三峡库区消落带湿地土壤碳氮的分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对环境问题的日益关注,湿地的生态功能及其保护越来越受到重视。湿地是陆地土壤中的主要碳储存库,土壤碳储量较高。湿地通常被认为是温室气体组分的“调节器”和CO2的“汇”,在全球环境变化研究中具有重要意义,湿地生态系统中的碳循环研究已成为当前全球变化研究的热点之一。而氮是湿地土壤中最主要的限制性养分,它是引发江河、湖泊等水体发生富营养化的主要因素。因此,湿地生态系统中氮的物质循环研究具有重要的现实意义。
     三峡库区消落带是在“自然-人工”双重干扰作用下,由陆地转变为水陆交替的湿地,是一个特殊的湿地生态系统。三峡工程在2008年和2009年两次进行175m试验性蓄水,但只分别蓄水至172.8m和171.43m。本研究于2008年、2009年连续两年在三峡库区小江流域消落带,按海拔段145-160m、160-170m、170-175m采取土壤样品,经室内实验测定土壤的各项基本性质,再利用SPSS 17.0和EXCEL 2007平台对实验数据进行分析,得到主要结论如下:
     (1)研究区土壤类型主要为紫色土、黄壤和潮土。土壤质地偏轻,砂粒含量偏高,均值为39.11%,最高达到82.33%。土壤pH值大多数分布在7.5-8.5之间,土壤呈中性或弱碱性。土壤养分元素中磷、钾含量偏高,氮含量较低。全氮含量平均值为85.90mg·kg-1,变异系数为27.74%,水解氮含量平均值为63.19mg·kg-1,变异系数为39.40%;全磷含量平均值为1.11g·kg-1,有效磷含量平均值16.71mg·kg-1;土壤全钾含量平均值为21.26g·kg-1,速效钾平均含量为71.24mg·kg-1。
     (2)研究区内土壤有机碳含量总体上属于偏低水平,介于4.83-20.25g·kg-1之间,平均值为11.18g·k-1。成土母质、覆盖植被、土地利用方式以及淹水时间长短等因素均对土壤有机碳的含量造成影响。从土壤有机碳含量的统计分析来看,研究区内淹水前不同土地利用方式下的土壤有机碳含量差异较大,其平均值大小顺序为:水田>草地>撂荒地>旱地,均值分别为14.75g·k-1、11.94g·kg-1、9.88g·kg-1、9.10g·kg-1。通过对2009年与2008年土壤有机碳含量的比较发现,研究区内2009年土壤有机碳的含量总体上高于2008年,说明淹水环境有利于有机碳的积累。
     (3)通过对研究区内不同区域、不同土地利用方式下的土壤氮含量进行分析发现,土壤氮含量与有机碳的变化趋势基本一致。不同土地利用类型的土壤全氮含量平均值大小次序均为:水田>草地>撂荒地>旱地。淹水时间的长短同样对土壤氮含量有影响,不过淹水时间较长的地带并不是氮含量最高的地带,而淹水和落干时间相当的地带更有利于土壤中氮的积累,但淹水时间过短也会导致土壤养分的积累减少。研究区2009年土壤氮含量总体上比2008年有所增加,与有机碳含量的变化一致。
     (4)就研究区内土壤碳和氮含量与土壤淹水状况分析表明,淹水条件有利于土壤中碳和氮的积累。研究表明,土壤有机碳含量和氮含量呈现出良好的相关性,从土壤C/N值来看,不同土地利用方式下的土壤C/N值大小为:水田>撂荒地>旱地>草地。由于高的C/N值能降低有机质的分解从而达到保存有机碳的目的,说明在一定的氮含量水平下,水田土壤的固碳能力高于其它土地利用方式下的土壤,因此,可以认为长期淹水条件下的水田土壤具有“碳汇”潜能。而土壤中的氮主要以有机态的形式存在,土壤有机质含量越高氮含量也就越高。那么,淹水条件下的土壤也在一定程度上发挥了“氮汇”的作用。研究区内土壤碳和氮2009年的含量均高于2008年,可见,三峡库区消落带湿地土壤具有碳/氮的“汇效应”。
With growing concern for environmental issues, the ecological function and protection of wetland has been paid attention more and more. On land, wetland is main storage of soil carbon, its soil stocks much carbon. Wetland is generally considered as the "regulator "of greenhouse gas and the "sink" of CO2, it has the vital significance in the global environmental change study. The carbon cycle of wetland ecosystem has become a focus in global change research. And nitrogen is the most important restrictive nutrient of wetland soil and it is the main factor which causes eutrophication of rivers and lakes. Thus, the material cycle of the nitrogen of wetland ecosystems has important practical significance.
     The water fluctuation zone of Three Gorges Reservoir is wetland which is controlled alternately by land and water formed from the land in the dual interference with nature and human. It is unique wetland ecosystem. The highest water level of Three Gorges Project was 172.8m (in 2008) and 171.43m (in 2009) respectively. In the study, according to altitude section(145-160m,160-170m,170-175m) of water fluctuation zone of the Small River Basin in Three Gorges Reservoir, all soil samples were taken in 2008 and 2009. Through the analysis of experimental data by SPSS 17.0 and EXCEL 2007 after the determination of basic properties of soil samples in laboratory, the main conclusions are as follows.
     The main types of soil are purple soil, yellow soil and damp soil in the study area. The soil texture of samples was little light and there was much more sand content in the soil. The mean of sand content was 39.11%. the maximum was 82.33%.The distribution of soil pH was mainly at 7.5-8.5. it reflected that the soil was neutral or weak alkaline. There was a lot of K and P in the nutrient elements of the soil, but N was little. The average content of N was 85.90mg·kg-1. CV was 27.74%. The average content of hydrolyzed nitrogen was 63.19mg·kg-1, CV was 39.40%. The average content of total phosphorus and available phosphorus was 1.11g·kg-1 and 16.71mg·kg-1.The average content of total K and available K was 21.26g·kg-1 and 71.24mg·kg-1.
     SOC was generally at a low level in the study area. Its content ranged 4.83-20.25g·kg-1 and the mean was 11.18g·kg-1. All the factors such as soil parent materials, vegetation, land-use and flooding affect the content of SOC. From statistics analysis about SOC, the content of SOC under different land-use patterns prior to flooding was quite different in the study area. The order of the content of SOC was paddy field(14.75g·kg-1)>grassland(11.94g·kg-1)> abandonment land(9.88g·kg-1)> dry land(9.10g·kg-1). Through the comparison of SOC content in 2009 and 2008, it was found that the SOC content of 2009 was higher than that of 2008 in the study area. Therefore, flooding environment is conducive to the accumulation of soil organic matter.
     Through the analysis of nitrogen content in the soil of different regions or different land-use patterns in the study area, the result was that the variation of soil nitrogen content and SOC content was consistent. The order of the content of soil total nitrogen and available nitrogen was paddy field> grassland> abandonment land> dry land. The duration of flooding also affected the soil content of nitrogen, but the zone which was flooded longest had not the highest content of nitrogen. Where the soil was flooded as much time as dried there was rather more conducive to the accumulation of nitrogen. If the soil was flooded only extremely short time that can lead to the accumulation of soil nutrients decreased. The soil nitrogen content of 2009 was more than that of 2008 in the study area. It varied with the same trend of SOC.
     Study on relationship between carbon/nitrogen and soil flooding situation showed that the flooding condition was favorable for the accumulation of carbon and nitrogen in soil. Study showed that there was good correlation between SOC and N. Study on soil C/N value showed that the order of the content of soil C/N value among different land-use patterns was paddy field> abandonment land> dry land> grassland. Because organic matter with high C/N value decomposes slowly, it is favorable for preservation of SOC. Summary, when the nitrogen content is in a certain level, the sequestration capacity of soil carbon in paddy field is stronger than other land-use patterns.Therefore, those may show that paddy soil under long-term flooding is potential "carbon sink". The soil organic nitrogen is main form in the soil N. The more soil organic matter, the more soil nitrogen. To a certain extent, the soil which is in flooded condition plays the role of "nitrogen sink". The content of SOC and N in 2009 was higher than that in 2008 in the study area. It showed that wetland soil of Three Gorges Reservoir played the role of "carbon/nitrogen sink."
引文
[1]杨青,刘吉平.中国湿地土壤分类系统的初步探讨[J].湿地科学,2007,5(2):111-116.
    [2]许木启.受损水域生态系统恢复与重建研究[J].生态学报,1998,18(5):98-103.
    [3]肖辉林.气候变化与土壤有机质的相关性[J].土壤与环境,1999,8(4):300-304.
    [4]毕思文.地球系统科学[M],北京:科学出版社,2002,
    [5]马学慧,吕宪国,杨青,等.三江平原沼泽地碳循环初探[J].地理科学,1996,16(4):323-330.
    [6]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-80.
    [7]孙秀峰.三峡水库消落区湿地生态系统初步研究[D].重庆:西南大学,2006.
    [8]张虹.三峡库区消落带土地资源特征分析[J].水土保持通报,2008,1(2):46-49.
    [9]黄京鸿.三峡水库水位涨落带的土地资源及其开发利用[J].西南师范大学学报,1994,19(5):528-53.
    [10]谢德体,范小华,魏朝富.三峡水库消落区对库区水土环境的影响研究[J].西南大学学报(自然科学版),2007(1):39-47.
    [11]孟宪民.湿地管理与研究方法[M],北京:中国林业出版社,2001.
    [12]王宪礼,李秀珍.湿地的国内外研究进展[J].生态学杂志,1997,16(5):58-62.
    [13]陈宜瑜.中国湿地研究[M],长春:吉林科学技术出版社,1995.
    [14]Ngoile M. A. K, Horrill C. J. Coastal Ecosystems, Productivity and Ecosystem Protection: Coastal Ecosystem Managentment, AMBIO,1993,22(7):461-467.
    [15]Bennion H. A. diatiom-phosphorous transfer function for shallow, entropic ponds in Southeast England. Hydrobiology,1994,275-276,391-410.
    [16]郭永盛,许学工.黄河三角洲土地资源开发对策的探讨[J].自然资源学报,1990,5(3)193-205.
    [17]郎惠清.大兴安岭和长白山地森林沼泽类型及其演替[J].植物学报,1981,23(6):470-477.
    [18]戴雄武.中国湖泊的现状和开发途径[J].地域研究与开发,1989,8(2):4-7.
    [19]田应兵,宋光煌.湿地土壤及其生态功能[J].生态学杂志,2002,21(6):36-39.
    [20]川口桂三郎.水田土壤学[M].北京:农业出版社,1985.
    [21]朱鹤键.水稻土[M].北京:农业出版社,1985.
    [22]李良漠.无定形氧化铁作为嫌气下NH4+氧化时电子受体的研究[J].土壤学报,1988,25(2):184-190.
    [23]陈博谦,湿地土壤因素对污水处理作用的模拟研究[J].土壤学进展,1995,23(4):31-37.
    [24]程树培.应用人工湿地生态系统处理中小城市排放废水[J].城市环境与城市生态,1989,2(1):35-37.
    [25]孙彦坤.湿地碳循环研究在气候变化中的作用[J].黑龙江科技信息,2003,75.
    [26]Frolking S, Roult N T, Moore T R, et al. Modeling Northern peatland decompotion and peat accumulation. Ecosystems,2001,4(5):479-498.
    [27]IPCC(International Panel of Climate Change). Land use, Land-use Change, and Forestry. Cambridge and New York:Cambridge University Press,2000.
    [28]Franzen L G. Can earth afford to lose the wetlands in the battle against the increasing greenhouse effect[A]. International Peat Society Proceedings of International Peat Congress[C]. Uppsala,1992,1-18.
    [29]Bolin B. How much CO2 will remain in the atmosphere [A]. In:Bolin B. The Greenhouse Effect, Climate Change and Ecosystems, SCOPE29[C]. Chichester:John Wiley&Sons, 1986,93-155.
    [30]Post W M, Emanuel WR, Zinke PJ, et al. Soil carbon pools and world life zones[J]. Nature, 1982, (298):156-159.
    [31]Ouse WR, Lafleur PM, Griffis TJ. Controls on energy and carbon fluxes from select high latitude terrestrial surfaces[J]. Physical Geography,2000,21(4):345-367.
    [32]吕宪国,何岩,杨青.湿地碳循环及其在全球变化中的意义.见:陈宜瑜主编:中国湿地研究[M].长春:吉林科学技术出版社,1995,68-72.
    [33]马学慧,吕宪国,杨青,等.三江平原沼泽地碳循环初探[J].地理科学,1996,16(4):323-330.
    [34]Gill P. A. decade of carbon gas exchange between the atmosphere and temperature poor fen[J]. Symposium 1999,43, Carbon Balance of Peatlands. Sponsor:International Peat Society.
    [35]Jones M. B. And Mulhuri F. M. Standing biomass and carbon distribution in a papyrus (Cyperus papyus L.)swamp on lake naivasha[J], Kenya. Journal of Tropical Ecology.1997,13(3):347-356.
    [36]Brix H, Sorrel B K, Lorenzen B. Are phragimates dominated wetlands a net source or net sink of greenhouse gases[J]. Aquatic Botany,2001,69:313-324.
    [37]Mitsch W. J. and Gossilink J. G. Wetlands. Van Nortrand Reinhold Company, New York, 1986.
    [38]William J Mitsch, James G Gosselin. Wetlands[M]. Van Nostrand Reinhold Company Inc., New York,1986,89-125.
    [39]李生秀.中国旱地土壤植物氮素[M].北京:科学出版社,2008.
    [40]BeareMH, Gregorich EG, St-GeorgesP. Compaction effectson CO2 and N2O production during drying and rewetting of soil[J]. Soil Biology and Biochemistry,2009,41:611-621.
    [41]Sitaula BK, Bakken LR. Nitrous oxide release from spruce forest soil Relationships with nitrification, methaneuptake, temperature, moisture and fertilization[J]. Soil Biology and Biochemistry,1993,25:1415-1421.
    [42]VintherFP. Measured and simulated denitrification activity in a cropped sandy and loamy soil[J]. Biology and Fertility of Soils,1992,14:43-48.
    [43]尹澄清.内陆水-陆地交错带的生态功能及其保护与开发前景[J].生态学报,1995,40(1):87-91.
    [44]Lieffers V J. Emergent plant communities of Oxbow Lakes in Northeastern Alberta:salinity, water-level fluctuation, and succession[J]. Canadian of Botany,1984,62(2):310-316.
    [45]Editorical. Purification processes, ecological functions, planning and design of riparian buffer zones in agricultural watersheds[J]. Ecological Engineering,2005,24:421-432.
    [46]Logan T J, Page A L. Utilization of Municipal Waste water and Sludge on Land[D]. University of California, Riverside,1983,235-237.
    [47]Gregory S V, Swanson F J, Mckee W A, An ecosystem perspective of Riparian zones. Bioscience,1991,41(8):540-551.
    [48]Nilsson C, E kblad A, Gardf jell M, et al. Long-term effects of river regulation on river margin vegetation. Journal of Applied Ecology,1991,28(3):963-987.
    [49]Battaglia L L, Collins B S. Linking hydroperiod and vegetation response in Carolina bay wetlands. Plant Ecology,2006,184(1):173-185.
    [50]Azza N, Denny P, Koppel J V, et al. Floating mats:their occurrence and influence on shoreline distribution of emergent vegetation. Freshwater Biology,2006,51:1286-1297.
    [51]Leyer I, Predicting plant species'responses to river regulation:the role of water level fluctuations. Journal of Applied Ecology,2005,42:239-250.
    [52]Futoshi N, Hiroyuki Y. Effects of pasture development on the ecological functions of riparian forests in Hokksido in northern Japan. Ecological Engineering,2005,24:539-550.
    [53]Holmes P M, Esler K J, Richardson D M, et al. Guidelines for improved management of riparian zones invaded by alien plants in south Africa. South African Journal of Botany, 2008,74:538-552.
    [54]Venkatachalam A, Jay R, Eiji Y. Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering,2005,24(5):517-523.
    [55]Lowrance R R, Airier L S, Williams R G, et al. The riparian ecosystem management model: simulator for ecological processes in riparian zones. Journal of Soil and Water Conservation, 2000,55(1):27-34.
    [56]Inamdar S P, Sheridan J M, Williams R G, et al. Riparian ecosystem management model(REMM):I. Testing of the hydrologic component for a coastal plain riparian system. Transactions of the ASAE,1999,42(6):1679-1689.
    [57]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较[J].西南农业大学学报,2005,27(5):684-688.
    [58]黄朝禧,赵绪福,韩桐魁.富水水库消落区土地开发试验及其效果[J].长江流域资源与环境,2005,14(4):435-439.
    [59]王勇,刘义飞,刘松柏,等.三峡库区消涨带植被重建[J].植物学通报,2005,22(5):513-522.
    [60]徐泉斌.三峡库区消落带土壤抗结构特征研究[D].重庆:西南大学,2010.
    [61]傅杨武.三峡水库消落带土壤-水体系统中重金属模拟研究[J].环境科学与技术,2007,30(10):14-16.
    [62]王里奥,黄川,詹艳慧,等.三峡库区消落带淹水-落干过程土壤磷吸附-解吸及释放研究[J].长江流域资源与环境,2006,15(5):593-597.
    [63]孙璐.三峡库区小江流域消落带土壤磷对水环境影响研究[D].重庆:西南大学,2010.
    [64]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [65]朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社,1992.
    [66]熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社,1987.
    [67]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [68]钟远平.唐将等.三峡库区土壤有机质区域分布与影响因素[J].水土保持学报,2006,(10):73-76.
    [69]王绍强,朱松丽.周成虎.中国土壤土层厚度的空间变异性特征[J].地理研究,2001,(2):161-170.
    [70]赵艺,施泽明,师刚强.土壤pH值与土壤养分有效态关系探讨[J].四川环境,2009,6(12):81-83.
    [71]袁可能.植物营养元素的土壤化学[M].科学出版社,1983.
    [72]张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):351-357.
    [73]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘,2002,9(2):351-357.
    [74]Albuquerque A L S, Mozeto A A. C N P ratios and stable carbon isotope compositions as indicators of organic matter sources in ariverine wetland system (Moji Guacu River, Sao Paulo, Brazil)[J]. Wetlands,1997,17:1-9.
    [75]陈宜瑜.中国全球变化的研究方向[J].地球科学研究进展,1999,14(2):319-322.
    [76]Gorham E. Northern peatlands:role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications,1991,1:182-195.
    [77]Fraseer C J D, Roulet N T, Moore T T. Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog[J]. Hydrology Processes,2001,15:3151-3166.
    [78]Lee S Y Primary productivity and particulate organic matter flow in an estuarine mangrove-wetland in Hongkong[J]. Marine Biology,1990,106(3):453-463.
    [79]Dillon P J, Trumbore S E, Aravena R. Dissolved organic carbon cycling in forested watershed:a carbon isotope approach[J]. Water Resource Research,1990,26(12): 2949-2957.
    [80]Gorham E. Northern peatlands:Role in the carbon cycle and probable responses to climatic warning. Ecologic Applications,1991,1:182-195.
    [81]刘子刚.湿地生态系统碳储存和温室气体排放研究[J]..地理科学,2004,24(5):635-639.
    [82]Franzen L G. Can earth afford to lose the wetlands in the battle against the increasing greenhouse effect[A]. International Peat Society Proceedings of International Peat Congress[C]. Uppsala,1992,1-18.
    [83]徐明岗.土壤活性有机质的研究进展[J].土壤肥料,2000,6:3-7.
    [84]陈明智.不同母质荔枝园土壤养分比较研究[J].中国南方果树,2002,30(3):30-30.
    [85]吴蔚东.中亚热带天然常绿阔叶林下不同母质的土壤质量性状[J].山地学报,2003,21(1):73-79.
    [86]胡玉福,邓良基,张世熔,等.四川雨城区主要土壤母质上的耕地土壤性质变异研究[J].土壤通报,2004,35(3):246-250.
    [87]郭建军,李惠卓,等,不同母岩母质上土壤特性的分析与研究[J].河北林业科技,2004,6:13-14.
    [88]李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351-360
    [89]王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.
    [90]Sharrow, S. H. Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon[J]. USA. Agroforestry Systems.2004,60:123-130.
    [91]朱连奇,许立民,草地改良对土壤有机碳的影响—以福建省建欧市牛坑龙草地生态系统试验站为例[J].河南大学学报,2004,34(2):64-68.
    [92]Post, W. M., Kwon, K. C.. soil carbon sequestration and land-use change:peocesses and potential. Global Change biology,2000,6:317-327.
    [93]钟远平,唐将等.三峡库区土壤有机质区域分布与影响因素[J].水土保持学报,2006,(10):73-76.
    [94]张春娜.中国陆地土壤氮循环[D].西南农业大学,2004.
    [95]Soderlund. R. Dry and wet deposition of nitrogen compounds. In:Terrestrial nitrogen cycles. Ecological Bulletins.1981,22.
    [96]Pritchett W. L. Propertiews and management of forest soils. New York, USA. Jhon Wiley and Sons,1979.
    [97]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1990.
    [98]Bremner, J. M.& K. Shaw. Denitrification in soil, II, Factors affecting denitrification, J. Agric. Sci.1958,51,40-52.
    [99]Carl, O. T. Niteogen in terrestrial ecosystem, Ecological Studies, New York:Springer, Berlin Herdelberg,1991,81.
    [100]张金霞,曹广民.高寒草甸系统氮素循环[J],生态学报,1999,509-512.
    [101]巨晓棠,刘学军,张福锁.不同氮肥施用后土壤各氮库的动态研究[J].中国生态农业学报,2004,12(1):91-94.
    [102]王洪杰,史学正,李宪文,等.小流域尺度土壤养分的空间分布特征及其与土地利用的关系[J].水土保持学报,2004,18(1):15-18.
    [103]YangC D, ZhangW R. Study on the organicmatter of the forest soils inWoLong natural reserve. Acta Pedologica Sinica,1986,23(1):30-39.
    [104]Xiao Huilin. Climate Change in Relation to Soil Organic Matter.1999,8(4):300-304.
    [105]Wiebe W J et al. Anaerobic respiration and fermentaton, in:The Ecology of a Salt Marsh, L R Pomeroy and R G Wiegerteds. New York:Springer, Verlag Press,1981,137-159.
    [106]Reddy K R, Patrick W H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem.,1975,7:87-94.
    [107]Patten DK, Bremner JM, BlackmerAM. Effects of drying and air-dry storage ofsoils on their capacity fordenitrification ofnitrate. SoilScience Society ofAmerica Journal,1980,44: 67-70.
    [108]Croker, R. L. and Major, J. Soil development in relation to vegetation and surface age at Glacier bay, Alaska, Journal of Ecology,1955,43:427-448.
    [109]Bormann, B. T. and Sidle, R. C. Change inproducetivity and distribution of nutrients in a chrono-sequence at Glacier bay, national park, Alaska, Journal of Ecology,1990,18: 561-578.
    [110]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):3685-3695.
    [111]陈为峰,史衍玺,田素锋,等.黄河口新生湿地土壤氮磷分布特征研究[J].水土保持学报,2008,22(1):69-73.
    [112]白军红,邓伟,王庆改,等.内陆盐沼湿地土壤碳氮磷剖面分布的季节动态特征[J].湖泊科学,2007,(19):599-603.
    [113]HAGEDORN F, SPINNLER D, BUNDT M, et al. The input and fate of new C in two forest soils under elevated CO2[J]. Global Change Biology,2003, (9):862-872.
    [114]刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):5-8.
    [115]姜勇,张玉革,梁文举,等.潮棕壤不同土地利用方式有机碳剖面分布及碳储量[J].中国农业科学,2005,38:544-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700