北京北部水系中有机质来源的碳氮稳定同位素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中有机质来源的研究对流域侵蚀状况及水体营养质量的评估具有重要意义。本文选取北京市北部两个重要的水体——潮白河流域和野鸭湖湿地作为研究区域,进行表层沉积物和悬浮物采样,同时采集了研究区内的优势植物和土壤作为端元。测定和分析所有样品中C、N元素含量和稳定同位素(δ13C、δ15N)值,然后使用端元定位法对沉积有机质和悬浮颗粒有机碳来源进行示踪,进一步使用多元混合模型对这些来源的相对贡献进行定量计算。
     实验结果表明潮白河流域和野鸭湖湿地碳、氮同位素分布范围存在差异,潮白河沉积有机质的δ13C值间于-27.75‰~-21.58‰之间,δ15N值间于1.32‰~6.74‰之间,悬浮物中颗粒有机碳的δ13C值间于-29.34‰~-25.91‰之间,δ15N值间于-0.34‰~6.36‰之间;野鸭湖沉积有机质的δ13C值间于-27.07‰~-23.05‰之间,δ15N值间于0.24‰~7.86‰之间,悬浮物中颗粒有机碳的δ13C值间于-29.76‰~-26.70‰之间,δ15N值间于-1.10‰~7.59‰之间。
     通过有机质来源的定性和定量分析表明,潮河和白河沉积有机质主要来源为外源土壤有机质,悬浮颗粒有机碳主要来源为内源水生维管束植物,说明短期内表层沉积物更多的来自于物理侵蚀的粗糙产物,而悬浮物沉积下来的量很少,大部分随水流走;密云水库沉积有机质和悬浮颗粒有机碳主要来源均为土壤有机质,表明潮河和白河携带的有机物是密云水库沉积有机质的主要来源,而水库本身有机质的贡献则较少,个别站位沉积物中有数量的C4植物来源,悬浮物中有少量的C3植物来源;野鸭湖沉积有机质和颗粒有机碳主要来源均为水生藻类。
     潮白河流域沉积有机质来源分析表明,和河北境内相比,北京境内沉积有机质中土壤有机质的贡献减少,水生维管束植物和浮游植物的贡献增加,尤其表现在白河流域,同时也说明沉积有机质来源可以严格反映流域侵蚀状况。对比河流和湖泊中沉积有机质的来源,分析得出河流主要是外源,湖泊主要是内源,主要是因为河水的大量外源输入及相对短暂的水力停留时间,而湖泊处于相对封闭和稳定的水域环境。
Source organic matter in water for the assessment of watershed soil erosion and Nutritional-quality has a very important role. The suspended particles、surface sediment、dominant plant and soil were collected in the Upper Reaches of the Chaobai River and Yeyahu wetland in northern Beijing.Elemental Contents (OC/TN) and stable carbon isotopic composition were analyzed and then employed to trace the sources of organic matter. At last, a three-end-Member mixing model was utilized to assess quantitatively contribution of different sources of organic matter in suspended particles and surface sediment.
     The result indicate that the carbon and nitrogen isotopes in the the suspended particles、surface sediment are different in the Upper Reaches of the Chaobai River and Yeyahu wetland. It was found that the ratio of carbon and nitrogen isotopic were-27.75%o~-21.58%o and 1.32‰~6.74‰in the surface sediments, while they are-29.34‰~-25.91‰and-0.34‰~6.36‰in the suspended particles respectively in the Upper Reaches of the Chaobai River. Furthermore, it was found that the ratio of carbon and nitrogen isotopic were-27.07‰~-23.05%o and 0.24‰~7.86‰in the surface sediments, while they are-29.76‰~-26.70‰and-1.10‰~7.59‰in the suspended particles respectively in the Yeyahu wetland.
     The analysis of Source organic matter indicated that soil organic matter is a significant contributor to sediment OM, while the vascular aquatic plants to suspended POM in the Chao River and the Bai River. This reveals that sediment is from particles of soil erosion, and suspended particles was washed away by river. Soil organic matter is a significant contributor to sediment OM and suspended POM in the Miyun reservoir, and a source of sedimentary organic matters in the Miyun reservoir is mainly carried by the Chao River and the Bai River, other source is from C4 vegetation growing around Miyun reservoir for individual point station. Aquatic algae is a significant contributor to sediment OM and suspended POM in the yeyahu wetland.
     Compared with the situation of Hebei province, the contribute of soil organic matters decreased obviously and river plankton vascular aquatic plants increased evidently in Beijing areas, especially in Bai River.This study reveals that the source of organic matter has a close relationship with the situation of soil erosion in the areas. Organic matter in river is mainly from outside source, and organic matter in lake is mainly from inside source.The reason of this difference is that there is vast outside source input and relative short hydraulic power remain time in river, but the environment is Closed and stable in lake.
引文
Aravena R, Barry G Warner, Glen M. MacDonald, et al.Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating[J]. Quaternary Research,1992,37(3):333-345.
    Albuquerque A L S, Mozeto A A. C: N:P ratios and stable carbon isotope compositions as indicators of organic matter sources in a riverine wetland system (Moji-guacu river, Sao Paulo-Brazil)[J].Wetlands,1997,17(1):1-9
    Barth J A C, Veizer and Bernhard M. Origin of particulate organic carbon in the upper St Lawrence:isotope constrains [J]. Earth and Planetary Science Letter,1998,162:111-121
    Bird M I, Fyfe W S, Pinheiro-dick D, et al. Carbon isotope indicators of catchment vegetation in the Brazilian Amazon[J]. Global Biogeochemical Cycles,1992,6(3):293-306.
    Boutton TW.Stable isotope ratios of natural materials:II.Atmospheric, Terrestrial, Marine, And freshwater environments [J]. In:Coleman D C, Fry B.(Eds), Carbon Isotope techniques, New York, Academic Press,1991,173-185.
    Canuel E A, Cloern J E, Ringelberg D B,et al.Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay[J].Limmnol Oceanogr.1995,40(1),67-81.
    Cifuentes L A,Coffins R B,Slolrzano L et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J].Estuarine,Coastal and Shelf Science,1996,43(6):781-800.
    Cole J J, Caraco N F. Carbon in catchments:connecting terrestrial carbon losses with Aquatic metabolism[J]. Mar FreshwaterRes,2002,52:101-110
    Dana S, Deevey E S. Carbon-13 in lake waters,and its possible bearing on paleolimnology[J]. American Journal of Science,1960,258 (A):253-272.
    Eglinton G, Hamilton R J. The distribution of alkanes. In:Swain Ted. Chemistry Plant Taxonomy[C].New York:Academic Press.1963,187~217.
    Evelyn K, Deborah H, Sebastien L, et al. Changes in the chemistry of sedimentary organic matter within the Coorong over space and time[J]. Biogeochemistry,2009,92:9-25.
    Giresse P,et al. Late Quaternary palaeoinviroments in the Lake Barombi Mbo(West Cameroon) deduced from pollen and carbon isotopes of organicm matter [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1994,107:65-78.
    Goni M A,Teixeira M J, Perkey D W. Sources and distribution of organic matter in a river estuary(Winyah Bay,SC,USA)[J]. Estuarine, Coastal and Shelf Science,2003, 57,1023-1048.
    Halaj J, Peck R W, Niwa C G. Trophic structure of a macroarthropod litter food web in managed coniferous forest stands:a stable isotope analysis with δ15N and δ13C [J].Pedobiologia, 2005,49(2):109-118.
    Han J, Mccarthy E D, van H W et al. Organic geochemical studies. Ⅱ. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment[M].Proceedings National Academy of Science,USA,1968,59(1):29-33
    Hedges J I, Clark A W, Richey J E, et al. Compositions and fluxes of particulate organic material in the Amazon River.Limnology and Oceanography,1986,31(4):717-738.
    Herczeg A L, Smith A K, Dighton J C. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia:C:N,d15N, and d13C in sediments [J]. Applied Geochemistry,2001,16(1):73-84.
    Hobbie J E, Larsson U, Elmgren R et al.Sew age derived 15N in the Baltic traced in Fucus[J]. Eos,1990,71:190.
    Howarth R W, Fruci J R, Sherman D. Inputs of sediment and carbon to an estuarine ecosystem: influence of land use[J]. Biological Applications,1991,1(1):27-39
    Jack J M, Joop N. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary[J]. Marine Chemistry,1998,60:217-225.
    Kao S, liu K K. Particulate carbon export from a subtropical mountains river(Lanyang Hsi) in Taiwan[J]. Limnology and oceanography,1996,41(8):1749-1757.
    Kendall C, Silva S R, Kelly V J. Carbon and nitrogen isotopic compositions of Particulate organic matter in four large river systems across the United States[J]. Hydrological Processes,2001,15(7):1301-1346.
    Krull E, Haynes D, Lamontagne S,et al. Changes in the chemistry of sedimentary organic matter within the Coorong over space and time[J]. Biochemistry,2009,92:9-25.
    Meade R H,Yuzyk T R,Day T J.Movement and storage of sediment in rivers of the United States and Canada.In:Wolman M G,Riggs hc(eds)Surface Water Hydrology,1990,0-1:255-280.
    Meyers P A. Preservation of elemental and isotope source identification of sedimentary organic matter[J]. Chemical Geology,1994,114:289-302.
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes [J]. Organic Geochemistry,1997,27(5-6):213-250
    Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in Suspended matter and sediments from the Schelde Estuary.Marine chemistry,1998,60:217-225.
    Miliman J D,Meade R H.World-wide delivery of river sediments to the oceans. The Journal of Geology,1983,91(1):1-21.
    Negrel P,Grosbois C. Changes in chemicals and 87Sr/86Sr signature distribution patterns of suspended matter and bed sediments in the upper Loire river basin(France). Chem.Geol, 1999,156:231-149.
    Ogaya R, Penuelas J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability.ActaOecologica,2008,34(3):331-338.
    Onstad G D, Canfield D E, Quay P D, et al. Sources of particulate organic matter in river from the continental USA:Lignin phenol and stable carbon isotope compositions [J]. Geochim Cosmochim Acta,2000,64(20):3539-3546.
    Ostrom NE, Long DT, Bell EM et al.The origin and cycling of particulate and sedimentary Organic matter and nitrate in Lake Superior.Chem Geol,1998,152:13-28.
    Owen J S, Mitchell M J, Michener RH.Stable nitrogen and carbon isotopic Composition of seston and sediment in two Adirondack lakes.Can J Fish Aquat Sci,1999,56:2186-2192.
    Parton WJ, Schimel D.S, Cole CV, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society America Journals. 1987,51(5):1173-1179
    Raymond P A, Bauer J E.Use of 14C and 13C natural abundances for evaluating riverine, estuarine,and coastal DOC and POC sources and cycling:a review and synthesis[J]. Organic Geochemistry,2001,32:469-485.
    Redfield A C, Ketchum B H, Rechards F A. The influence of organisms on the composition of sea water. Hill M N.The sea, New York:Interscience,1963(2):.26-77.
    Schelske L C, Hodell A D. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie[J]. Limnol Oceanogr.1995,40(5):918-929.
    Schlacher T A, Wooldridge T H. Origin and trophic importance of Detritusevidence from stable isotopes in the benthos of a small, temperate estuary. Oecologia,1996,106: 382-388.
    Stuiver M. Climate Versus changes in C13 Content of the organic component of lake sediments during the late Quaternary. Quat Res,1975,5:251-262
    Teranes L J, Bernasconi M S. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter-A study of sediment trap and core sediments from Baldeggersee, Switzerland [J]. Limnol Oceanogr,2000,45(4):801-813.
    Thorp J H, Delong M D, Greenwood K S, et al. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.Oecologia,1998,117:551-563.
    Troughton J H. Carbon isotopic fractionation in plans. Proceedings of the 8th Conference Radiocarbon Dating, Wellington,Royal New Zealand, Gvt Printer,1972, (2):39-57.
    Vander Zanden MJ, Rasmussen J B. Primary consumer δ13c and δ15N and the trophic position of aquatic consumers. Ecology,1999,80:1395-1404.
    蔡德陵.长江口区有机碳同位素地球化学[J].地球化学,1992,(3):305-312
    蔡德陵,石学法,周卫健,等.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据[J].科学通报,2001,(增刊):16-23
    蔡德陵,李红燕,周卫健,等.无定河流域碳氮稳定同位素研究[J].地球化学,2004,33(6):619-626
    陈建渝.生物标志物地球化学的新进展[J].地质科技情报,1995,14(1):35-44
    陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990:75-78.
    陈元君.北京市野鸭湖自然保护区湿地维管束植物多样性及其保护研究[D].北京:北京林业大学,2008.
    丁玲,邢磊,赵美训,等.东海陆架区悬浮颗粒物中浮游植物生物标志物比例及种群结构意义[J].2007,37(增刊Ⅱ):143-148.
    高全洲,陶贞.河流有机碳的输出通量及性质研究进展[J].应用生态学报,2003,14(6):1000-1002.
    宫兆宁、宫辉力、赵文吉.北京湿地生态演变研究[M].北京:中国环境科学出版社,2007:58-59
    刘丛强,等.生物地球化学过程与地表物质循环—西南卡斯特土壤-植被系统生源要素循环[M].北京:科学出版社,2009:318-348.
    林晓波,江月华,汤朝阳.放射性碳同位素在水文地质中的应用进展[J].地下水,2006,28(3):30-35
    刘敏,侯立军,许世远,等.长江口潮滩有机质来源的碳氮稳定同位素示踪[J].2004,59(6):918-926
    沈吉,吴瑞金,安芷生.大布苏湖沉积剖面有机碳同位素特征与古环境[J].湖泊科学,1998,10(3):8-12
    孙雪松,宋建中,彭平安.珠江口及南海沉积物碳黑的放射性碳年龄[J].地球化学,2008.37(1):65-67
    陶贞,高全洲,姚冠荣,等.增江流域河流颗粒有机碳的来源、含量变化及输出通量[J].环境科学学报,2004,24(5):789-795.
    田丽欣.东黄海及海南近海有机碳的分布[D].上海:华东师范大学,2009.
    王静,吴丰昌,黎文,等.云贵高原湖泊颗粒有机物稳定氮同位素的季节和坡面变化特征[J].2008,20(5):571-578
    王颖.野鸭湖湿地变化的生态环境效应研究[D].北京:首都师范大学,2006.
    魏秀国.河流有机质生物地球化学研究进展.生态环境,2007,16(2):1063—1067
    魏秀国,桌慕宁,郭治兴,等.西江水体悬浮物颗粒有机碳稳定同位素组成及时空变化[J].生态环境,2008,17(6):2127-2131.
    吴迪,邓宝军、谭晓哲,等,当代河流系统中稳定性同位素的应用[J].中国环境管理干部学院学报,2007,17(3):36-39.
    吴敬禄,林琳,刘建军,等.太湖沉积物碳氮同位素组成特征与环境意义[J].海洋地质与第四纪地质,2005,25(2)25-30.
    肖化云,刘丛强,李思亮,等.强水动力湖泊夏季分层期氮的生物地球化学循环初步研究:以贵州红枫湖南湖为例[J].地球化学,2002,31(6):571-576.
    肖化云,刘丛强,王仕禄,等.硝化和反硝化对湖泊有机质沉积成岩前降解作用的研究[J].地球化学,2003,32(4):375-381.
    薛滨,王苏民,沈吉.呼伦湖东露头矿剖面有机碳总量及其稳定碳同位索和古环境演化[J].湖泊科学,1994,6(4):308-316
    姚冠荣,高全洲.河流碳循环对全球变化的响应与反馈[J].地理科学进展,2005,(64):1000-1002.
    余婕,刘敏,许世远,等.长江口潮滩有机质稳定碳同位素时空分布与来源分析[J].地理研究,2008,27(4):847-854
    喻涛.南海北部表层沉积物不同粒级组分中有机质的来源研究[D].厦门:厦门大学,2002
    曾海鳌,吴敬禄.外源对太湖河口沉积物有机质贡献的同位素示踪[J].海洋地质与第四纪地质,2009,29(1):109-114
    张成君,陈发虎,尚华明,等.中国西北干旱区湖泊沉积物中有机质组成的环境意义—以民勤盆地三角城古湖泊为例[J].第四纪研究,2004,24(1):88-94
    张凌.珠江口及近海沉积有机质的分布、来源及其早期成岩作用研究[D].广州:中国科学院广州地球化学研究所,2006
    张凌,陈繁荣,杨永强,等.珠江口及近海沉积有机质来源判断[J].环境科学,2008,27(5):447—451
    张志峰.基于3S技术的湿地生态环境质量评价[D].北京:首都师范大学,2004
    周志华,刘从强,李军,等.巢湖沉积物和记录的生态环境演化过程[J].环境科学,2007,28(6):1338-1343
    朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001,13(3):272-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700