北运河下游湿地大型底栖动物研究及水质评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,北运河一直受到人类干扰活动的影响,水体富营养化严重。大型底栖动物是湿地生态系统中的重要类群,因此对大型底栖动物的研究不仅可以掌握其群落结构,还可以反映水质的污染情况。2010年,对北运河下游大黄堡湿地自然保护区的大型底栖动物进行采集,并对其种类组成、数量分布、群落结构及多样性、环境因子影响和水质生物评价进行了初步研究。
     根据大黄堡湿地自然保护区的水流情况,设置5个采样点。2010年3月到10月逐月进行野外采集。采样方法分为定量采集和定性采集,各个采样点重复采集两次。样品经网筛过滤分捡后进行分类鉴定,并对每个采集点的样品进行数量统计和生物量的测定;利用密度、生物量分析群落的时间动态和季节差异;运用生物多样性指数和相似性指数进行群落多样性分析及群落聚类分析;采用H、BPI和FBI三种指数进行水质生物评价。
     本研究共采集到大型底栖动物37属40种,其中水生昆虫幼虫占65%,寡毛类占17.5 %,水生昆虫幼虫主要由摇蚊幼虫构成。根据捕获的个体数量得出,寡毛类和摇蚊类是大型底栖动物的优势类群,构成了大黄堡湿地自然保护区大型底栖动物群落的主体。其中寡毛类占捕获总量的比例最大,为63.13%,是最稳定最主要的类群。春夏秋三季大型底栖动物群落的类群较单一且变化不明显,类群构成较稳定。大型底栖动物群落的密度和生物量整体变化趋势是:3到5月递增,5到10月递减,最高值均出现在5月份。大型底栖动物群落的密度和生物量季节变化规律是:春季>夏季>秋季。各季节中密度和生物量的最高采集点均出现在进水口。
     3月至10月的Margaleff丰富度指数和Shannon-Weiner多样性指数均在5月份达到最大值(分别为2.5964和3.3522),且8月份为最小值;Simpson优势度指数却恰恰相反;Pielou均匀度指数的月份变化规律不明显,各月份的指数值变化相差不大。各采集点的Margaleff丰富度指数和Shannon-Weiner多样性指数季节变化明显,春季>夏季>秋季。不同采样点的群落相似性较高,相似性系数最高达0.8557。聚类分析表明:在0.5水平上,分为两组,芦苇采样点构成一组,其它采样点共同构成另一组。相似性系数和聚类分析表明在不同采集点的大型底栖动物群落的结构变化不大,群落结构相似。
     大型底栖动物群落多样性与氨氮、总氮、总磷、溶解氧、pH和高锰酸钾的相关性都不显著。主要是所捕获的大型底栖动物群落以高耐污的类群组成,理化指标的小幅度变化对群落影响不大。通过对各样点的多样性比较,芦苇采样点比广阔的水域更适合大型底栖动物的生长,生物多样性更高,可以看出植被对大型底栖动物群落具显著地影响。
     利用大型底栖动物群落生物指数对水质进行评价,各月份的生物学污染指数值均大于1.0,科级水平生物指数值都大于6.50,表明各月份水质都有不同程度的污染。生物学污染指数和科级水平生物指数显示8月份的指数值最大(分别为4.15和9.64),污染程度最严重。在春夏秋三季中,除春季芦苇、交界和岸边采集点的H值显示水质清洁,其余均表明水质受到污染,但污染程度不一。从采集样点污染程度来看,流经大黄堡湿地自然保护区的水质并没有得到良好的改善,在出水口采集样点的水质有恶化的趋势,仅是在芦苇采集样点水质有所好转。这与湿地下游的人工干扰活动和挺水植物、浮水植物、微生物群落的缺乏有关。根据测定的H、BPI、FBI三种指数并结合理化指标表明,该水域已经受到严重的污染,水体富营养化严重。
The aquatic eutrophication has been seriously induced via human activity in Beiyunhe River during these years. The study of macrofauna could absorbed the community structure and reflected water quality as a result of the fact that macrofauna is an important component in wetland ecosystem. Sampling of macrofauna was carried out at Dahuangpu Wetland Natural Conservation located on the downstream of Beiyunhe River from March to October, 2010, based on which species composition and quantitative distribution, community structure and diversity, the effect of environmental factor and bioassay of water quality were discussed in present study.
     Samples, including quantitative collection and qualitative collection, were taken at 5 sites set according to the conditions of water current at every month interval. 2 reduplications were done at each sampling site. Quantitative statistics and determination of biomass were carried out after classification. Density biomass analysis, biodiversity index analysis, similarity clustering analysis were performed to evaluate the time dynamics and seasonal difference of community, community diversity, and to compare the similarity among sites, respectively. Meanwhile, H, BPI and FBI were used for bioassay of water quality.
     Macrofauna including 65% aquatic insects, mainly tendipes, 17.5% oligochaeta distributed in 37 genus and 40 species. The results indicated that tendipes and oligochaeta were dominant in the macrofauna community with the later being most stable and in the largest percentage (63.13%). Group composition of macrofauna community was simple and stable from spring to fall. The trends of changes in density and biomass towards increasing from March to May, then decreasing till October with peak value occurring both in May was apparent. Both density and biomass showed the most quantity from sampling site at water intake.
     Both Index of Margaleff and Shannon-Weiner went up to peak in May (2.5964 and 3.3522, respectivly) , and down to valley in August; while Simpson index happened reversely; seasonal changes of Pielou index was not distinct. Margaleff and Shannon-Weiner showed evident seasonal changes among sampling sites: spring>summer>autumn. Similarity coefficient was 0.8557 at most, indicating high similarity between communities. Cluster analysis demonstrated that it could be divided into two groups including the reedmarshes and the group containing all other sites at 0.5 level. Similarity analysis together with cluster analysis indicated similar community struture of macrofauna among different sites.
     No significant correlation was observed between biodiversity and NH4+, total nitrogen, total phosphorus, DO, pH and KMnO4 as a result of the group composition containing mainly groups with high tolerance value. The results of biodiversity index analysis indicated that reedmarshes, other than vast waters, was preferentially suitable for the survival of macrofauna, where the biodiversity was higher. It could be inferred that vegetation had significant effect on the macrofauna community.
     The biological index showed that biological pollution index was greater than 1.0, and family biotic index was more than 6.50 in every month, indicating water pollution to varying degrees in different months. Biological pollution index and family biotic index which were both the greatest in August (4.15 and 9.64, respectively) demonstrated that pollution was the most serious in August. Value of H indicated pollution of different levels from spring to autumn with exception of results from sites at reedmarshes, border and side in spring. The analysis of level of pollution at different sites indicated that the water showed little improvement on quality when floating across the wetland, the water quality got worse at water outlet with quality improvement only at reedmarshes. Human disturbance and lacking of emergent aquatic plant, floating vegetation and microrganism community were associated with present environmental condition. The comprehensive analysis of H, BPI, FBI, physical and chemical character demonstrated that the water body had been seriously polluted, and was at high level of eutrophication.
引文
[1] Higgins RP, Thiel H. Introduction to the study of meiofauna. Smithsonian Institution Press[M]. Washtington, 1988.
    [2]张志南.水层-底栖耦合的某些进展[J].青岛海洋大学报. 2000, 30(1):115-122.
    [3]赵学敏.湿地:人与自然和谐共存的家园-中国湿地保护[M].北京:中国林业出版社, 2005.
    [4]赵俊权等.滇池湿地现状及保护对策[J].生态经济. 2005, 4:77-79.
    [5]杨波.我国湿地评价研究综述[J].生态学杂志. 2004, 23(4):146-149.
    [6]雷昆,张明祥.中国湿地资源及其保护建议[J].湿地科学. 2005, 3(2):81-86.
    [7]李广玉等.湿地的研究展望及其保护对策[J].海洋地质动态. 2005, 21(6):8-11.
    [8]胡知渊等.中国自然湿地底栖动物生态学研究进展[J].生态学杂志. 2009, 28 (5):959-968.
    [9]颜玲等.粤北地区溪流中的树叶分解及大型底栖动物功能摄食群[J].应用生态学报. 2007, 18(11):2573-2579.
    [10]龚志军等.底栖动物次级生产力研究的理论与方法[J].湖泊科学. 2001, 13 (1):79-88.
    [11]陈其羽等.望天湖底栖动物种群密度与季节变动的初步观察[J].海洋与湖沼. 1982, 3(l):78-86.
    [12]俞大维,虞左明.杭州西湖底栖动物群落的研究[J].水生生物学报. 1991, 15(l):63-72.
    [13] Belan TA. Benthos abundance Pattern and species compositsin in conditions of pollution inAmursky Bay(the peter the Great Bay,the sea of Japan)[J]. Marine Pollution Bulletin. 2003, 46:1111-1119.
    [14]阎云军,李晓宇.汉江流域黑竹河杂色特维摇蚊和波特真开氏摇蚊的生产量动态及营养基础分析[J].生态学报. 2005, 25(12):3128-3132.
    [15]厉红梅等.深圳湾潮间带底栖动物群落与环境因子的关系[J].中山大学学报(自然科学版). 2003, 42(5):93-96.
    [16]胡本进等.阊江河1-6级支流大型底栖无脊椎动物取食功能团演变特征[J].应用与环境生物学报. 2005, 11(4):463-466.
    [17]邵美玲等.三峡水库蓄水后香溪河库湾底栖动物群落结构的变化[J].水生生物学报. 2006, 30 (1):64-69.
    [18] Warwick RM. The integral structure of a benthic infaunal assemblage[J]. Journal of Experimental Marine Biology and Ecology. 2006, 330 (1):12-18.
    [19]王宗兴(2007).中山水栖寡毛类区系调查及底栖动物对湖泊环境定量指示初探.硕士学位论文.北京:中国科学院研究生院.
    [20]熊飞等.高原深水湖泊抚仙湖大型底栖动物群落结构及多样性[J].生物多样性. 2008, 16(3):288-297.
    [21]刘录三等.辽东湾北部海域大型底栖动物研究:Ⅱ.生物多样性与群落结构[J].环境科学研究. 2009, 22(2):155-161.
    [22] Stillman RA, et al. Individual variation in intake rate: the relative importance of foraging efficiency anddominance[J]. Journal of Animal Ecology. 2000, 69(3):484-493.
    [23] Herman PMJ, et al. Benthic community structure and sedliment Processes on an intertidal flat: results from the ECOFLAT Project[J]. Continental Shelf Research. 2001, 21:2055-2071.
    [24] Lindegarth M, Hoskin M. Patterns of distribution of macro-fauna in different types of estuarine, soft sediment habitats adjacent to urban and non-urban areas[J]. Estuarine,Coastal and Shelf Science. 2001, 52:237-247.
    [25] Mermillod-Blondin F, et al. Assessment of the spatial variability of Intertidal benthic communities by axial tomodensitometry: importance of fine-scale heterogeneity[J]. Journal of Experimental Marine Biology and Eeology. 2003, 287:193-208.
    [26] Hastie BF, Smith S. Benthic macrofaunal communities in intermittent estuaries during a drought: Comparisons with permanently open estuaries[J]. Journal of Expermental Marine Biology and Ecology. 2006, 330:356-367.
    [27] Cortelezzi A, et al. Benthic assemblages of a temperate estuarine system in South America: Transition from a freshwater to an estuarine zone. Journal of Marine Systems. 2007, 68: 569-580.
    [28] Inga N, et al. Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, Indonesia, affected by anthropogenic activities[J]. Regional Environmental Change. 2009, 97:l-23.
    [29] Sarda R, et al. Long-term changes of macroinfaunal assemblages in exper imentally enricged salt maesh tidal crdal creeks[J]. Biol.Bull. 1994, 187:282-283.
    [30] Lopez-Jamar E, et al. Long-term variation of the infaunal benthos of La Coruna Bay (NW Spain): results from a 12-year study (1982-1993)[J]. Sci. Mar. 1995, 59:49-61.
    [31] Beukema JJ, et al. The geographic scale of synchrionzed fluctuation patterns in zoobenthos populations as a key to underlying factors:climatic or man-induced[J]. ICESJ. Mar. Sci. 1996, 53:964-971.
    [32] Jensen KT. Macrozoobenthos on an Intertldal mudflat in the Danish wadden sea: cinparis ons of surveys made in the 1930s, 1940s and l980s[J]. Heigol der Meeresunters. 1992, 46:363-376.
    [33]张培玉(2005).渤海湾近岸海域底栖动物生态学与环境质量评价研究.博士论文.青岛:中国海洋大学.
    [34]许巧情(2001).湖泊不同利用方式对底栖动物群落的影响.硕士论文.武汉:华中农业大学.
    [35]吴天惠.新疆福海底栖动物的研究[J].水生生物学报. 1991, 15(4):303-313.
    [36]邬红娟等.武汉湖泊底栖动物群落结构及水质生态评价[J].华中科技大学学报(自然科学版). 2005, 33(10): 96-98.
    [37]周晓(2007).九段沙湿地自然保护区大型底栖动物生态学研究.博士学位论文.上海:华东师范大学.
    [38]刘茂奇(2009).扎龙湿地自然保护区大型底栖动物群落结构和多样性研究.硕士学位论文.哈尔滨:东北林业大学.
    [39]孙刚等.长春南湖底栖动物群落特征及其与环境因子的关系[J].应用生态学报. 2001, 12(2): 319-320.
    [40]蒋万祥等.香溪河水系大型底栖动物功能摄食类群生态学[J].生态学报. 2009, 29(10):5207-5218.
    [41]马徐发等.湖北道观河水库大型底栖动物的群落结构及物种多样性[J].湖泊科学. 2004, 16(l):49-55.
    [42]王银东(2005).武汉市南湖大型底栖动物生态学和优势种群的遗传多样性.博士学位论文.武汉:华中农业大学.
    [43]王银东等.武汉市南湖大型底栖动物的群落结构[J].湖泊科学. 2005, 17(4):327-333.
    [44]池仕运等.湖北省三道河水库底栖动物的初步研究[J].湖泊科学. 2009, 21(5):705-712.
    [45]闰云君等.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较[J].湖泊科学. 2005, 17(2):176-182.
    [46] Tokeshi M. Production ecology. In:Armitage P, Cranston P S. Pinder L C V.(eds.).The Chironomidae:The biology and ecology of non- biting midg es. Chapman Hall. London. 1995, 269-296.
    [47] Benke AC. Seeondary Production of aquatic insects. In:Resh.VH. and D.M. Rosen be(eds.). The ecology of aquatic insects. New York: Prager Scientific. 1984, 289-322.
    [48] Day JW, et al. Estuarine Ecology[M]. New York: Wiley Interscience. 1989, 339-376.
    [49]袁兴中(2001).河口潮滩湿地底栖动物群落的生态学研究.博士学位论文.上海:华东师范大学.
    [50]方涛等.长江口崇明东滩底栖动物在不同类型沉积物的分布及季节性变化[J].海洋环境科学. 2006, 25(1):24-26.
    [51]韩洁等.渤海大型底栖动物丰度和生物量的研究[J].青岛海洋大学学报. 2001, 31(6):889-896.
    [52]王延明等.长江口及邻近海域底栖生物分布及与低氧区的关系研究[J].海洋环境科学. 2008, 27(2):139-143.
    [53]龚志军等.水体富营养化对大型底栖动物群落结构及多样性的影响[J].水生生物学报. 2001, 25(3):210-216.
    [54]刘玉等.珠江流溪河大型底栖动物分布和氮磷因子的相关分析[J].中山大学学报(自然科学版). 2003, 42(1):95-99.
    [55]杨丽等.深圳湾福田潮滩重金属含量及对大型底栖动物的影响[J].台湾海峡. 2005, 4(2):157-164.
    [56]谢志发(2007).长江河口互花米草盐沼与大型底栖动物群落之间生态学关系.研究硕士学位论文.上海:华东师范大学.
    [57]谢志发等.不同发育时间的互花米草盐沼对大型底栖动物群落的影响[J].生态学杂志. 2008, 27(1):63- 67.
    [58]林秀春等.莆田互花米草入侵区大型底栖动物群落研究[J].莆田学院学报. 2010, 17(2):96-100.
    [59]仇乐等.互花米草扩张对江苏海滨湿地大型底栖动物的影响[J].海洋学报. 2010, 34(8):50-55.
    [60] Kumar RS.Vertical distribution and abundance of sediment dwelling macro-invertebrates in an estuarine mangrove biotope-southwest coast of India[J]. Indian Journal of Marine Science. 1997, 26(1):26-30.
    [61] Engle VD, Summers JK. Latitudinal gradients in benthic community composition in Western Atlantic estuaries[J]. Journal of Biogeography. 1999, 26:1007-1023.
    [62] Ashton E C. Mangrove sesarmid crab feeding experiments in Peninsular malaysia[J]. Journal of Experimental and Marine Biology and Ecology. 2002, 273:97-119.
    [63] Erickson, et al. Herbivore feeding preferences as measured by leaf damage and stomatal ingestion: a mangrove example[J]. Journal of Experimental and Marine Biology and Ecology. 2003, 289:123-138.
    [64]韩淑梅等.寨港典型红树林区底栖动物多样性特征指数比较研究[J].西北林学院学报. 2010,25(1):123-126.
    [65]周细平等.福建同安湾潮间带红树林生境与非红树林生境大型底栖动物群落比较[J].生物多样性. 2010, 18 (1):60-66.
    [66]徐姗楠等.底栖动物对红树林生态系统的影响及生态学意义[J].生态学杂志. 2010, 29 (4):812-820.
    [67]许巧情等.河蟹过度放养对湖泊底栖动物群落的影响[J].水生生物学报. 2003, 27(1):41-45.
    [68] Castel J, et al. Influence of seagrass beds and Oyster parks on the abundance and biomass patterns of meio-and macrobenthos in tidal flats[J]. Estuarine, Coastal and Shelf Science. 1989, 28:71-85.
    [69] Kroncke I. Impact of biodeposition on macrofaunal communities in intertidal sandflats[J]. Marine Ecology. 1996, 17:159-174.
    [70] Dahlback B, Gunnarsson LAH.Sedimentation and sulfate reduction under a mussel culture[J]. Marine Biology. 1981, 63:269-275.
    [71] Kaspar HF, et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound,Malborough Sounds,New Zealand[J]. Marine Biology. 1985, 85:127-136.
    [72]杨红生,张福绥.浅海筏式养殖系统贝类养殖容量研究进展[J].水产学报. 1999, 3(1): 85-90.
    [73]周毅等.海水双壳贝类的生物沉积及其生态效应[J].海洋科学. 2002, 27(2):23-26.
    [74]周毅等.四十里湾几种双壳贝类及污损生物的氮、磷排泄及具生态效益[J].海洋与湖沼. 2002, 33(4):424-431.
    [75]祁铭华(2004).菲律宾蛤仔的养殖活动对沉积物中酸挥发性硫化物(AVS)的影响.硕士学位论文.青岛:中国海洋大学.
    [76]林秀春(2006).湄洲湾灵川贝类养殖滩涂底栖动物生态和粒径谱研究.硕士学位论文厦门:厦门大学.
    [77]葛宝明等.围垦滩涂不同生境冬季大型底栖动物群落结构[J].动物学研究. 2005, 26 (1):47-54.
    [78]胡知渊等.灵昆岛围垦区内外滩涂大型底栖动物生物多样性[J].生态学报. 2008, 28(4):1498-1507.
    [79] Park YS, Chang JB,Lek S. Conservation strategies for endemic fish species threatened by the Three Gorges Dam[J]. Conserv.Biol. 2003, 17 (6):1748-1758.
    [80] Dynesius M, Nilsson C. Fragmentation and flow regulation of river systems in the northern third of the world[J]. Science. 1994, 266:753-762.
    [81] Callisto M, Goulart M, Barbosa F. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower San Francisco River (northeastern Brazil)[J]. Braz.J.Bio.l. 2005, 65(2):229-240.
    [82] Jorcin A, Nogueira MG. Temporal and spatial patternsbased on sediment and sediment-water interface characteristics along a cascade of reservoirs(Paranapanema River, south-eastBrazil)[J]. Lakes.Reserv. Res.Manage. 2005, 10(1):1-12.
    [83] Silva CA, Train S, Rodrigues LC. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system[J]. Hydrobiologia. 2005, 537(l-3):99-109.
    [84]王睿照,张利权.水位调控措施治理互花米草对大型底栖动物群落的影响[J].生态学报. 2009, 29(5):2639-2645.
    [85] Ethan JN, Richard WM, Michael GK. The effect of an industrial effiuent on an urban stream benthiccommunity:water quality vs.habitat quality[J]. Environmental Pollution, 2003, 123:l-13.
    [86]李裕红等.环境污染物对底栖动物的影响研究概述[J].海峡科学. 2007, 7:28-30.
    [87]熊金林等.不同污染程度湖泊底栖动物群落结构及多样性比较[J].湖泊科学. 2003, 15 (2):160-168.
    [88] Gong ZJ. Impact of eutrophication on biodiversity of macrozoobenihos community in a Chinese shadow lake[J]. Freshwater Ecology. 2001, 16(2):174-178.
    [89]胡本进(2003).阊江河一至六级支流底栖动物群落结构和功能及其BI指数水质评价.硕士学位论文.南京:南京农业大学.
    [90]王备新等.应用底栖动物完整性指数B-BI评价溪流健康[J].生态学报. 2005, 25(6): 1481-1490.
    [91] Roth S, Wilson JG. Functional analysis by trophic guilds of macrobenthic community structure in Dublin Bay, Ireland[J]. Journal of Experimental Marine Biology and Ecology. 1998, 222:195- 217.
    [92] Mucha AP, Costa MH. Macrozoobenthic community structure in two Portuguese estuaries: relationship with organic enrichment and nutrient gradients[J]. Acta Oecologia. 1999, 20:363-376.
    [93] Talley TS, Dayton PK, Ibarra-Obando SE. Tidal flat macrofaunal communities and their associated environments in estuaries of southern California and northern Baja California, Mexico[J]. Estuaries. 2000, 23(1):97-114.
    [94] Douglas JS, Mitsch WJ. A model of macroinvertebrate trophic structure and oxygen demand in freshwater wetlands[J]. Ecological Modelling. 2003, 161:183- 194.
    [95] Wieking G, Kroncke I. Is benthic trophic structure affected by food quality ? The Dogger Bank example[J]. Marine Biology. 2005, 146:387-400.
    [96] Thrush SF, et al. Functional role of large organisms in intertidal communities:community effects and ecosystem function[J]. Ecosystem. 2006, 9:1029-1040.
    [97]朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群[J].动物学研究. 2003, 24 (5):355-361.
    [98]袁兴中等.长江口底栖动物功能群分布格局及其变化[J].生态学报. 2002, 22 (12):2054-2062.
    [99]张波等.长江口及邻近海域高营养层次生物群落功能群及其变化[J].应用生态学报. 2009, 20 (2):344-351.
    [100]李欢欢等.杭州湾南岸大桥建设区域潮间带大型底栖动物功能群及营养等级的季节动态[J].动物学报. 2007, 53(6):1011-1023.
    [101]鲍毅新等.灵昆东滩围垦区内外大型底栖动物季节变化和功能群的比较[J].动物学报. 2008, 54(3):416-427.
    [102]葛宝明等.灵昆岛东滩潮间带大型底栖动物功能群及营养等级构成[J].生态学报. 2008, 28(10):4796-4804.
    [103]国家环保局水生生物监测手册编委会.水生生物监测手册[M].南京:东南大学出版社, 1993.
    [104]尤平,任辉.底栖动物及其在水质评价和监测上的应用[J].淮北煤师院学报. 2001, 22(4):44-48.
    [105] Resh VH, Norris RH, Barbour MT. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates[J]. Australian Journal of Ecology. 1995, 20:108-121.
    [106]张丹等.河流水质监测和评价的生物学方法[J].北京师范大学学报. 2009, 45(2):200-204.
    [107]熊昀青.水质评价和监测的生物学方法进展[J].上海环境科学. 2000, 19(2):79-81.
    [108]潘立勇等.云龙湖水体的生物学状况及富营养化评价[J].中国环境科学学会学术年会论丈集.2009, 601-604.
    [109]陈丽,丁建东.EPT指数在水污染监测方面的应用[J].南通大学学报. 2005, 4(3):26-28.
    [110]吕光俊等.不同营养类型水库大型底栖动物的群落结构特征及其水质评价[J].生态学报. 2009, 29(10):5339-5349.
    [111]刘缠民,冯照军.京杭大运河徐州段水质底栖动物多样性及BPI评价[J].河南科学. 2008, 26(9):1062-1065.
    [112]杨广利等.从底栖动物群落变迁评价京杭大运河的水质[J].江苏环境科技. 2004, 17:49-50.
    [113]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社. 2003, 721-724.
    [114] Hilsenhoff WL. Rapid field assessment of organic pollution with a family-level biotic index[J]. North American Benthological Society. 1988, 7(1):65-68.
    [115] Hilsenhoff WL. An improved biotic index of organic stream pollution[J]. Great Lakes Entomologist. 1987, 20:31-39.
    [116]徐希莲.水生昆虫幼虫与水质的生物监测[J].莱阳农学院学报. 2001, 18(1):66-70.
    [117]张建波等.洞庭湖底栖动物多样性及水质现状评价[J].内陆水产. 2002, 3:42-43.
    [118]王丽珍等.滇池底栖无脊椎动物群落结构及水质评价[J].水生生物学报. 2007, 31(4):590-593.
    [119]王新华等.天津市团泊水库底栖动物研究与水环境评价[J].四川动物. 2008, 27(5):809-811.
    [120]王备新(2003).大型底栖无脊椎动物水质生物评价研究.博士学位论文.南京:南京农业大学.
    [121]肖红等.大庆水库底栖动物群落调查及生物学评价[J].环境科学与管理. 2006, 31(9):181-183.
    [122]刘茂奇,于洪贤.安邦河湿地自然保护区秋季底栖动物群落结构研究及生物学评价[J].水产学杂志. 2009, 22(2):34-39.
    [123]吉红等.津河的底栖动物现状及水质评价研究[J].西北农林科技大学学报(自然科学版). 2006, 34(3):42-48.
    [124]苏华武等.湖北清江流域叹气沟河底栖动物群落结构与水质生物学评价[J].湖泊科学. 2008, 20(4):520-528.
    [125]江晶等.湖北清江流域胡家溪大型底栖动物群落结构及水质评价[J].湖泊科学. 2009, 21(4):547-555.
    [126]王备新,杨莲芳.我国东部底栖无脊椎动物主要分类单元耐污值[J].生态学报. 2004, 24(12): 2768-2775.
    [127] Lloyd M, Ghelardi RJ. A table for calculating the Equitability component of species diversity [J]. Animal Ecology. 1964, 33:217-225.
    [128] Hilsenhoff WL. An improved biotic index of organic stream pollution[J]. Great Lakes Entomologist. 1987, 20:31-39.
    [129]王建国等.庐山地区底栖大型无脊椎动物耐污值与水质生物学评价[J].应用与环境生物学报. 2003, 9(3):279-284.
    [130]童保铭等.北京市北运河系水质有机污染时空变化研究[J].首都师范大学学报(自然科学版). 2009, 30(3):56-60.
    [131]李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学. 1995, 15(2):140-144.
    [132]慈维顺.芦苇湿地对生态环境的作用[J].天津农林科技. 2011, 1:29-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700