene, 2003, 22:9022-9029.
    [79] Chavakis E D. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol, 2002, 22:887-893
    [80] Alon T, Hemo I, Itin A, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med, 1995, 1(10):1024-1028.
    [81] Benjamin L, Itin A, Pode D, et al. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest, 1999, 103:159–165.
    [82] Jain RK, Sckell A, Chen Y, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci U S A, 1998, 95:10820–10825.
    [83] Spyridopoulos I B, Kearney M, Sullivan AB, et al. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J Mol Cell Cardiol, 1997, 29:1321–1330.
    [84] Gerber HP, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem, 1998, 273:13313–13316.
    [85] Fujio Y W. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem, 1999, 274:16349–16354.
    [86] Gupta K K, Li W, Gui L, et al. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res, 1999, 247:495–504.
    [87] Suri C, Jones P F, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996, 87(7):1171-1180.
    [88] Hayes AJ, H W, Mallah J, et al. Angiopoietin-1, and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res, 1999, 58:224–237.
    [89] Kim I K H, So JN, Kim JH, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3-Kinase/Akt signal transduction pathway. Circ Res, 2000, 86:24–29.
    [90] Papapetropoulos A F, Mahboubi K, Kalb RG, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem, 2000, 275:9102–9105.
    [91] [91]. Yancopoulos GD, Gale NW, Rudge JS, et al. Vascular-specific growth factors and blood vessel formation. Nature, 2000, 407:242–248.
    [92] Karsan A Y, Poirier GG, Zhou P, et al. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol, 1997, 151:1775–1784.
    [93] O’Connor DS, Adida C, Mesri M, et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol, 2000, 156:393–398.
    [94] Dimmeler S, Zeiher A M. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res, 2000, 87:434-439.
    [95] Meredith JE, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell, 1993, 4:953–961.
    [96] Stromblad S C. Integrins, angiogenesis and vascular cell survival. Chem Biol, 1996, 3:881–885.
    [97] Brooks P C, Montgomery A M, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994, 79:1157-1164.
    [98] Stromblad S, Becker J C, Yebra M, et al. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest, 1996, 98:426-433.
    [99] Scatena M, Almeida M, Chaisson M L, et al. NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol, 1998, 141:1083-1093.
    [100] Erdreich-Epstein A, Shimada H, Groshen S, et al. Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res, 2000, 60:712-721.
    [101] Bird I N, Taylor V, Newton J P, et al. Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci, 1999, 112:1989-1997.
    [102] O'Reilly M S, Holmgren L, Chen C, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med, 1996, 2:689-692.
    [103] Lucas R, Holmgren L, Garcia I, et al. Multiple forms of angiostatin induce apoptosis in endothelial cells. Blood, 1998, 92:4730-4741.
    [104] Claesson-Welsh L, Welsh M, Ito N, et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci U S A, 1998, 95:5579-5583.
    [105] Ito H, Rovira I I, Bloom M L, et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res, 1999, 59:5875-5877.
    [106] Gupta N, Nodzenski E, Khodarev N N, et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep, 2001, 2:536-540.
    [107] Dhanabal M, Ramchandran R, Waterman M J, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem, 1999, 274:11721-11726
    [108] Dixelius J, Larsson H, Sasaki T, et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood, 2000, 95:3403-3411.
    [109] Skovseth DK, Sorensen DR, De Angelis PM, et al. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood, 2005, 105:1044-1051.
    [110] Khan ZA, Wu X, Paruchuri S, et al. Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood, 2006, 108:915-921.
    [111] Kroemer G R. Mitochondrial control of cell death. Nat Med, 2000, 6:513–519.
    [112] Davidson SM. Endothelial mitochondria: contributing to vascular function and disease. Circ Res, 2007, 100:1128-1141.
    [113] Jacotot E C, Laboureau E, Zamzami N, et al. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci 1999, 887:18-30.
    [114] Bouis D, Hospers G A, Meijer C, et al. Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis, 2001, 4:91-102.
    [115] Madden S L, Cook B P, Nacht M, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol, 2004, 165:601-608.
    [116] McCarthy S A, Kuzu I, Gatter K C, et al. Heterogeneity of the endothelial cell and its role in organ preference of tumour metastasis. Trends Pharmacol Sci, 1991, 12:462-467.
    [117] Martinou J C. Apoptosis, Key to the mitochondrial gate. Nature, 1999, 399:411-412.
    [118] Marchetti P C, Susin SA, Zamzami N, et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med, 1996, 184:1155-1160.
    [119] Richter C, Schweizer M, Cossarizza A, et al. Control of apoptosis by the cellular ATP level. FEBS Lett, 1996, 378:107-110.
    [120] Jacotot E, Costantini P, Laboureau E, et al. Mitochondrial membrane permeabilization during the apoptotic process. Ann N Y Acad Sci, 1999, 887:18-30.
    [121] Colell A, Garcia-Ruiz C, Mari M, et al. Mitochondrial permeability transition induced by reactive oxygen species is independent of cholesterol-regulated membrane fluidity. FEBS Lett, 2004, 560:63-68.
    [122] Le Bras M, Clement M V, Pervaiz S, et al. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol, 2005, 20:205-219.
    [123] Pastorino J G, Hoek J B. Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem, 2003, 10:1535-1551.
    [124] Kinnally K W, Zorov D B, Antonenko Y N, et al. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc Natl Acad Sci U S A, 1993, 90:1374-1378.
    [125] McEnery M W. The mitochondrial benzodiazepine receptor: evidence for association with the voltage-dependent anion channel (VDAC). J Bioenerg Biomembr, 1992, 24:63-69.
    [126] Crompton M, Virji S, Ward J M. Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem, 1998, 258:729-735.
    [127] Vieira H L, Haouzi D, El Hamel C, et al. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ, 2000, 7:1146-1154.
    [128] Waldmeier P C, Zimmermann K, Qian T, et al. Cyclophilin D as a drug target. Curr Med Chem, 2003, 10:1485-1506.
    [129] Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J, 1999, 341:233-249.
    [130] Petronilli V, Nicolli A, Costantini P, et al. Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta, 1994, 1187:255-259.
    [131] Muranyi M, Li P A. Bongkrekic acid ameliorates ischemic neuronal death in the cortex by preventing cytochrome c release and inhibiting astrocyte activation. Neurosci Lett, 2005, 384:277-281.
    [132] Emrich H M, Reich R. The effect of Ca2+ on the metarhodopsin I-II transition. I. Experiments. Pflugers Arch, 1976, 364:17-21.
    [133] Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. J Physiol, 2000, 529:11-21.
    [134] Belizario J E, Alves J, Occhiucci J M, et al. A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res, 2007, 40:1011-1024.
    [135] Grimm S, Brdiczka D. The permeability transition pore in cell death. Apoptosis, 2007, 12:841-855.
    [136] Tsujimoto Y. Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep, 2002, 22:47-58.
    [137] Narita M, Shimizu S, Ito T, et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci U S A, 1998, 95:14681-14686.
    [138] Harris M H, Thompson C B. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ, 2000, 7:1182-1191.
    [139] Schein S J, Colombini M, Finkelstein A. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol, 1976, 30:99-120.
    [140] Colombini M. Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann N Y Acad Sci, 1980, 341:552-563.
    [141] Blachly-Dyson E, Zambronicz E B, Yu W H, et al. Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem, 1993, 268:1835-1841.
    [142] Blachly-Dyson E, Baldini A, Litt M, et al. Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: mapping and identification of two new isoforms. Genomics, 1994, 20:62-67.
    [143] De Pinto V, Palmieri F. Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J Bioenerg Biomembr, 1992, 24:21-26.
    [144] Mannella C A, Forte M, Colombini M. Toward the molecular structure of the mitochondrial channel, VDAC. J Bioenerg Biomembr, 1992, 24:7-19.
    [145] Guo X W, Mannella C A. Conformational change in the mitochondrial channel, VDAC, detected by electron cryo-microscopy. Biophys J, 1993, 64:545-549.
    [146] Rostovtseva T, Colombini M. ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem, 1996, 271:28006-28008.
    [147] Hodge T, Colombini M. Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol, 1997, 157:271-279.
    [148] Colombini M, Blachly-Dyson E, Forte M. VDAC, a channel in the outer mitochondrial membrane. Ion Channels, 1996, 4:169-202.
    [149] Zaid H, Abu-Hamad S, Israelson A, et al. The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ, 2005, 12:751-760.
    [150] Shimizu S, Matsuoka Y, Shinohara Y, et al. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol, 2001, 152:237-250.
    [151] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature, 1999, 399:483-487.
    [152] Priault M, Chaudhuri B, Clow A, et al. Investigation of bax-induced release of cytochrome c from yeast mitochondria permeability of mitochondrial membranes, role of VDAC and ATP requirement. Eur J Biochem, 1999, 260:684-691.
    [153] Shimizu S, Konishi A, Kodama T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci U S A, 2000, 97:3100-3105.
    [154] Vander Heiden M G, Chandel N S, Schumacker P T, et al. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell, 1999, 3:159-167.
    [155] Shimizu S, Shinohara Y, Tsujimoto Y. Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene, 2000, 19:4309-4318.
    [156] Granville D J, Gottlieb R A. The mitochondrial voltage-dependent anion channel (VDAC) as a therapeutic target for initiating cell death. Curr Med Chem, 2003, 10:1527-1533.
    [157] Antonsson B, Montessuit S, Sanchez B, et al. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem, 2001, 276:11615-11623.
    [158] Cao G, Minami M, Pei W, et al. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab, 2001, 21:321-333.
    [159] Capano M, Crompton M. Biphasic translocation of Bax to mitochondria. Biochem J, 2002, 367:169-178.
    [160] Abu-Hamad S, Sivan S, Shoshan-Barmatz V. The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A, 2006, 103:5787-5792.
    [161] Cesura A M, Pinard E, Schubenel R, et al. The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem, 2003, 278:49812-49818.
    [162] Zheng Y, Shi Y, Tian C, et al. Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene, 2004, 23:1239-1247.
    [163] Pastorino J G, Shulga N, Hoek J B. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 2002, 277:7610-7618.
    [164] Miccoli L, Beurdeley-Thomas A, De Pinieux G, et al. Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res, 1998, 58:5777-5786.
    [165] Abu-Hamad S, Zaid H, Israelson A, et al. Hexokinase -I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: Mapping the site of binding. J Biol Chem, 2008.
    [166] Mathupala S P, Ko Y H, Pedersen P L. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 2006, 25:4777-4786.
    [167] Mazurek S, Weisse G, Wust G, et al. Energy metabolism in the involuting mammary gland. In Vivo, 1999, 13:467-477.
    [168] Vander Heiden M, Plas D R, Rathmell J C, et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol, 2001, 21:5899-5912.
    [169] Kim J W, Dang C V. Multifaceted roles of glycolytic enzymes. Trends Biochem Sci, 2005, 30:142-150.
    [170] Rho M, Kim J, Jee C D, et al. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res, 2007, 27:251-258.
    [171] Peng Q P, Liang H J, Zhou Q, et al. Expression of hexokinase-II gene in human colon cancer cells and the therapeutic significance of inhibition thereof. Zhonghua Yi Xue Za Zhi, 2007, 87:1058-1062.
    [172] Robey R B, Hay N. Mitochondrial hexokinases: guardians of the mitochondria. Cell Cycle, 2005, 4:654-658.
    [173] Bustamante E, Pediaditakis P, He L, et al. Isolated mouse liver mitochondria are devoid of glucokinase. Biochem Biophys Res Commun, 2005, 334:907-910.
    [174] Al-jamal J A. Effect of different thyroid states on mitochondrial porin synthesis and hexokinase activity in developing rabbit brain. J Biochem, 2004, 135:253-258.
    [175] Dang C V, Lewis B C, Dolde C, et al. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr, 1997, 29:345-354.
    [176] Nakashima R A, Mangan P S, Colombini M, et al. Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N'-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 1986, 25:1015-1021.
    [177] Nakashima R A. Hexokinase-binding properties of the mitochondrial VDAC protein: inhibition by DCCD and location of putative DCCD-binding sites. J Bioenerg Biomembr, 1989, 21:461-470.
    [178] Yasuda S A S, Mori A, Isobe N, et al. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance. J Hepatol, 2004, 40:117-123.
    [179] Kim J W, Gao P, Liu Y C, et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol, 2007, 27:7381-7393.
    [180] Bergeron M, Gidday J M, Yu A Y, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol, 2000, 48:285-296.
    [181] Piret J P, Mottet D, Raes M, et al. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Ann N Y Acad Sci, 2002, 973:443-447.
    [182] Pastorino J G, Hoek J B, Shulga N. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res, 2005, 65:10545-10554.
    [183] Baines C P, Song C X, Zheng Y T, et al. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res, 2003, 92:873-880.
    [184] Sun L, Shukair S, Naik T J, et al. Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol, 2008, 28:1007-1017.
    [185] Banerjee J, Ghosh S. Phosphorylation of rat brain mitochondrial voltage-dependent anion as a potential tool to control leakage of cytochrome c. J Neurochem, 2006, 98:670-676.
    [186] Le Mellay V, Troppmair J, Benz R, et al. Negative regulation of mitochondrial VDAC channels by C-Raf kinase. BMC Cell Biol, 2002, 3:14.
    [187] Distler A M, Kerner J, Hoppel C L. Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry. Biochim Biophys Acta, 2007, 1774:628-636.
    [188] Olsen JV B B, Gnad F, Macek B, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127:635-648.
    [189] Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79:13-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700