基于RS和GIS的近30年来莱州湾南部海岸地貌演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莱州湾南部海岸位于山东半岛蓝色经济区和黄河三角洲高效生态经济区结合部位,沿岸自然资源丰富,人口密集,海洋经济发达。特别是最近30年来,经济发展非常迅速,人类活动对海岸地貌环境改变影响深刻。
     本文以莱州湾南部海岸地貌环境变化研究为全文主线,选用4期数字遥感图像、2期海图及相关辅助数据,通过建立遥感影像解译标志,采用目视解译和计算机解译相结合的方法,增强并提取海岸地貌各种专题地物信息。在此基础上,以GIS技术为支持,将研究区的海岸地貌信息综合分析,建立莱州湾南部海岸地貌1979~2008年间的基础地理信息数据库,并从空间和时间两个方面揭示其变化规律,最后对海岸地貌演变的影响因素进行了研究。主要结论如下:
     (1)地貌类型和结构变化
     1979~1989年莱州湾南部海岸地貌类型变化主要表现为海域、滩涂、海积平原、冲积平原和冲海积平原等自然地貌类型的减少以及养殖池、盐田和建筑物等人工地貌类型的增加。1989~2001年莱州湾南部海岸地貌类型变化主要表现为滩涂、海积平原、冲海积平原、冲积平原的持续减少和海域、建筑物、盐田、养殖池的增加。2001~2008年莱州湾南部海岸地貌类型变化主要表现为滩涂、海积平原、养殖池、冲积平原、冲海积平原的面积减少和海域、盐田、建筑物的面积增加。从1979~2008年近30年时间尺度来看莱州湾南部海岸地貌类型变化主要表现为养殖池、盐田和建筑物等人工地貌的迅速增加和滩涂、海积平原、冲海积平原和冲积平原等自然地貌的迅速减少。
     (2)地貌类型转化分析
     作为人类活动的主要地貌类型,养殖池主要由海积平原、冲海积平原和滩涂转化而来,盐田主要由冲积平原、冲海积平原和海积平原转化而来,并且盐田和养殖池互相转化,建筑物主要由冲积平原转化而来。自然地貌类型中滩涂主要转化为海域,这和潮位误差有关,其次转化为养殖池;冲海积平原和海积平原转化为养殖池和盐田,冲积平原主要转化为建筑物。
     (3)地貌冲淤演变研究
     从1979年到1989年在人类活动影响较弱状态下莱州湾南部海岸以淤积为主,年均净增加淤积面积2.33km~2。从1989年到2001年人类活动加剧后莱州湾南部海岸淤积速度变缓,年均净增加淤积面积0.99 km~2。2001年到2008年,研究区增加的侵蚀面积较增加的淤积面积多84.85km~2,年均净增加侵蚀面积12.12km~2。这表明,莱州湾南部海岸在2001年到2008年地貌冲淤状态以侵蚀为主,且速度显著变快。
     (4)海岸线变化信息分析
     根据岸线向海延伸或者稳定或者后退的不同类型,可将研究区海岸分为三类,小清河左侧和右侧及白浪河右侧为一类,均是先后退然后向海延伸;白浪河左侧、虞河与堤河之间、潍河左侧及右侧归为一类,均是先后退然后稳定然后继续后退;胶莱河右侧是一类,为先后退然后稳定再向海延伸。根据不同区间岸线变化长度可将研究区海岸线分为三类,小清河左侧、白浪河左侧、白浪河右侧、虞河与堤河之间、潍河左侧为一类,岸线长度先减少后增加,除小清河左侧是2001年最小、潍河左侧是1989年为最小值外其余三段均在1979年达到最小值;小清河右侧和胶莱河右侧为一类,岸线长度先减少后增加再减少,均在1979年达到最小值;潍河右侧变化频繁,先减少后增加再减少再增加,单独归为一类。
     (5)莱州湾南岸海岸地貌演变影响因素
     莱州湾南岸海岸地貌演变影响因素包括自然因素和人为因素,自然因素又包括地质构造和海洋动力。人为因素主要包括海岸工程、盐田开发、养殖池开发、开采地下水等。
The southern coast of Laizhou Bay lies in the binding site of Shandong Peninsula blue economic zone and the Yellow River Delta efficient ecological economic region, which is rich in natural resources, with high population density, and developed marine economy. With the rapid economic development especially in the last 30 years, the coastal landscape environment has gone through a significant change influenced by human activities.
     Based on the study of changes in coastal landform in the southern Laizhou bay, adopting four periods of remote sensing images,two periods of charts and other relevant data, this paper enhances and extracts the thematic information of coastal geomorphic through the establishment of remote sensing image interpretation signs and using the method of visual interpretation and computer interpretation combined. Moreover, supported by GIS, the paper will analysize the extracted coastal geomorphic information and establishes the geo-information of the southern Laizhou bay coastal geomorphic changes from 1979 to 2008. It further reveals the changing regularities of the landscape environment in the respect of time and space, and discusses the driving mechanism of the changes from the respective of nature and human activities. The major conclusions are listed below:
     (1)Changes of geomorphic types and structure
     The main changes of geomorphic types in the southern Laizhou bay from 1979 to 1989 manifest in a way of decreases in natural geomorphic types, including seas, beaches, marine plains, alluvial plains, alluvial and marine plains, and increases in human landscapes of ponds, salt pans and buildings. Changes from 1989 to 2001 show the continuous decrease of beaches, marine plains, alluvial and marine plains, alluvial plains and increase of seas, building, salt pans and ponds. The variations from 2001 to 2008 behave a decrease of beaches, marine plains, alluvial plains, the alluvial and marine plains and ponds and an increase in seas, salt pans and buildings. As can be inferred from the above, the landscape of this area shows a rapid increase in human geomorphic types and a rapid decrease of natural geomorphic types.
     (2)Analysis of the geomorphic type transformation
     As the main geomorphic types of human activities, ponds mainly transforms from marine plains, alluvial and marine plains and beaches, and salt pans converted from alluvial plains, marine plains and alluvial and marine plains, with ponds and salt pans are interchangeable. Besides, buildings are transformed from alluvial plains. Beaches, as a main natural geomorphic type, mainly convert into seas and secondly transformed to ponds, which correlates with tide level error. In addition, marine plains and alluvial and marine plains transform into ponds and salt pans, alluvial plain mainly transform to buildings.
     (3) Study on the Evolution of geomorphology erosion and deposition
     From 1979 to 1989, less affected by human activities, the southern Laizhou bay was shaped mainly by deposition, with its average net area increasing by 2.33 km~2 annually. While in the years from 1989 to 2001, the speed of deposition slowed down because of the intensity of human activities, with the average net area increasing by 0.99 km~2 annually. From 2001 to 2008, the increase of the erosion area exceeded that of the deposition area, with 84.85 km~2 in total, and the average 12.12 km~2 annually. It is suggested that the geomorphology erosion dominated in the southern Laizhou bay during 2001 to 2008, with a remarkable faster speed.
     (4) Information Analysis of Coastline Changes
     According to the different types of coastline, extending to the sea or being steady or going backward, the studied coast can be divided into three categories. The both sides of Xiao Qing River and the right side of Bai Lang River goes to the same category, all first going backward then extending to the sea; The left side of Bai Lang River, the area between Yu River and Di River and the both sides of Wei River belong to the same category, going backward, turning steady and then going backward again; The right side of Jiao River is another distinct category, in the way of going backward, being steady and then extending to the sea. In accordance with its changes in length in different intervals, the coastline of the study area can be classified into three types. The left side of Xiao Qing River, the both sides of Bai Lang River, the area between Yu River and Di River and the left side of Wei River were of the same category, the length of whose coastlines decreased before increasing. Almost all the sections mentioned above reached to the minimum length in 1979, except the left side of Xiao Qing River in 2001, and the left side of We River in 1989. The right side of both Xiao Qing River and Jiao Lai River behave the same, the length of whose coastlines decreased, then increased, and at last decreased, reaching to the minimum in 1979. The right side of Wei River was a separate type, the coastline length of which changed frequently, decreased, then increased, then decreased and increased again.
     (5) Factors influencing the evolution of the landscapes
     Complicated factors are affecting the southern Laizhou bay, involving both natural elements as geological structures and marine dynamics, and human activities as coastal project, exploitment of salt pans, pools, and groud water resourcs.
引文
[1]杨晓梅,周成虎,杜云艳,等.海岸带遥感综合技术与实例研究[M].海洋出版社, 2005.
    [2] Dongmei Han, Claus Kohfahl, Xianfang Song et al. Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China [J]. Applied Geochemistry, 2011, 26(5): 863~883.
    [3] Xiaoqin Xu, Huanghao Yang, Qingling Li et al. Residues of organochlorine pesticides in near shore waters of LaiZhou Bay and JiaoZhou Bay, Shandong Peninsula, China [J]. Chemosphere, 2007,68(1):126~139.
    [4]Xinshan Qi. Experimental studies of farmland ecological engineering for controlling saltwater intrusion in the Laizhou Bay area of China [J]. Ecological Engineering, 1998, 11, (1-4) : 45~48.
    [5]Han Mei. Healthy Evaluation for Wetlands Based on Vague Mathematics: Taking the wetlands on Laizhou Bay′s Coastal Plain of China as a case [J]. Procedia Environmental Sciences, 2010, 2: 1491~1500.
    [6]W. Zhang, R. Wang. Summertime Ciliate and Copepod Nauplii Distributions and Micro-zooplankton Herbivorous Activity in the Laizhou Bay, Bohai Sea, China [J]. Estuarine, Coastal and Shelf Science, 2000, 51(1):103~114.
    [7]Qing Wang, Mingming Zhang, Shaoyun Zhong et al. Dynamic sedimentation and geomorphologic evolution of the Laizhou shoal, Bohai sea, Northern China [J]. Journal of Asian Earth Sciences, 2009, 36(2-3): 196~208.
    [8] Zhaohua Yu, Shiguo Wu, Dongbo Zou. Seismic profiles across the middle Tan-Lu fault zone in Laizhou Bay, Bohai Sea, eastern China [J]. Journal of Asian Earth Sciences, 2008, 33, (5-6): 383~394.
    [9]Jun Jin, Weizhi Liu, Ying Wang. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China[J] . Chemosphere, 2008, 71(6):1043~1050.
    [10] Hao Liu, Baoshu Yin. Numerical investigation of nutrient limitations in the Bohai Sea [J].Marine Environmental Research, 2010,70(3-4):308~317.
    [11] Xiaoqin Xu, Huanghao Yang, Ling Wang et al. Analysis of chloroacetanilide herbicidesin water samples by solid-phase microextraction coupled with gas chromatography–mass spectrometry [J].Analytica Chimica Acta, 2007, 591(1): 87~96.
    [12] Geng-Mao ZHAO, Zhao-Pu LIU, Ming-Da CHEN et al. Soil Properties and Yield of Jerusalem Artichoke (Helianthus tuberosus L.) with Seawater Irrigation in North China Plain[J]. Pedosphere, 2008, 18(2):195~202.
    [13] Feng Cai, Xianze Su, Jianhui Liu et al. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science, 2009, 19(4): 415~426.
    [14] Waleed K. Zubari, Ismail M. Madany, Sabah S. Al-Junaid et al. Trends in the quality of groundwater in Bahrain with respect to salinity, 1941–1992 [J]. Environment International, 1994, 20(6):739~746.
    [15] Yun-Guo Liu, Zhi-Gang Yu, Bao-Long Bao et al. Population genetics studies of half-smooth tongue sole Cynoglossus semilaevis using ISSR markers[J]. Biochemical Systematics and Ecology, 2008, 36(11):821~827.
    [16] Zhiqiang Gao, Wei Gao, Ni-Bin Chang. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images [J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(3): 495~503.
    [17]陈子丹.莱州湾南岸区域自然环境与经济开发的探讨[J].资源与环境,1989,1(1):34~39.
    [18]韩美,李道高,赵明华.莱州湾南岸平原地面古河道研究[J].地理科学,1999,19(5):451~456.
    [19]张祖陆,王琳.莱州湾南岸咸水入侵区土地利用/覆被变化驱动机理研究[J].地理科学,2007.2,27(1):40~44.
    [20]丰爱平,夏东兴,谷东起,等.莱州湾南岸海岸侵蚀过程与原因研究[J].海洋科学进展,2006.1,24(1):83~90.
    [21]韩美.莱州湾地区海水入侵与地貌的关系[J].海洋与湖沼,1996.7,27,(4),414~419.
    [22]庄振业,刘冬雁,杨鸣,等.莱州湾沿岸平原海水入侵灾害的发展进程[J].青岛海洋大学学报,1999,29(1):141~147.
    [23]丰爱平,谷东启,夏东兴.莱州湾南岸海水入侵发展动态和原因[J].海岸工程,2006,9(3):7~13.
    [21]刘恩峰,张祖陆,沈吉.莱州湾南岸潍河下游地区咸水入侵灾害成因及特征[J].地球科学与环境学报,2004,26(3):79~87
    [25]刘恩峰.莱州湾南岸滨海平原沉积环境变化与咸水入侵关系研究[D],山东师范大学硕士毕业论文,2002年4月:1~42.
    [26]苏乔,于洪军,徐兴永.莱州湾南岸海水入侵现状评价[J].海岸工程,2009,28(1):9~14.
    [27]蒋文婷.莱州湾南岸地质环境脆弱性分析与评价[D],国家海洋局第一海洋研究所硕士学位论文,2008年6月:1~91.
    [28]谷东起,付军,杨鸣,等.莱州湾南岸滨海湿地景观破碎化分析[J].海洋科学进展,2006.4,24(2):213~219.
    [29]张绪良,陈东景,谷东起.近20年莱州湾南岸滨海湿地退化及其原因分析[J],科技导报,2009,27(4):65~70.
    [30]张绪良.莱州湾南岸滨海湿地的退化及其生态恢复、修建研究[D],中国海洋大学博士毕业论文,2006年6月:2~3.
    [31]张绪良,张朝晖,徐宗军.莱州湾南岸滨海湿地的景观格局变化及累积环境效应[J],生态学杂志,2009,28(12):2437~2443.
    [32]吴珊珊.莱州湾南岸滨海湿地的景观格局变化及其生态脆弱性评价[D],山东师范大学硕士毕业论文,2009年6月:1~70.
    [33]谷东起,付军,杨鸣.莱州湾南岸滨海湿地景观破碎化分析[J].海洋科学进展,2006,24(2):213~219.
    [34]孙云华,张安定,王庆.基于RS和GIS的近30年来人类活动影响下莱州湾东南岸海岸湿地演变[J].海洋通报, 2011,30(1):65~72.
    [35] http://baike.baidu.com/view/132818.htm
    [36] V.C. Miller. Current trends in photogeology and in the use of other remote sensing methods in geological interpretation [J]. Earth-Science Reviews, 1968, 4:135~152
    [37] Stephen J. Walsh, David R. Butler, George P. Malanson. An overview of scale, pattern, process relationships in geomorphology: a remote sensing and GIS perspective [J]. Geomorphology, 1998, 21(3-4):183~205.
    [38] Olav Slaymaker .The role of remote sensing in geomorphology and terrain analysis in the Canadian Cordillera [J]. International Journal of Applied Earth Observation and Geo-information, 2001, 3(1):11~17.
    [39] David M.Tralli, Ronald G.Blom,Victor Zlotnicki, et al. Satellite remote sensing ofearthquake, volcano,flood,landslide and coastal inundation hazards[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(4):185~198.
    [40] Pedro Walfir M. Souza Filho, Elainy do Socorro Farias Martins, et al. Using mangroves as a geological indicator of coastal changes in the Bragan?a macrotidal flat, Brazilian Amazon: A remote sensing data approach[J]. Ocean & Coastal Management, 2006, 49, (7-8):462~475.
    [41] A.S Sobur, M.J Chambers, R Chambers,et al. Remote sensing applications in the Southeast Sumatra coastal environment[J]. Remote Sensing of Environment, 1978, 7(4): 281~303.
    [42] A. Traviglia, D. Cottica. Remote sensing applications and archaeological research in the Northern Lagoon of Venice: the case of the lost settlement of Constanciacus [J].Journal of Archaeological Science, In Press, Corrected Proof, Available online 20 November 2010.
    [43] V. Singhroy. SAR integrated techniques for geohazard assessment Advances in Space Research, 1995, 15(11): 67~78
    [44]任美锷.第四纪海面变化及其在海岸地貌上的反映[J].海洋与湖沼, 1965,7(3):295~305.
    [45]李善为,夏东兴.山东海岸地貌发育特征[J].海洋湖沼通报,1981 ,3(3):39~45.
    [46]莫永杰.广西海岸带水动力过程与海岸地貌演化[J].海洋科学,1988,3(2):25~27.
    [47]李乃芳,叶维强.广西犀牛脚海岸地貌特征的初步研究[J].海洋科学,1988,5(3):20~24.
    [48]王守一.河北沧州沿海淤泥质海岸地貌环境演变与区域经济发展评价[J].干旱区资源与环境,1989,3(3):142~147.
    [49]崔金瑞,夏东兴.山东半岛海岸地貌与波浪、潮汐特征的关系[J].黄渤海海洋, 1992 ,10(3):605~611.
    [50]张振克.人类活动对烟台附近海岸地貌演变的影响[J].海洋科学,1995,3:59~62.
    [51]丛宁,张振克,夏非.人类活动与全球变暖影响下长江口海岸地貌动态与灾害趋势研究[J].河南科学,2010,28(5):605~611.
    [52]王庆.全新世中期以来山东半岛东北岸相对海面变化与海积地貌发育[J].地理研究,1999.6,18(2):122~129.
    [53]赵庆英,杨世伦,刘守棋.长江三角洲的形成和演变[J].上海地质,2002,84(4):25~30.
    [54]杜景龙,杨世伦,张文祥,等.海岸地貌建模方法研究——以长江口九段沙、芦潮港附近边滩为例[J].海洋通报,2004,23(6):61~65.
    [55]王轲道,王建.海岸工程对粉沙淤泥质侵蚀性海岸的影响——以茅家港环抱式突堤航道防护工程为例[J].海岸工程,2004,23(2):19~24.
    [56]李加林,杨晓平,童亿勤.潮滩围垦对海岸环境的影响研究进展[J].地理科学进展,2007,26(2):43~51.
    [57]郭伟,李书恒,朱大奎.深圳东部海岸地貌环境与可持续发展[J].地理学报,2007 ,62(4):377~386.
    [58]李猷,王仰麟,彭建,等.深圳市1978年至2005年海岸线的动态演变分析[J].资源科学,2009 ,31(5):875~883.
    [59]夏非,张永战,吴蔚. EOF分析在海岸地貌与沉积学研究中的应用进展[J].地理科学进展,2009,28(2):174~186.
    [60]王杰,李加林.浙江海岸带文化资源形成的地貌环境因素分析[J].海洋信息,2010,(3):23~25
    [61]中国海湾志第三分册(山东半岛北部和东部海湾)[M].中国海洋志编纂委员会,海洋出版社,1991年,20~21.
    [62]杨鸣.莱州湾南岸海岸带环境退化及治理对策研究[D],中国海洋大学博士毕业论文,2005年4月:1~180.
    [63]山义昌,张芹,杨付津,等.莱州湾风暴潮的形成与增水量评估[J].山东气象,2006,4(26):4~6
    [64]许陈忠,乐华福,毛显谋.水深航空多光谱遥感的初步研究[J].1982,4(3):346~356.
    [65]梅安新,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001:153~162.
    [66]赵英时.遥感应用分析原理与方法[M],北京:科学出版社,2003:76~91.
    [67]郑跃鹏.基于"3S"技术的广西海岸带变化研究[D].中国地质大学博士学位论文,2009年5月:1~61.
    [68] http://www.eresda·com.
    [69]侯志华.GIS技术支持下的海岸带遥感动态监测分析—以龙口市海岸带为例[D],山东师范大学硕士毕业论文,2006年4月,11~12.
    [70]马小峰,赵冬至,张丰收,等.海岸线卫星遥感提取方法研究进展[J].遥感技术与应用,2007,8(4): 575~580.
    [71]杨英力.利用卫星影像判绘海岸线[J].海洋测绘,2004,5(3): 49~51.
    [72]张景奇,介东梅,刘杰.海岸线不同解译标志对解译结果的影响研究--以辽东湾北部海岸为例[J].吉林师范大学学报,2006,5(2): 54~56.
    [73]于永梅,苗丰民,王玉广,等.基于3S技术的海岸线测量与管理应用研究[J].地理与地理信息科学,2003,11(6): 24~27
    [74]黄鹄,胡自宁,陈新庚.基于遥感和GIS相结合的广西海岸线时空变化特征分析[J].热带海洋学报,2006,25(1): 66~70.
    [75]宋平舰,张杰,宋纬.基于不动点计算的岸线动态分析方法[J].电子与信息学报, 2006,28(1):72~75.
    [76]刘宝银.中国海岸带与海岛遥感调查[M].北京:海洋出版社, 2005.
    [77]蔡则健,吴曙亮.江苏海岸线演变趋势遥感分析[J].国土资源遥感, 2003,(3):19~23.
    [78]陶明刚. Landsat-TM遥感影像岸线变迁解译研究[J].水文地质工程地质, 2006,(1):107~110.
    [79]孙美仙,张伟.福建省海岸线遥感调查方法及其应用研究[J].台湾海峡, 2004,23(2):213~218.
    [80]李学杰.应用遥感方法分析珠江口伶仃洋的海岸线变迁及其环境效应[J].地质通报,2007,26(2):215~222.
    [81]Ying Wang, David G.Aubrey. The characteristics of the China coastline[J],Continental Shelf Research, 1987.4, 7(4):329~349.
    [82]陈则实,王文海,吴桑云.中国海湾引论[J].北京:海洋出版社,2007:509~510.
    [83]房宪英,姜太良.莱州湾的潮流特征[J].海岸工程.1991,10(3);44~49.
    [84]彭子成,韩有松.莱州湾地区10万年以来沉积环境变化[J].地质评论.1992, 38(4):360~367.
    [85]韩美,孟庆海.莱州湾沿岸的地貌类型[J].山东师范大学学报:自然科学版.1996, 11(3);63~67.
    [86]吴时国,余朝华,邹东波等.莱州湾地区郯庐断裂带的构造特征及其新生代演化[J].海洋地质与第四纪地质.2006,26(6):101~110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700