基于聚合物及阴离子表面活性剂的材料组装合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过模拟自然界中生物矿物的形成过程、借鉴生物矿化的机理,制备复杂形貌和多级结构高级材料的仿生合成或生物启发合成方法,是近些年来一直备受关注的前沿课题。碳酸钙、羟基磷灰石和二氧化硅是生物矿物中最常见的成分,研究它们的仿生合成,对理解生物矿化的机理具有重要的指导意义,进而,对生物矿化机理的探索,又可以为仿生制备新型功能材料提供理论指导和设计依据。
     有机质(聚合物、表面活性剂或小分子)与无机组分之间的相互作用是控制材料组装和结构的核心,本论文通过设计聚合物和氨基酸阴离子表面活性剂与二氧化硅前驱体或钙离子之间的作用,组装合成二氧化硅、碳酸钙、磷酸钙材料。主要内容有以下几部分:
     1.设计合成富含侧链羧基的阴离子多肽聚L-谷氨酸,并以其作为模板剂,以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源,控制合成了微孔二氧化硅空心球。在合成过程中,硅源与阴离子多肽模板之间的组装依照以阴离子表面活性剂为模板剂组装合成介孔二氧化硅的机理,即S-N+~I-机理,其中S表示阴离子多肽, I表示TEOS,N表示共结构导向剂APMS。组装过程中质子化的APMS与阴离子多肽之间形成静电相互作用,同时,APMS和TEOS共同水解聚合形成围绕阴离子多肽模板的二氧化硅骨架,多肽的二级结构为微孔孔道的模板。运用SEM、TEM、N2吸附详细考察了二氧化硅的形貌和结构。以阴离子多肽为模板,通过控制不同的反应条件,可以分别合成直径约170 nm的微孔空心球(比表面积为161m2/g),直径约为380 nm的微孔实心球(比表面积为400m2/g)和直径约为550 nm的微孔空心球(比表面积为350m2/g)。向多肽的水溶液中加入适量的有机溶剂四氢呋喃,得到直径约为200 nm的介孔二氧化硅实心球(比表面积为304 m2/g)。
     2.以阴离子聚合物聚丙烯酸(PAA)为模板,以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源,按照S-N+~I-机理合成了聚丙烯酸-二氧化硅(PAA/SiO2)复合纳米球。SEM、TEM、TG、FT-IR表征证明,合成的纳米球是聚丙烯酸和二氧化硅复合物,直径约为80 nm。复合纳米球焙烧后的N2吸附-脱附等温线表明,以柔性链的PAA分子作为模板合成的二氧化硅粒子不具有孔结构,对比相同实验条件下利用聚谷氨酸钠作为模板得到微孔二氧化硅的结果,进一步说明聚谷氨酸钠的刚性二级结构是制造微孔结构的模板。此外,在合成PAA/SiO2复合纳米球的体系中,加入不同量的有机溶剂THF能够对复合球的形貌产生影响。在合成PAA/SiO2复合纳米球的体系中,通过引入阴离子表面活性剂Sar-Na控制合成了超微孔结构二氧化硅,BET表面积761 m2/g,孔体积0.57 cm3/g,通过MP方法计算得到孔径为1.2 nm。
     3.设计合成双亲性嵌段共聚物聚乙二醇-聚L-苯丙氨酸,利用固体NMR技术研究其相分离结构、构像、结晶性及微区分子运动。通过1H CRAMPS和13C CPMAS TOSS固体高分辨NMR实验发现随多肽链长的减小,嵌段共聚物中的多肽链的α-螺旋构象逐渐减少,无定形的多肽结构增加,同时PEG的结晶度逐渐增加。采用1H偶极滤波自旋扩散NMR实验测定了不同多肽链长下的嵌段共聚物中的PEG非晶区的相区尺寸。发现随着肽链长的减小,PEG由于结晶度的提高使非晶区的相区尺寸明显减小。综合采用偶极滤波、双量子滤波、2D WISE和2D LG-CP多种固体NMR实验技术详细研究了嵌段共聚物中的多肽链及PEG链段的分子运动特性。发现在嵌段共聚物中的多肽链段由于有α螺旋构象的存在而非常刚性,但也有很少量靠近嵌段点附近的氨基酸受PEG影响而运动较快。非晶区PEG本身运动很快,但也发现少量的嵌段点附近的PEG受嵌段多肽的影响而变得较刚性。
     4.利用蒸发诱导自组装方法(Evaporation-Induced Self-Assembly,EISA),分别以聚氨基酸聚γ-谷氨酸苄酯(PBLG)和聚乙二醇-聚L-苯丙氨酸(PEG45-b-Phen)为模板,以硅烷偶联剂苯氨甲基三乙氧基硅烷(AMTS)和正硅酸乙酯(TEOS)为硅源,通过氨基酸侧链苯环与AMTS分子苯环之间的π-π堆积作用,合成了微孔二氧化硅材料。当嵌段共聚物PEG45-b-Phen中苯丙氨酸链段较长时(n=50),能够对二氧化硅的形貌起到很好的控制作用,得到了大小均一,分散性很好的梭形聚合物/二氧化硅复合材料,这种梭形的粒子的长约8μm、中间部位宽约1.6μm。
     5.利用工业中广泛应用的无毒、低成本、可生物降解的含有氨基酸结构的阴离子表面活性剂N-酰基十二烷基肌氨酸钠(Sar-Na)作为添加剂,分别在水、乙醇、乙醇-水二元体系中,在室温的条件下合成碳酸钙。在水体系中得到球霰石空心球;在乙醇体系中得到球形无定形碳酸钙;在乙醇-水二元体系中合成了花簇状多级结构碳酸钙晶体。在水热条件下,利用N-酰基十二烷基肌氨酸钠(Sar-Na)控制合成了具有较大长径比(aspect ratio)的片状纳米羟基磷灰石晶体(HAP)。调整体系的pH值能够对HAP晶体的形貌产生影响,随着pH值由9.1变化到10.0、11.0、12.0,HAP晶体的形貌由两端较尖锐的长片状变为短棒状,最终变为椭圆形粒子。在Sar-Na调控合成羟基磷灰石的体系中,加入阴离子聚合物PAA,HAP晶体的形貌发生变化,随着PAA添加量的增加,片状形貌逐渐消失,形成无规则形貌的晶体。
Biominerialization is the study of the formation, structure and properties of inorganic solids deposited in biological systems. That is, under certain chemical conditions, the inorganic ions in solution are transformed to solid minerals under the specific control of the organic species. Biomimetic or bio-inspired materials chemistry is currently a promising field to synthesize functional inorganic materials. Calcium carbonate, hydroxyapatite and silica are the most common biominerals in nature, and bio-inspired synthesis of those materials would shed light on the study of mechanism of biomineralization, and be significant to the synthesis and design of new functional materials.
     The interaction between organic and inorganic species controls the growth of inorganic materials, as well as their structures and morphologis. In this thesis, by designing the interactions between the organic species (polymer and anionic surfactant) and the inorganic precursors, different types of silica, calcium carbonate and hydroxyapatite were synthesized. The main content is as follows:
     1. Anionic polypeptide, the poly(sodium L-glutamate), was applied to fabricate microporous silica hollow nanospheres templated by the secondary structures of the polypeptide as porogens. In the synthesis, 3-aminopropyltrimethoxysilane (APMS) and tetraethyl orthosilicate (TEOS) were used as the silica sources, and the coassembly follows the mechanism of the anionic surfactant–templated mesoporous silica (AMS) through a S?N+?I? pathway, where S indicates the anionic polypeptide, I indicates inorganic precursors (TEOS), and N indicates costructure-directing agent (APMS), which interacted with the negatively charged anionic polypeptide secondary structures electrostatically and cocondensed with silica source to form the silica framework. The product was subjected to characterizations of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and nitrogen adsorption-desorption measurement. It was found that the pH value of the synthesis solution was an important factor to the morphological control of the silica products. Besides the microporous hollow nanospheres, microporous submicron silica solid and hollow spheres were also obtained facilely by changing the synthesis parameters. Our study further implies that anionic polypeptides, which are able to control mineralization of calcium carbonate and calcium phosphate, could also induce silica condensation in the presence of proper silica precursors. It is also expected that functional calcium carbonate (phosphate)/silica–nanocomposite materials would be fabricated under the control of the anionic polypeptide.
     2. The anionic polymer, poly(acrylic acid) (PAA), was used together with APMS and TEOS as silica source to synthesize composite nanospheres of PAA/silica. The results indicate that after calcination the silica nanospheres is non-porous, and this can be explained by the lack of the secondary structure of the PAA chains if compared with polypeptide chains. Furthermore, it has been proved that addition of organic solvent such as THF would influence the morphology of the products. By introduction of anionic surfactant in the reaction solution, super-microporous silica can be obtained with the BET surface area of 761 m2/g and pore size of 1.2 nm.
     3. Amphiphilic block copolymers, poly(L-phenylalanine)-b-poly(ethylene glycol), were synthesized and the properties of phase separation, conformation, crystalline property and micro domain motion were subjected to detailed solid state NMR studies. By the methods of 1H CRAMPS and 13C CPMAS TOSS NMR, it was found that with the decreasing of the polypeptide chain length, theα-helix conformation decreased, amorphous structure increased and the crystallinity of PEG chain increased. By 1H spin diffusion NMR the domain size of the amorphous PEG was determined and it was found that with the decreasing of the polypeptide chain length, the domain size of amorphous PEG decreased obviously. The molecular motion in the copolymer was characterized by dipolar filter, double quantum filter, 2D WISE and 2D LG-CP NMR methods. It was found that due to the existence ofα-helix the polypeptide chain is rather rigid, while the motion of the amorphous PEG is fast.
     4. Poly (γ-benzyl-glutamate)(PBLG) and amphiphilic block copolymers, poly(L-phenylalanine)-b-poly(ethylene glycol), were used to fabricate silica materials by Evaporation-Induced Self-Assembly (EISA) method. In the synthesis procedure, anilino-methyl triethoxy silane (AMTS) was used as an intermedium, i.e., on the one hand it interacts with polypeptide-based copolymer throughπ-πinteraction between the phenyl groups of Phe segments and AMTS; on the other hand, AMTS can co-condense with tetraethoxylsilane (TEOS) through hydrolysis process. The prepared silica possesses supermicropores and it is proposed that the supermicropores are templated by the polypeptide segments. It is proved that both polypeptide-based block copolymer and AMTS play important roles in the formation of mesoscale short-range-order and hierarchical structure. It is noted that PEG45-b-Phe50 can induce a well-defined shuttle-like morphology of polymer/silica hybrid particles.
     5.N-lauroylsarcosine sodium (Sar-Na) was used to control calcium carbonate crystalization in ethanol or ethanol/water solution at ambient temperature. By means of SEM, XRD and IR, the morphology and structure of the samples were characterized. It was revealed that with increasing the reaction time, the morphology of the CaCO3 particles generally varies from aragonite polyhedron to amorphous calcium carbonate spheres in pure ethanol. In the ethanol/water solution, with increasing the amount of N-lauroylsarcosine sodium, the morphology of the CaCO3 particles varies from flower-like to spheres. Pure vaterite crystals with spheres shape are obtained at n(Ca): n(Sar)=1:2. At a fixed n(Ca): n(Sar) molar ratio of 1:1, with increasing the volume fractions of distilled water, the morphology of the CaCO3 particles varies from flower-like to spheres. By hydrothermal reaction method under the control of N-lauroylsarcosine sodium, single crystal hydroxyapatite nano-plates was synthesized and the different synthesis conditions were carefully studied.
引文
[1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, Inc., 2001.
    [2] Alivisatos A P. Biomineralization. Naturally aligned nanocyrstals. Science,2000,289:736~737
    [3] Mann S. Biomineralization—bacteria and the Midas Touch. Nature, 1992,357:358~360
    [4] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature,1993,365:499~505
    [5] Adddai L,Weiner S. Biomineralization—a Pavement of Pearl. Nature,1997,389:912~915
    [6] Banfield J F,Welch S A,Zhang H Z,et al. Aggergation 一 based cyrstal gorwth and microsurtcture development in natural iron oxyhydroxide biomineralization products. Science 2000,289:751~754
    [7] Kazmierczak J,Altermann W. Neoarchean Biomineralization by Benthic Cyanobacteria. Science,2002,298:2351~2351
    [8] Sollner C, Burghammer M,Busch-Nentwich E, et al. Control of Crystal Size and Lattice Formation by Starmakerin Otolith Biomineralization. Science, 2003,302:282~286
    [9] Kamat S,Su X,Ballrini R,et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature, 2000,405:1036~1040
    [10]Davis M E. How life makes hard stuff. Science 2004,305:480
    [11] Shenton W,Pum D,Sleytr U B,et al. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature, 1997,389:585~587
    [12]王夔. 生物无机化学. 北京:清华大学出版社,1988
    [13] Marsh M E. Regulation of CaCO3 formation in coccolithophores. Comp. Biochem. Physiol. B, 2003, 136(4):743~754
    [14] Falini G, Albeck S. Weiner S, et al. Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science, 1996, 271:67~69
    [15] Zaremba C M, Belcher AM, Fritz M, et al. Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls. Chem. Mater., 1996, 8: 679~690
    [16] Lakshminamyanan R, Kini R M, Valiyaveeuil S. Supramolecular Chemistry AndSelf-assembly Special Feature: Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. PNAS, 2002, 99: 5155~5159
    [17] Cusack M, Fraser A C. Eggshell Membrane Removal for Subsequent Extraction of Intermineral and Intramineral Proteins. Cryst. Growth Design, 2002, 2: 529~532
    [18] Raz S, Weiner S, Addadi L. Formation of High-Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications. Adv.Mater., 2000, 12:38~42
    [19] S?llner C, Burghammer M, Busch-Nentwich E, et al. Control of Crystal Size and Lattice Formation by Starmakerin Otolith Biomineralization. Science, 2003, 302: 282~286
    [20] Lowenstam H A, Abbott D P. Vaterite: A Mineralization Product of the Hard Tissues of a Marine Organism (Ascidiacea). Science, 1975, 188: 363~365
    [21] Aizenberg J, Lambert G, Weiner S, et al. Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate: A Study of an Ascidian Skeleton. J. Am. Chem. Soc., 2002, 124: 32~39
    [22] Addadi L, Raz S, Weiner S. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization. Adv. Mater., 2003, 15: 959~970
    [23] Fratzi P, Groschner M, Vogl Q et al. J. Bone Miner. Res., 1992, 7:329~334
    [24] Bigi A, Gandolfi M, Koch M H J, et at. X-ray diffraction study of in vitro calcification of tendon collagen. Biomaterials, 1996,17:1195~1201
    [25] Ikoma T, Kobayashi H, Tanaka J, et al. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J. Struct. Biol., 2003, 142:327~333
    [26] Leveque I, CusackM, Davis S A, et al. Promotion of Fluorapatite Crystallization by Soluble-Matrix Proteins from Lingula Anatina Shells, Angew. Chem. Int. Ed., 2004, 43: 885~888
    [27] Suzuki O, Yagishita H, Amano T, et al. Reversible structural changes of octacalcium phosphate and labile acid phosphate. J. Dental Res.. 1995, 74: 1764~1769
    [28] Lowenstam H A,Weiner S. Transformation of Amorphous Calcium Phosphate to Crystalline Dahllite in the Radular Teeth of Chitons. Science, 1985, 227: 51~53
    [29] Hartman W D. Form and distribution of silica in spoages. In: Simpson T L, Volcani BE, eds. Silicon and siliceous structures in biological systems. New York: Springer, 1981. 453~493
    [30] Kroger N, Sumper M. The biochemistry of silica formation in diatoms. In: Baeuerlein E, ed 30Biomineralization: from biology to biotechnology and medical application. Weinheim: Wiley-VCH, 2000,151~170
    [31] Konhauser K O, Phoenix V R, Bottrell S H, et al. Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 2001, 48: 415~433
    [32] Sangster A G, Parry D W. Ultrastructure of silica deposits in higher plants. In: Simpson T L, Volcani B E, eds. Silicon and siliceous structures in biological systems. New York: Springer, 1981. 383~407
    [33] Black J and Hastings G. Handbook of biomaterial porperties,lst ed . London: Chapman& Hall,UK,1998
    [34] Adddai L and Weiner S. Biomineralization一cyrstals,asymmetyr and life. Nature 2001,411:753~755
    [35] Weiner S, Wagner H D. The material bone: Structure mechanical function relations. Annu. Rev. Matcr. Sci 1998.28: 271~298
    [36] Jackson A P, Vincent J F V. J.Mater.Sci., 1990,25: 3173~3175
    [37] Braun P V,Ostenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380:325~328
    [38] Park R J, Meldrum F C. Synthesis of Single Crystals of Calcite with Complex orphologies. Adv. Mater., 2002, 14:1167~1169
    [39] Li C, Qi L. Bioinspired Fabrication of 3D Ordered Macroporous Single Crystals of Calcite from a Transient Amorphous Phase. Angew. Chem. Int. Ed. 2008, 47:2388~2393
    [40] Gower L A, Tirrell D A. Calcium carbonate Tlms and helices grown in solutions of poly(aspartate). J. Cryst. Growth, 1998, 191:153~160
    [41] Gower L B, Odom D J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Cryst. Growth., 2000, 210:719~734
    [42] Busch S, Dolhaine H, DuChesne A, et al. Biomimetic Morphogenesis of Fluorapatite-Gelatin Composites: Fractal Growth, the Question of Intrinsic Electric Fields, Core/Shell Assemblies, Hollow Spheres and Reorganization of Denatured Collagen. Eur. J. Inorg. Chem., 1999, 10:1643~1653
    [43] Yamashita K, Oikawa N, Umegaki T. Acceleration and Deceleration of Bone-Like CrystalGrowth on Ceramic Hydroxyapatite by Electric Poling. Chem. Mater., 1996, 8: 2697~2700
    [44] Kitagawa K, Morita T, Kimura S. A Helical Molecule That Exhibits Two Lengths in Response to an Applied Potential. Angew. Chem. Int. Ed., 2005, 44:6330~6333
    [45] Puntes V F, Krishnan K M,Alivisatos A P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science, 2001, 291:2115~2117
    [46] Urbach A R, Love J C, Prentiss M G, et al. Sub-100 nm Confinement of Magnetic Nanoparticles Using Localized Magnetic Field Gradients. J. Am. Chem. Soc., 2003, 125:12704~12705
    [47] Grzybowski B A, Stone H A, Whitesides G M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature, 2000, 405:1033~1036
    [48] Assi F, Jenks R, Yang J, et al. Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys., 2002, 92, 5584~5586
    [49] Love J C, A. Urbach R, Prentiss M G, et al. Three-Dimensional Self-Assembly of Metallic Rods with Submicron Diameters Using Magnetic Interactions. J. Am. Chem. Soc., 2003, 125: 12696~12697
    [50] Menzel H, Horstmann S, Behrens P, et al. Chemical properties of polyamines with relevance to the biomineralization of silica. Chem. Commun., 2003, 24:2994~2996
    [51] Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature, 2000, 403:289~292
    [52] Davis S A, Burkett S L, S Mann, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385: 420~423
    [53] Ogasawara W, Shenton W, Mann S, et al. Template Mineralization of Ordered Macroporous Chitin-Silica Composites Using a Cuttlebone-Derived Organic Matrix. Chem. Mater. , 2000, 12: 2835~2837
    [54] Emilie P, Erik D, Annie C, et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater. 2007, 6:434~439
    [55] Sugawara A, Nishimura T, Yamamoto Y, et al. Self-Organization of Oriented Calcium Carbonate/Polymer Composites: Effects of a Matrix Peptide Isolated from the Exoskeleton of a Crayfish. Angew. Chem., Int. Ed., 2006, 45:2876~2878
    [56] Ivan S, Sre?o D ?, Branka S. Biomimetic Precipitation of Nanostructured Colloidal CalciteParticles by Enzyme-Catalyzed Reaction in the Presence of Magnesium Ions. Cryst. Growth Des., 2008, 8: 435~441
    [57] Zheng Z, Huang B, Ma H, et al. Biomimetic Growth of Biomorphic CaCO3 with Hierarchically Ordered Cellulosic Structures. Cryst. Growth Des., 2007, 7: 1912~1917
    [58] Zhang W,Liao S S,Cui F Z. Hierarchical self-assembly of nano-fibrils inmineralized collgaen. Chem. Mater. 2003,15:3221~3226
    [59] Leveque I, Cusack M, Davis S A, et al. Promotion of Fluorapatite Crystallization by Soluble-Matrix Proteins from Lingata Aantina Shells. Angew. Chem. Int. Ed., 2004, 43: 885~888
    [60] He D, Xiao XF, Liu F, et al . Hydroxyapatite nanospindles by biomimetic synthesis with chitosan as template, Mater. Sci. Technol. 2007,23: 1228~1232
    [61] Sedlak M, Antonietti M, C?lfen H, Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals. Macromol. Chem. Phys., 1998, 199:247~254
    [62] C?lfen H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Macromol. Rapid Commun., 2001, 22:219~252
    [63] C?lfen H, Antonietti M. Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers. Langmuir, 1998, 14:582~589
    [64] C?lfen H, Qi L M. A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chem.–Eur. J., 2001, 7, 106~116
    [65] Yu S H, C?lfen H, Hartmann J, et al. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-Hydrophilic Block Copolymers. Adv. Funct. Mater., 2002, 12, 541~545
    [66] Rudloff J, Antonietti M, C?lfen H, et al. Double-Hydrophilic Block Copolymers with Monophosphate Ester Moieties as Crystal Growth Modifiers of CaCO3. Macromol. Chem. Phys., 2002, 203:627~635
    [67] Yu S H, C?lfen H, Antonietti M. Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures. J. Phys. Chem. B, 2003, 107:7396~740
    [68] Rudloff J, C?lfen H. Superstructures of Temporarily Stabilized Nanocrystalline CaCO Particles: Morphological Control via Water Surface Tension Variation.3Langmuir, 2004, 20:991~996
    [69] Antonietti M, Breulmann M, G?ltner C, et al. Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chem.–Eur. J., 1998, 4:2493~2500
    [70] Qi L M, C?lfen H, Antonietti M. Crystal Design of Barium Sulfate using Double-Hydrophilic Block. Angew. Chem., Int. Ed., 2000, 39:604~607
    [71] Qi L M, C?lfen H, Antonietti M. Control of Barite Morphology by Double-Hydrophilic Block Copolymers. Chem. Mater., 2000, 12:2392~2403
    [72] Li M, C?lfen H, Mann S. Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem., 2004, 14:2269~2276
    [73] Yu S H, C?lfen H, Antonietti M. Control of the Morphogenesis of Barium Chromate by Using Double-Hydrophilic Block Copolymers (DHBCs) as Crystal Growth Modifiers. Chem.–Eur. J., 2002, 8:2937~2945
    [74] Yu S H, C?lfen H, Antonietti M. The Combination of Colloid-Controlled Heterogeneous Nucleation and Polymer-Controlled Crystallization: Facile Synthesis of Separated, Uniform High-Aspect-Ratio Single-Crystalline BaCrO4 Nanofibers. Adv. Mater., 2003, 15: 133~136
    [75] Taubert A, Kübel C, Martin D C. Polymer-Induced Microstructure Variation in Zinc Oxide Crystals Precipitated from Aqueous Solution. J. Phys. Chem. B, 2003,107:2660~2666
    [76] Qi L M, Li J, Ma J M. Chem. J. Chinese Universities, 2002, 23: 1595~1597
    [77] Qi L , Li J, Ma J. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Adv. Mater., 2002, 14: 300~303
    [78] Guo X H, Yu S H, Cai G B. Crystallization in a Mixture of Solvents by Using a Crystal Modifier: Morphology Control in the Synthesis of Highly Monodisperse CaCO3 Microspheres. Angew. Chem. Int. Ed., 2006, 45: 3977~3981
    [79] Silvia C, Daniela C P, Emily E T, et al. Self-Organizing β-Sheet Lipopeptide Monolayers as Template for the Mineralization of CaCO3. Angew. Chem. Int. Ed. 2006, 45:739~744
    [80] Sugawara T,Suwa Y, Ohkawa K,et al. Chiral Biomineralization: Mirror-Imaged Helical Growth of Calcite with Chiral Phosphoserine Copolypeptides. Macromol. Rapid Commun., 2003, 24: 847~851
    [81] Zhao Y F, Ma J. Triblock co-polymer templating synthesis of mesostructured hydroxyapatite.Micro. Meso. Mater., 2005, 87: 110~117
    [82] Shi H T, Qi L M, Ma J M, et al. Polymer-Directed Synthesis of Penniform BaWO Nanostructures in Reverse Micelles.4J Am Chem Soc, 2003, 125: 3450~3451
    [83] Naka K, Huang S C, Chujo Y. Formation of Stable Vaterite with Poly(acrylic acid) by the Delayed Addition Method. Langmuir, 2006, 22: 7760~7767
    [84] Huang S C, Naka K, Chujo Y. A Carbonate Controlled-Addition Method for Amorphous Calcium Carbonate Spheres Stabilized by Poly(acrylic acid)s. Langmuir, 2007, 23: 12086~12095
    [85] Wang T X, Antonietti M, C?lfen H. Calcite Mesocrystals: “Morphing” Crystals by a Polyelectrolyte. Chem.–Eur. J., 2006, 12: 5722~5730
    [86] Wang T, C?lfen H, Antonietti M. Nonclassical Crystallization: Mesocrystals and Morphology Change of CaCO3 Crystals in the Presence of a Polyelectrolyte Additive. J. Am. Chem. Soc., 2005, 127: 3246~3247
    [87] Wei H, Ma N, Shi F, et al. Artificial Nacre by Alternating Preparation of Layer-by-Layer Polymer Films and CaCO 3 Strata . Chem. Mater., 2007, 19: 1974~1978
    [88] Bigi A, Boanini E, Walsh D, et al. Morphosynthesis of Octacalcium Phosphate Hollow Microspheres by Polyelectrolyte-Mediated Crystallization. Angew. Chem., Int. Ed., 2002, 41: 2163~2166
    [89] Naka K, Tanaka Y, Chujo Y. Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution: Size Control of Spherical Vaterite Particles. Langmuir, 2002, 18: 3655~3658
    [90] Donners J J J M, et al. Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers. Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers , Chem. Commun., 2000, 1937~1938
    [91] Dormers J J J M, Heywood B R, Meijer E W, et al. Control over Calcium Carbonate Phase Formation by Dendrimer/Surfactant Templates. Chem Eur J, 2002, 8: 2561~2567
    [92] Basko M, Kubisa P. Properties of double-hydrophilic graft copolymers with a polyacetal backbone. J. Polym. Sci., Part A: Polym. Chem., 2004, 42: 1189~1197
    [93] Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Mater., 2003, 2: 801~805
    [94] Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica.Nature, 2004, 429: 281~284
    [95] Che S, Li H, Lim S, et al. Synthesis Mechanism of Cationic Surfactant Templating Mesoporous Silica under an Acidic Synthesis Process. Chem. Matter., 2005, 17: 4103~4113
    [96] Gao C, Sakamoto Y, Sakamoto K, et al. Synthesis and Characterization of Mesoporous Silica AMS-10 with Bicontinuous Cubic Pnm Symmetry. Angew. Chem., Int. Ed. 2006, 45: 4295~4298
    [97] Gao C, Qiu H, Zeng W, et al. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater., 2006, 18: 3904~3914
    [98] Han L, Ruan J, Li Y, et al. Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. Chem. Mater., 2007, 19: 2860~2867
    [99] Han L, Sakamoto Y, Terasaki O, et al. Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. J. Mater. Chem., 2007, 17:1216~1222
    [100] Wang J G, Xiao Q, Zhou H J, et al. Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly. Adv. Mater., 2006, 18: 3284~3287
    [101] Yeh Y Q, Chen B C, Lin H P. Synthesis of Hollow Silica Spheres with Mesostructured Shell Using Cationic-Anionic-Neutral Block Copolymer Ternary Surfactants. Langmuir, 2006, 22: 6~9
    [102] Chen D, Li Z, Yu C. Nonionic Block Copolymer and Anionic Mixed Surfactants Directed Synthesis of Highly Ordered Mesoporous Silica with Bicontinuous Cubic Structure . Chem. Mater., 2005, 17: 3228~3234
    [103] Wei H, Shen Q, Zhao Y, et al. On the crystallization of calcium carbonate modulated by anionic surfactants. J. Crystal Growth , 2005 , 279 : 439~446
    [104] Kang S H, Hirasawa I, Kim W S, et al. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. J. Colloid Interface Sci , 2005 , 288 : 496~502
    [105] Walsh D, Lebeau B, Mann S. Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges. Adv Mater, 1999, 11: 324~328
    [106] Li M, Lebeau B, Mann S. Synthesis of Aragonite Nanofilament Networks by Mesoscale Self-Assembly and Transformation in Reverse Microemulsions. Adv Mater, 2003, 15: 2032~2035
    [107] Wei H, Shen Q, Zhao Y. On the crystallization of calcium carbonate modulated by anionic surfactants. J. Crystal Growth , 2005 , 279 : 439~446
    [108] Wang Y J, Chen J D, Wei K, et al. Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template. Materials Letters , 2006, 60: 3227~3231
    [109] Meng Y H, Tang C Y, Tsui C P, et al. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci: Mater Med , 2008, 19:75~81
    [110] Li H, Zhu M Y, Li L H. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. J Mater Sci , 2008, 43:384~389
    [111] Wei Y, Jin D L , Ding T Z , et al. A Non-surfactant Templating Route to Mesoporous Silica Materials. Adv Mater, 1998, 10 : 313~316
    [112] Sun T, Wong M S, Ying J Y. Synthesis of amorphous, microporous silica with adamantanamine as a templating agent. Chem Commun, 2000 : 2057~2058
    [113] Yokoi T, Sakamoto Y, Terasaki O, et al. Periodic arrangement of silica nanospheres assisted by amino acids. J. Am. Chem. Soc.,2006 , 128 (42) : 13664~13665
    [114] Ono Y, Nakashima K, Sano M. et al. Organic gels are useful as a template for the preparation of hollow fiber silica. Chem. Commun., 1998, 1477~1478
    [115] Jung J H, Amaike M, Shinkai S. Sol–gel transcription of novel sugar-based superstructures composed of sugar-integrated gelators into silica: creation of a lotus-shaped silica structure. Chem. Commun., 2000, 2343~2345
    [116] Seddon A M, Patel H M, Burkett S L, et al. Chiral Templating of Silica-Lipid Lamellar Mesophase with Helical Tubular Architecture. Angew. Chem. Int. Ed., 2002, 41: 2988~2991
    [117] Jung J H, Shinkai S, Shimizu T. Nanometer-Level Sol-Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica. Chem. Mater., 2003, 15: 2141~2145
    [118] Kawano S, Tamaru S, Fujita N, et al. Sol-Gel Polycondensation of Tetraethyl Orthosilicate (TEOS) in Sugar-Based Porphyrin Organogels: Inorganic Conversion of a Sugar-Directed Porphyrinic Fiber Library through Sol-Gel Transcription Processes. Chem. Eur. J., 2004, 10: 343~351
    [119] Jung J H, Shinkai S, Shimizu T, Organic supramolecular architectures and their sol-gel transcription to Silica nanotubes. The Chem. Rec., 2003, 3: 212~224
    [120] Yang Y, Suzuki M, Owa S, et al. Preparation of helical nanostructures using chiral cationic surfactants. Chem. Commun., 2005, 4462~4463
    [121] Xu A W, Yu Q, Dong W F, et al. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid. Adv. Mater., 2005, 17: 2217~2221
    [122] Muòoz J A, Valiente M. Determination of Phytic Acid in Urine by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem., 2003, 75: 6374~6378
    [123] He Q, Huang Z, Liu Y, et al. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres. Mater. Lett., 2007, 61: 141~143
    [124] Wenzl S, Hett R, Richthammer P. Silacidins: Highly Acidic Phosphopeptides from Diatom Shells Assist in Silica Precipitation In Vitro. Angew. Chem. Int. Ed., 2008, 47: 1729~1732
    [1] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710~712
    [2] Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998, 279: 548~552
    [3] (a) Che S, Garcia-Bennett A E, Yokoi T, et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Mater., 2003, 2: 801~805; (b) Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429: 281~284
    [4] Gao C, Qiu H, Zeng W, et al. Formation Mechanism of Anionic Surfactant-Templated Mesoporous Silica. Chem. Mater., 2006, 18: 3904~3914
    [5] Wang J G, Xiao Q, Zhou H J, et al. Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly. Adv. Mater., 2006, 18: 3284~3287
    [6] Blout E R, Karlson R H. Polypeptides. III. The Synthesis of High Molecular Weight Poly--benzyl-L-glutamates. J.Am.Chem.Soc., 1956, 78: 941~946
    [7] Drew S P, Michael J M, Jennifer L B. An Unconventional Method for Purifying the N-carboxyanhydride Derivatives of γ-alkyl-L-glutamates. Synthetic Communications, 1999, 29: 843~854
    [8] Holowka E P, Pochan D J, Deming T J. Charged Polypeptide Vesicles with Controllable Diameter . J Am Chem Soc, 2005, 127: 12423~12428
    [9] Bauer C A, Robinson D B, Simmons B A. Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. Small, 2007, 3: 58~62
    [10] Sumper M. A Phase Separation Model for the Nanopatterning of Diatom Biosilica. Science, 2002, 295: 2430~2433
    [11] Patwardhan S V, Clarson S J, Perry C C. On the role(s) of additives in bioinspired silicification. Chem. Commun., 2005, 1113~1121
    [12] Patwardhan S V, Maheshwari R, Mukherjee N, et al. Conformation and Assembly of Polypeptide Scaffolds in Templating the Synthesis of Silica: An Example of a Polylysine Macromolecular "Switch" . Biomacromolecules, 2006, 7: 491~497
    [13] Patwardhan S V, Clarson S J, Perry C C. On the role(s) of additives in bioinspired silicification. Chem. Commun., 2005, 1113~1121
    [14] Sun Q Y, Vrieling E G, Van Santen R A, et al. Bioinspired synthesis of mesoporous silicas. Curr. Opin. Solid State. Mater. Sci., 2004, 8: 111-120
    [15] Bellomo E G, Deming T J. Monoliths of Aligned Silica-Polypeptide Hexagonal Platelets . J. Am. Chem. Soc., 2006, 128: 2276~2279
    [16] Cha J N, Birkedal H, Euliss L E, et al. Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. J. Am. Chem. Soc., 2003, 125: 8285~8289
    [17] Jin R H, Yuan J J. Synthesis of poly(ethyleneimine)s-silica hybrid particles with complex shapes and hierarchical structures, Chem. Commun., 2005, 1399~1401
    [18] Yuan J J, Jin R H. Multiply shaped silica mediated by aggregates of linear poly(ethyleneimine). Adv. Mater., 2005, 17: 885-888
    [19] Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature, 2000, 403: 289~292
    [20] Hawkins K M, Wang S, Ford D M, et al. Poly-L-Lysine Templated Silicas: Using Polypeptide Secondary Structure to Control Oxide Pore Architectures. J. Am. Chem. Soc., 2004, 126: 9112~9119
    [21] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, Inc., 2001.
    [22] Wenzl S, Hett R, Richthammer P. Silacidins: Highly Acidic Phosphopeptides from Diatom Shells Assist in Silica Precipitation In Vitro. Angew. Chem. Int. Ed., 2008, 47: 1729~1732
    [23] Sumper M, Lehmann G. Silica pattern formation in diatoms: Species-specific polyamine biosynthesis. ChemBioChem 2006, 7: 1419~1427
    [24] Volkmer D, Fricke M, Huber T, et al. Acidic peptides acting as growth modifiers of calcite crystals. Chem. Commun. 2004, 16: 1872~1873
    [25] Bekele H, Fendler J H, Kelly J W. Self-Assembling Peptidomimetic Monolayer Nucleates Oriented CdS Nanocrystals. J. Am. Chem. Soc. 1999, 121: 7266~7267
    [26] Falini G, Fermani S, Gazzano M, et al. Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. J. Chem. Soc. Dalton Trans. 2000, 3983~3987
    [27] Meegan J E, Aggeli A, Boden N, et al. Designed self-assembled beta-sheet peptide fibrils as templates for silica nanotubes. Adv. Funct. Mater. 2004, 14: 31~37
    [28] Bertrand M, Brack A. Conformational transition of acidic peptides exposed to minerals in suspension. Chem. Eur. J. 2000, 6: 3452~3455
    [29] Levi Y, Albeck S, Brack A, et al. Control over aragonite crystal nucleation and growth: An in vitro study of biomineralization. Chem. Eur. J. 1998, 4: 389~396
    [30] Lecommandoux S, Achard M F, Langenwalter J F, et al. Self-Assembly of Rod-Coil Diblock Oligomers Based on -Helical Peptides. Macromolecules, 2001, 34: 9100~9111; (b) Wang Y L, Chang Y C. Synthesis and Conformational Transition of Surface-Tethered Polypeptide: Poly(L-glutamic acid) . Macromolecules, 2003, 36: 6503~6510
    [31] Yuan J J, Mykhaylyk O O, Ryan A J, et al. Cross-Linking of Cationic Block Copolymer Micelles by Silica Deposition. J. Am. Chem. Soc., 2007, 129: 1717~1723
    [32] Khanal A, Inoue Y, Yada M, et al. Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure. J. Am. Chem. Soc., 2007, 129: 1534~1535
    [33] Boury B, Corriu R J P. Auto-organisation of hybrid organic-inorganic materials prepared by sol-gel process. Chem. Commun., 2002, 795~802
    [34] Corriu R J P, Leclercq D. Recent developments of molecular chemistry for sol-gel processes. Angew. Chem., Int. Ed. Engl.,1996, 35: 1420~1436
    [35] Doody M A, Baker G A, Pandey S, et al. Affinity and Mobility of Polyclonal Anti-Dansyl Antibodies Sequestered within Sol-Gel-Derived Biogels. Chem.Mater., 2000, 12: 1142~1147
    [36] Pandey S, Baker G A, Kane M A, et al. On the Microenvironments Surrounding Dansyl Sequestered within Class I and II Xerogels. Chem. Mater., 2000, 12: 3547~3551
    [37] Ogoshi T, Kim K M, Chujo Y. Synthesis and characterization of transparent poly(2-methyl-2-oxazoline) (POZO)-vanadium oxide (V2O5) hybrids with reversible formation. J. Mater. Chem., 2003, 13: 2202~2207
    [38] C. F. Bohren and D. R. Huffman, Adsorption and Scattering of Light by Small Particles, Wiley, New York, 1983
    [39] Ogoshi T, Itoh H, Kim K M, et al. Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex. Macromolecules, 2002, 35: 334~338
    [40] Ogoshi T, Itoh H, Kim K M, et al. Thermal and solvent-resistant properties of organic-inorganic polymer hybrids having Interpenetrating Polymer Network structure by formation of metal-bipyridyl complex. Polym. J., 2003, 35: 178~184
    [41] Ogoshi T, Chujo Y. Synthesis of anionic polymer-silica hybrids by controlling pH in an aqueous solution. J. Mater. Chem., 2005, 15: 315~322
    [42] Sertchook H, Elimelech H, Makarov C, et al. Composite Particles of Polyethylene @ Silica . J. Am. Chem. Soc., 2007, 129(1): 98~108
    [43] Dudley H, Williams I F著.有机化学中的光谱方法.第 5 版.王剑波,施卫峰译.北京:北京大学出版社,2001.35~37
    [44] Lin H P, Mou C Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc. Chem. Res. 2002, 35: 927~935
    [1] 任恕. 膜受体与传感器 . 北京:科学出版社,1996.
    [2] Hunter C A, Sanders J K M. The nature of .pi.-.pi. interactions. J Am Chem Soc, 1990, 112: 5525~5534
    [3] Bouchara A, Soler-Illia G J D A A, Chane-Ching J Y, et al. Nanotectonic approach of the texturation of CeO2 based nanomaterials. Chem. Commun.,2002, 1234~1235
    [4] Bouchara A, Mosser G, Soler-Illia G J de A A, et al. Texturation of nano-crystalline CeO2-based materials in the presence of poly-gamma-benzyl-L-glutamate. J Mater Chem, 2004, 14 (14): 2347~2354
    [5] Jin J, Iyoda T, Cao C, et al. Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi-pi interactions. Angew. Chem. Int . Ed., 2001, 40 : 2135~2138
    [6] Ryo Tamaki, Ken Samura, Yoshiki Chujo,Synthesis of polystyrene and silica gel polymer hybrids via π-π interactions, Chem Common, 1998, 1131~1132
    [7] Lu Y, Fan H, Stump A, et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398, 223~226
    [8] Brinker C J, Lu Y, Sellinger A, et al. Evaporation-Induced Self-Assembly: Nanostructures Made Easy. Adv. Mater. 1999, 11: 579~585
    [9] Rao G V R, López G P, Bravo J, et al. Monodisperse Mesoporous Silica Microspheres Formed by Evaporation-Induced Self Assembly of Surfactant Templates in Aerosols. Adv. Mater., 2002, 14: 1301~1304
    [10] Areva S, Boissière C, Grosso D, et al. One-pot aerosol synthesis of ordered hierarchical mesoporous core–shell silica nanoparticles. Chem. Commun., 2004, 1630~1631
    [11] Bore M T, Rathod S B, Ward T L, et al. Hexagonal Mesostructure in Powders Produced by Evaporation-Induced Self-Assembly of Aerosols from Aqueous Tetraethoxysilane Solutions. Langmuir, 2003, 19: 256~264
    [12] V.N.Rajasekharan P,Manfred M. J Org Chem, 1980, 45:5364
    [13] Daly W H, Poche D. The Preparation of N-carboxyanhydrides of alpha-amino-acids using bis(trichloromethyl)carbonate. Tetrahedron Letters.,1988,29(46):5859~5862
    [14] Yamashita Y,Iwaya Y,Ito K. Die Makromolekulare Chemie,1975,176: 1207
    [15] Bates F S, Fredrickson G H. Block copolymers - Designer soft materials. Physics Today 1999, 52: 32~38
    [16] Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295, 2418-2421
    [17] Floudas G, Papadopoulos P, Klok H A. Hierarchical Self-Assembly of Poly(γ-benzyl-L-glutamate)-Poly(ethylene glycol)-Poly(γ-benzyl-L-glutamate) Rod-Coil-Rod Triblock Copolymers. Macromolecules, 2003, 36 : 3673~3683
    [18] Klok H A, Langenwalter J F, Lecommandoux S. Self-Assembly of Peptide-Based Diblock Oligomers. Macromolecules 2000, 33 : 7819~7826
    [19] Crespo J S, Lecommandoux S, Borsali R. Reversible Self-Organization of Poly(ethylene glycol)-Based Hybrid Block Copolymers Mediated by a De Novo Four-Stranded -Helical Coiled Coil Motif. Macromolecules 2003, 36 : 4107~4114
    [20] Kukula H, Schlaad H, Antonietti M. The Formation of Polymer Vesicles or "Peptosomes" by Polybutadiene-block-poly(L-glutamate)s in Dilute Aqueous Solution. J. Am. Chem. Soc. 2002, 124: 1658~1663
    [21] Choi J S, Joo D K, Kim C H, et al. Synthesis of a Barbell-like Triblock Copolymer, Poly(L-lysine) Dendrimer-block-Poly(ethylene glycol)-block-Poly(L-lysine) Dendrimer, and Its Self-Assembly with Plasmid DNA. J. Am. Chem. Soc. 2000, 122, 474~480
    [21] Ernst R R. 一维和二维核磁共振原理. 毛希安 译. 北京:科学出版社, 1997
    [22]Schmidt-Rohr K, Spiess H W. Multidimensional Solid-State NMR and Polymers, London: Academic Press Ltd., 1994
    [23] Sakellariou D, Lesage A, Hodgkinson P, et al. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem.Phys.Lett., 2000, 319: 253~260
    [24] Lesage A, Sakellariou D, Hediger S, et al. Experimental aspects of proton NMR spectroscopy in solids using phase-modulated homonuclear dipolar decoupling. J. Magn. Reson. 2003, 163: 105~113
    [25] Elena B, de Paepe G, Emsley L. Direct spectral optimisation of proton-proton homonuclear dipolar decoupling in solid-state NMR. Chem. Phys. Lett. 2004, 398: 532~538
    [26] Brown S P, Spiess H W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev, 2001, 101: 4125~4155
    [27] Hong M, Yao X, Jakes K, et al. Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy. J. Phys. Chem. B., 2002, 106: 7355~7364
    [28] Schneider M, Gasper L, Demco D E, et al. Residual dipolar couplings by H-1 dipolar-encoded longitudinal magnetization, double- and triple-quantum nuclear magnetic resonance in cross-linked elastomers. J Chem Phys, 1999, 111: 402~415
    [29] Wang M, Bertmer M, Demco D E, et al. Indication of Heterogeneity in Chain-Segment Order of a PDMS Layer Grafted onto a Silica Surface by 1H Multiple-Quantum NMR Macromolecules, 2003, 36: 4411~4413
    [30] Sun P, Dang Q, Li B, et al. Mobility, Miscibility, and Microdomain Structure in Nanostructured Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers Characterized by Solid-State NMR. Macromolecules, 2005, 38: 5654~5667
    [31] Shoji A, Kimura H, Ozaki T, et al. Conformational Study of Solid Polypeptides by 1H Combined Rotation and Multiple Pulse Spectroscopy NMR. J.Am.Chem.Soc, 1996, 118: 7604~7607
    [32] 伍国琳, 孙平川, 张国林, 马建标. 采用固体核磁共振研究MPEG-PLA双嵌段共聚物的固态相区结构. 波谱学杂志,2003,20: 1~7
    [33] Doty P, Bradbury J H, Holtzer A M. Polypeptides IV: The molecular weight, configuration and association of poly( -benzyl-L-glutamate) in various solvents. J Am Chem Soc, 1956, 78(5): 947~954
    [34] Yang T, Doty P. The optical rotatory dispersion of polypeptides and proteins in relation to configuration. J Am Chem Soc, 1957, 79(4): 761~775
    [35] Lecommandoux S, Achard M F, Langenwalter J F. Self-Assembly of Rod-Coil Diblock Oligomers Based on -Helical Peptides. Macromolecules 2001, 34: 9100~9111
    [1] Meldrum FC. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev, 2003, 48: 187~224
    [2] Xu A W, Ma Y R, C?lfen H. Biomimetic mineralization. J. Mater. Chem. , 2007, 17: 415~449
    [3] C?lfen H, Antonietti M. Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers. Langmuir, 1998, 14: 582~589
    [4] C?lfen H, Qi L M. A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chem.–Eur. J., 2001, 7: 106~116
    [5] Yu S H, C?lfen H, Hartmann J, et al. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-Hydrophilic Block Copolymers. Adv. Funct. Mater., 2002, 12: 541~545
    [6] Rudloff J, Antonietti M, C?lfen H, et al. Double-Hydrophilic Block Copolymers with Monophosphate Ester Moieties as Crystal Growth Modifiers of CaCO3. Macromol. Chem. Phys., 2002, 203: 627~635
    [7] Yu S H, C?lfen H, Antonietti M. Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructures. J. Phys. Chem. B, 2003, 107: 7396~7405
    [8] Rudloff J, C?lfen H. Superstructures of Temporarily Stabilized Nanocrystalline CaCO Particles: Morphological Control via Water Surface Tension Variation.3Langmuir, 2004, 20: 991~996
    [9] Qi L M, C?lfen H, Antonietti M. Crystal Design of Barium Sulfate using Double-Hydrophilic Block. Angew. Chem., Int. Ed., 2000, 39: 604~607
    [10] Qi L M, C?lfen H, Antonietti M. Control of Barite Morphology by Double-Hydrophilic Block Copolymers. Chem. Mater., 2000, 12: 2392~2403
    [11] Li M, C?lfen H, Mann S. Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem., 2004, 14: 2269~2276
    [12] Yu S H, C?lfen H, Antonietti M. Control of the Morphogenesis of Barium Chromate by Using Double-Hydrophilic Block Copolymers (DHBCs) as Crystal Growth Modifiers. Chem.–Eur. J., 2002, 8: 2937~2945
    [13] Yu S H, C?lfen H, Antonietti M. The Combination of Colloid-Controlled HeterogeneousNucleation and Polymer-Controlled Crystallization: Facile Synthesis of Separated, Uniform High-Aspect-Ratio Single-Crystalline BaCrO4 Nanofibers. Adv. Mater., 2003, 15: 133~136
    [14] Qi L , Li J, Ma J. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Adv. Mater., 2002, 14: 300~303
    [15] Li C, Qi L. Bioinspired Fabrication of 3D Ordered Macroporous Single Crystals of Calcite from a Transient Amorphous Phase. Angew. Chem. Int. Ed., 2008, 47: 2388 ~2393
    [16] Guo X H, Yu S H, Cai G B. Crystallization in a Mixture of Solvents by Using a Crystal Modifier: Morphology Control in the Synthesis of Highly Monodisperse CaCO3 Microspheres. Angew. Chem. Int. Ed., 2006, 45: 3977~3981
    [17] Chibowski E, Szczes A, Holysz L. Influence of Sodium Dodecyl Sulfate and Static Magnetic Field on the Properties of Freshly Precipitated Calcium Carbonate. Langmuir 2005, 21: 8114~8122
    [18] Shen Q, Wei H, Wang L, et al. Crystallization and Aggregation Behaviors of Calcium Carbonate in the Presence of Poly(vinylpyrrolidone) and Sodium Dodecyl Sulfate. J. Phys. Chem. B, 2005, 109: 18342~18347
    [19] Kawano J, Shinobayashi N, Kitamura M, et al. Formation process of calcium carbonate from highly supersaturated solution. J. Cryst. Growth, 2002, 237: 419~423
    [20] Kitamura M. Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion. J. Colloid Interface Sci. , 2001, 236: 318~327
    [21] Lippmann F. In Sedimentary Carbonate Minerals, Berlin: Springer Verlag, 1973
    [22] White W. B. In Infrared Spectra of Mineral, Farmer V. C., Ed., London: Mineralogical Society, 1974: 227~84
    [23] Lee H S, Ha T H, Kim K. Fabrication of unusually stable amorphous calcium carbonate in an ethanol medium. Mater. Chem. Phys. , 2005, 93: 376~382
    [24] Wang L F, Sondi I, Matijevic E. Preparation of uniform needle-like aragonite particles by homogeneous precipitation. J. Colloid Interface Sci. , 1999, 218: 545~553
    [25] Lia Addadi,Sefi Raz, Steve Weiner.Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater., 2003,15: 959~970
    [26] Chen S, Yu S H, Yu B, et al. Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route. Chem. Eur. J. , 2004, 10: 3050~3058
    [27] Naka K, Tanaka Y, Chujo Y. Effect of Anionic Starburst Dendrimers on the Crystallization of CaCO3 in Aqueous Solution: Size Control of Spherical Vaterite Particles. Langmuir, 2002, 18: 3655~3658
    [28] Lakshminarayanan R, Jin E, Loh X, et al. Purification and Characterization of a Vaterite-Inducing Peptide, Pelovaterin, from the Eggshells of Pelodiscus sinensis (Chinese Soft-Shelled Turtle). Biomacromolecules, 2005, 6: 1429~1437
    [29] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, Inc., 2001.
    [30] Yoshimura M, Suda H, Okamoto K, et al. Hydrothermal synthesis of biocompatible whiskers. J. Mater. Sci. 1994, 29: 3399~3402
    [31] Burke E M, Guo Y, Colon L, et al. Influence of polyaspartic acid and phosphophoryn on octacalcium phosphate growth kinetics. Colloids Surf. B: Biointerface, 2000, 17: 49~57
    [32] Bertoni E, Bigi A, Falini G, et al. Hydroxyapatite polyacrylic acid nanocrystals. J. Mater. Chem., 1999, 9: 779~782
    [33] Walsh D, Kingston J L, Heywood B R, et al. Influence of monosaccharides and related molecules on the morphology of hydroxyapatite. J. Cryst. Growth, 1993, 133: 1~12
    [34] Sarda S, Heughebaert M, Lebugle A. Influence of the Type of Surfactant on the Formation of Calcium Phosphate in Organized Molecular Systems. Chem. Mater., 1999, 11: 2722~2727
    [35] Yan L, Li Y D, Deng Z X, et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int. J. Inorg. Mater. 2001, 3: 633~637
    [36] Qi L, Ma J, Cheng H, et al. Microemulsion-mediated synthesis of calcium hydroxyapatite fine powders. J. Mater. Sci. Lett. 1997, 16: 1779
    [37] Antonietti M, Breulmann M, Goltner C, et al. Inorganic/Organic Mesostructures with Complex Architectures: Precipitation of Calcium Phosphate in the Presence of Double-Hydrophilic Block Copolymers. Chem. Eur. J. 1998, 4: 2493~2450
    [38] Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294: 1684~1688
    [39] Sadasivan S, Khushalani D, Mann S. Synthesis of Calcium Phosphate Nanofilaments in Reverse Micelles. Chem. Mater. 2005, 17: 2765~2770
    [40] Wang X, Zhuang J, Peng Q, et al. Liquid–Solid–Solution Synthesis of BiomedicalHydroxyapatite Nanorods. Adv. Mater., 2006, 18: 2031~2034
    [41] Brown W E, Mathew M, Chow L C. Adsorption on and Surface Chemistry of Hydroxyapatite. ed. by D. N. Misra. New York: Plenum Press, 1984, 13
    [42] Iijima M, Moradian-Oldak J. Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices. J. Mater. Chem., 2004, 14: 2189~2199
    [43] Bigi A, Boanini E, Bracci B, et al. Interaction of acidic poly-amino acids with octacalcium phosphate. J. Inorg. Biochem., 2003, 95, 291~296
    [44] Gonzalez-McQuire R, Chane-Ching J Y, Vignaud E, et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. J. Mater. Chem., 2004, 14: 2277~2281
    [45] Graham S, Brown P W. Reactions of octacalcium phosphate to form hydroxyapatite. J. Cryst. Growth, 1996, 165: 106~115
    [46] Matsumoto T, Okazaki M, Inoue M, et al. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials, 2002, 23: 2241~2247
    [47] Koutsoukos S, Dalas E. The effect of acidic amino acids on hydroxyapatite crystallization. J. Cryst. Growth, 2000, 217: 410~415
    [48] Zhang H G, Zhu Q. Glutamic Acid-mediated Synthesis of Ultralong Hydroxyapatite Nanoribbons under Hydrothermal Conditions. Chem. Lett., 2005, 34: 788~789
    [49] Cao M, Wang Y, Guo C, et al. Preparation of Ultrahigh-Aspect-Ratio Hydroxyapatite Nanofibers in Reverse Micelles under Hydrothermal Conditions. Langmuir, 2004, 20: 4784~4786
    [50] Onuma K, Ito A. Cluster Growth Model for Hydroxyapatite. Chem. Mater., 1998, 10: 3346~3351
    [51] Pan H, Tao J, Xu X, et al. Adsorption Processes of Gly and Glu Amino Acids on Hydroxyapatite Surfaces at the Atomic Level. Langmuir, 2007, 23: 8972~8981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700