一维苝类衍生物微纳结构的可控制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机半导体材料由于质轻、价廉和种类繁多,同时结构及性能可通过分子设计进行调整等优点而受到人们广泛的重视,推动着分子电子学的快速发展。一维有机单晶微纳结构具有许多新颖性质,在光电领域具有重要的应用前景,其研究受到越来越多的关注。本论文研究一维苝类衍生物微纳结构材料的气相控制生长和光电、气敏特性、探索一维微纳结构-性能之间的关系和其潜在的应用。主要内容如下:
     1.简单介绍有机半导体材料的研究现状和面临的困难,分析苝类衍生物在电子器件中的应用和现存的问题,并以此为基础,明确提出了本论文的选题、意义和主要研究内容。
     2.利用物理气相沉积技术得到一维结晶性良好的单晶苝类衍生物(PTCDA, PTCDI,PTCDI-Cl_4)微纳结构材料。分析不同形态的一维苝类衍生物微纳结构的形成机制:依靠不同的基片温度,不同气氛压力下分子一维方向的自组装的机理。采用位电场组装方法得到单根PTCDA和PTCDI纳米线光电器件,探讨光照对其电流的影响,发现不同材料器件的响应和回复时间有着较大的差别。
     3.通过合理的气相条件控制获得不同尺寸的方形微纳管。通过粉末X-射线衍射(XRD)分析,对于已制备的方形微纳管,原料和样品存在着晶型转变(β-相→α-相)。探索其样品的形成机制提出可能的模型:层状结构卷曲闭合成管。对其气敏性质的研究,采用掩板的方法构筑顶接触模式的单根PTCDA纳米线气敏器件,在暴露5ppm水合肼蒸气中,测量不同直径管样品对该气体响应的电阻-时间变化曲线,显示2个数量级的下降,并且随着直径的减小呈现出快速响应。推测其中可能影响因素:(1)水合肼电子给体吸附在管的表面促使其复合中心的电荷分离;(2)电子在一维结构的微纳管分子堆积长轴间的π电子离域传导;(3)不同直径的管,其比表面积有着显著的不同。
     4.基于对苝类衍生物气相制备条件的探索,结合当前有机半导体在光电领域的应用,制备了PTCDA阵列微纳结构材料和ZnO/PTCDA复合材料,并对比研究了复合材料的紫外-可见光吸收,期望后者能在性能优异的光电器件中得到潜在应用。
Organic semiconductors materials have received widely attentions in molecular electronics due totheir inherent advantages such as light weight, low cost, mechanical flexibility and tunable functionality bymolecular design. Organic1-D nanomaterials based on low-molecular-weight semiconducting organiccompounds are of interest because they possess unique properties for use in electronic, optoelectronic, andphotonic nanodevices. Here, we focus on the controllable growth of perylene derivatives, optoelectronicdevices and their gas sensitivities associated performance, exploring the structure-property relationship andtheir potential applications.
     1. We introduced the present research backgrounds of organic semiconductor materials and N-type ofperylene derivatives application in electronic devices, and their status of single crystal preparationtechnology and built a photoelectricity and gas sensing function devices. Therefore, we deduced theresearch objectives and the main research contents in our future works.
     2. We described the synthesis of excellent crystal perylene derivatives (PTCDA, PTCDI, PTCDI-Cl_4)micro-nanostructure materials by the physical vapor deposition (PVD) technique, analysis of the gas phaseself-assembled rely on different dominant interactions are responsible for the different forms of organicmicro-nanocrystal structure formation is temperature-activated process. The UV detectors based deviceswere fabricated by aligning single PTCDA and PTCDI nanowire across paired Au electrodes usingdielectrophoresis.and discusses the different diameter, light intensity on the optical current effect,discovered the different material device response and recovery time is different.
     3. We report the preparation of3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA)micro/nanotubes (M/NTs) by a simple physical vapor deposition (PVD) process, and it was found thattubular structures with a diameter range from300nm to5μm and lengths up to tens of micrometers wereobtained on a glass substrate at a deposition temperature of350-400°C. Detailed studies revealed thatPTCDA M/NTs were formed via a curling and seaming of a2-D lamellar structure constructed by virtue ofthe cooperation of some noncovalent interactions such as π–π interaction and H-bond, which was atemperature-activated process. Devices based on single PTCDA microtubes with different diameters exhibited resistance decreased by2orders of magnitude in reducing hydrazine vapor (even for such a lowconcentration of5ppm). Such a successful application of PVD process to simple organic molecules andhighly efficient performance in devices are expected to provide great opportunities for the formation ofdiverse functional organic hollow nanostructures.
     4. Based on perylene derivative gas phase control of preparation conditions of exploration, consideringour studies on the organic semiconductor optoelectronic applications, we try to PTCDA array andZnO/PTCDA composite material preparation, and composite materials were studied by light absorption, inthe hope that the excellent performance of the photoelectricity parts have potential applications.
引文
[1] C. W. Tang, Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986,48,183.
    [2]黑格,萨勒吉弗特吉,纳牟达斯,等.半导性与金属性聚合物[M].科学出版社.2010.
    [3]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].复旦大学出版社.2004.
    [4]胡文平.纳米科学与技术有机场效应晶体管[M].科学出版社.2011.
    [5] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films [J]. J. Appl.Phys.,1989,65,3610.
    [6] S. Reineke, F. Lindner, G. Schwartz, et al. White organic light-emitting diodes with fluorescent tubeefficiency [J]. Nature.,2009,459,234.
    [7] Malte. Gather, Anne. K hnen, Klaus. Meerholz, White organic light-emitting diodes [J]. Adv. Mater.,2011,23,233.
    [8] L. Jiang, W. P. Hu, Z. M. Wei, et al. High-performance organic single-crystal transistors and digitalinverters of an anthracene derivative [J]. Adv. Mater.,2009,21,1.
    [9] Marta. Mas-Torrent, Role of molecular order and solid-state structure in organic field-effect transistors[J]. Chem. Rev.,2011,111,4833.
    [10] C. W. Tang, S. A. VanSlyke, Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987,51,913.
    [11] G. J. Zhao, Y. J. He, Y. F. Li,6.5%efficiency of polymer solar cells based on poly(3-hexylthiophene)and indene-C60bisadduct by device optimization [J]. Adv. Mater.,2010,22,4355.
    [12] H. Wang, F. Li, Israel. Ravia, Cyano-substituted oligo(p-phenylene vinylene) single crystals: Apromising laser material [J]. Adv. Funct. Mater.,2011,21,3770.
    [13] A. Facchetti, Semiconductors for organic transistors [J]. Mater. Today.,2007,10,28.
    [14] S. D. Conzone, C. G. Pantano, Glass slides to DNA microarrays [J]. Mater. Today.,2004,7,20.
    [15] G. H. Gelinck, H. E. A. Huitema, E. Vanveenendaal, et al. Flexible active-matrix displays and shiftregisters based on solution-processed organic transistors [J]. Nature. Mater.,2004,3,106.
    [16] http://www.waclighting.com/USA/,2009.
    [17] http://www.sonystyle.com/oled, Sony Corporation,2008.
    [18] http://ces.cnet.com/8301-33379_1-57358177/lgs-55-inch-55em9600-oled-tv-wins-best-of-ces/,2012.
    [19] Kardos. M, Ger. Pat. Appl. DE275220A,1913.
    [20]王玉峰,含苝酰亚胺聚合物光伏材料的合成与表征[D].郑州:郑州大学.2007.
    [21]冯福玲,苝酰亚胺类电致发光材料的合成及性能研究[D].大连:大连理工大学.2008.
    [22]莫雄,苝类衍生物有机电子传输材料的研究[D].浙江:浙江大学.2006.
    [23]叶镭,具有新结构的苝衍生物的合成及研究[D].湖南:湖南大学.2009.
    [24] G. Horowitz, F. Kouki, P. SpearnlaIl, et al. Evidence for n-type conduction in a perylene tetrcarboxylicdiimide derivative [J]. Adv. Mater.,1996,8,242.
    [25] J. R. Ostrick. Conductivity-type anisotropy in molecular solids [J]. J. Appl. Phys.,1997,81,6804.
    [26] P. R. L. Malenfat, C. D. Dimitrakopoulos, J. D. Gelonne, et al. N-type organic thin-film transistor withhigh field-effect mobility based on a N, N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimidederivative [J]. Appl. Phys. Lett.,2002,80,2571.
    [27] A. J. Bmoks, J. A. Michael, Y. MyllIlg-Hall, et al. High-mobility air stable n-Type semiconductorswith processing versatility: Dicyanoperylene-3,4,9,10-bis(dicarboximides)[J]. Angew. Chem. Int. Ed.,2004,43,6363.
    [28] L. Schlllidt-Mende, A. Fechtenkǒtter, K. Mnllen, et al. Self-organized discotic liquid crystals forhigh-efficiency organic photovoltaics [J]. Science.,2001,293,1119.
    [29] Chih-Yu. Chang, Cheng-En.Wu, Shih-Yung. Chen, et al. Enhanced performance and stability of apolymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods [J]. Angew.Chem. Int. Ed.,2011,50,9386.
    [30] Mariano. Campoy-Quiles, Toby. Ferenczi, Tiziano. Agostinelli, et al. Morphology evolution viaself-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends [J]. Nat.Mater.,2008,7,158.
    [31] T. TsuzIlki, Y. Sllirota, J. Rostalski, et al. The effect of fullerenc doping on photoelectric conversionusing Titanyl phthalocyalline and a perylene pigment [J]. Solar. Energy. Materials&Solar cell.,2000,61,1.
    [32] Kyungkon. Kim, J. W. Liu, A. G. Manoj, Namboothiry, et al. Roles of donor and acceptornanodomains in6%efficient thermally annealed polymer photovoltaics [J]. Appl. Phys. Lett.,2007,90,163511.
    [33] Jin Young. Kim, Kwanghee. Lee, Nelson E. Coates, et al. Efficient tandem polymer solar cellsfabricated by all-solution processing [J]. Science.,2007,317,222.
    [34] H. Graaf, D. Sclllettwein, N. I. Jaeger, Suppression of chromophore couping in thinfilms by chemical substitution of a perylene tetracarboxylic acid diimide [J]. Synth. Met.,2000,109,151.
    [35] A. Kolmakov, Y. X. Zhang, G. S. Cheng, et al. Dectection of Co and O2using tin oxide nanowiresensors [J]. Adv. Mater.,2003,15,997.
    [36] C. Li, D. H. Zhang, X. L. Liu, et al. In2O3nanowires as chemical sensors [J]. Appl. Phys. Lett.,2003,82,1613.
    [37] J. Kong, N. R. Franklin, C. W. Zhou, et al. Nanotube molecular wires as chemical sensors [J]. Science.,2000,287,622.
    [38] Y. Huang, B. Quan, Z. Wei, et al. Self-assembled organic functional nanotubes and nanorods and theirsensory properties [J]. J. Phys. Chem. C.,2009,113,3929.
    [39] Y. Huang, L. Fu, W. Zou, et al. Self-assembled organic functional nanotubes and nanorods and theirsensory properties [J]. J. Phys. Chem. C.,2011,115,10399.
    [40] W. F. Qiu, W. P. Hu, Y. Q. Liu, et al. The gas sensi-tivity of a substituted mentallophthalocyanine,tetra-iso-propoxyphthalocyaninato copper [J]. Sensors and Actua-tors B.,2001,75,62.
    [41] W. P. Hu, Y. Q. Liu, Y. Xu, et al. The gas sensitivity of a metal-insulator-semiconductorfield-effect-transistor based on Langmuir-blodgett films of a new asymmetrically substitutedphthalocyanine [J]. Thin Solid Films.,2000,360,256.
    [42] M. Bouvet, Phthalocyanine-based field-eff ect transistors as gas sen-sors [J]. Anal. Bioanal. Chem.,2006,384,366.
    [43] M. Bouvet, G. Guillaud, A. Leroy, et al. Phthalocyanine-based field-effect transistor as ozone sensor[J]. Sensors and Actuators B.,2001,73,63.
    [44] R. D. Yang, J. Park, C. N. Colesniuc, et al. Ultralow drift in organic thin-film transistor chemicalsensors by pulsed gating [J]. J. Appl. Phys.,2007,102,034515.
    [45] H. B. Wang, F. Zhu, J. L. Yang, et al. Weak epitaxial growth affording high-mobility thin films ofdisk-like organic semiconductors [J]. Adv. Mater.,2007,19,2168.
    [46] H. B. Wang, D. Song, J. L. Yang, et al. High mobility vanadyl-phthalocyanine polycrystalline filmsfor organic field-effect transistors [J]. Appl. Phys. Lett.,2007,90,253510.
    [47] M. Lall, S. Rcn, Y. Wang, et al. A novel dual-layer photoreceptor [J]. Dyes and Pigments.,1998,38,107.
    [48] Z. Y. wang, Y. Qi, J. P. Gao, et al. Synthesis, chamcterization, and xerogmphic electricalcharacteristics of perylene-contailling polyimides [J]. Macromolecules.,1998,31,2075.
    [49] R. J. Li, W. P. Hu, Y. Q. Liu, et al. Micro-and nanocrystals of organic semiconductors [J]. Acc. Chem.Res.,2010,43,529.
    [50] Q. X. Tang, H. X. Li, M. He, et al. Low Threshold voltage transistors based on individualsingle-crystalline submicrometer-sized ribbons of copper phthalocyanine [J]. Adv. Mater.,2006,18,65.
    [51] Q. Tang, Y. Tong, H. Li, et al, High-performance air-stable bipolar field-effect transistors of organicsingle-crystalline ribbons with an air-gap dielectric [J]. Adv. Funct. Mater.,2008,20,1511.
    [52] C. S. Huang, Y. Zhang, H. B. Liu, et al, Controlled growth and field-emission properties of the organiccharge-transfer complex of κ-(BEDT-TTF)2Cu(SCN)2Nanorod Arrays [J]. J. Phys. Chem. C.,2007,111,3544.
    [53] Q. Tang, H. Li, Y. Song, et al. In situ patterning of organic single-crystalline nanoribbons on a SiO2surface for the fabrication of various architectures and high-quality transistors [J]. Adv. Funct. Mater.2006.,18,3010.
    [54] Seok. Min. Yoon, Hyun. Jae. Song, In-Chul. Hwang, et al. Single crystal structure of copperhexadecafluorophthalocyanine (F16CuPc) ribbon [J]. Chem. Commun.,2010,46,231.
    [55] Seok. Min. Yoon, In-Chul Hwang, Kwang S. Kim, et al. Synthesis of single-crystaltetra(4-pyridyl)porphyrin rectangular nanotubes in the vapor phase [J]. Angew. Chem. Int. Ed.,2009,48,2506.
    [56] Alejandro. L. Briseno, Stefan. C. B. Mannsfeld, X. M. Lu, et al. Fabrication of field-effect transistorsfrom hexathiapentacene single-crystal nanowires [J]. Nano Lett.,2007,7,668.
    [57] L. Zang, Yanke. Che, Jeffrey. S. Moore, One-dimensional self-assembly of planar π-conjugatedmolecules adaptable building blocks for organic nanodevices [J]. Acc. Chem. Res.,2008,41,1596.
    [58] S. Raychaudhuri, S. A. Dayeh, D. Wang, et al. Precise semiconductor nanowire placement throughdielectrophoresis [J]. Nano Lett.,2009,9,2260.
    [59] C. S. Lao, J. Liu, P. Gao, et al. ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresisalignment across Au electrodes [J]. Nano Lett.,2006,6,263.
    [60] D. J. Gundlach, L. Zhou, J. A. Nichols, et al. An experimental study of contact effects in organic thinfilm transistors [J]. J. Appl. Phys.,2006,100,024509.
    [61] T. J. Richards, H. Sirringhaus, Analysis of the contact resistance in staggered, top-gateorganic field-effect transistors [J]. J. Appl. Phys.,2007,102,094510.
    [62] G. R. Dholakia, M. Meyyappan, A. Facchetti, et al. Monolayer to multilayer nanostructural growthtransition in n-type oligothiophenes on Au(111) and implications for organic field-effect transistorperformance [J]. Nano. Lett.,2006,6,2447.
    [63] P. V. Necliudov, M. S. Shur, D. J. Gundlach, et al. Modeling of organic thin film transistors ofdifferent designs [J]. J. Appl. Phys.,2000,88,6594.
    [64] Q. Tang, Y. Tong, W. Hu, et al. Assembly of nanoscale organic single-crystal cross-wire circuits [J].Adv. Mater.,2009,21,4234.
    [65] Y. Zhang, Q. Tang, H. Li, et al. Hybrid bipolar transistors and inverters of nanoribboncrystals [J]. Appl. Phys. Lett.,2009,94,203304.
    [66] Q. Tang, H. Li, Y. Liu, et al. High-performance air-Stable n-type transistors with an asymmetricaldevice configuration based on organic single-crystalline submicrometer/nanometer ribbons [J]. J. Am.Chem. Soc.,2006,128,14634.
    [67] L. Jiang, J. Gao, E. Wang, et al. Organic single-crystalline ribbons of a rigid ‘‘H’’-type anthracenederivative and high-performance, short-channel field-effect transistors of individualmicro/nanometer-sized ribbons fabricated by an ‘organic ribbon mask’ technique [J]. Adv. Mater.,2008,20,2735.
    [1] G. F. Zheng, W. Lu, S. Jin, et al. Synthesis and Fabrication of High-Performance n-Type SiliconNanowire Transistors [J]. Adv. Mater.,2004,16,1890.
    [2] M. Law, H. Kind, F. Kim, et al. Photochemical Sensing of NO2with SnO2Nanoribbon Nanosensors atRoom Temperature [J]. Angew. Chem. Int. Ed.,2002,41,2405.
    [3] Y. Huang, X. F. Duan, C. M. Lieber, Nanowires for Integrated Multicolor Nanophotonics [J]. Small.,2005,1,142.
    [4] J. S. Jie, W. J. Zhang, Y. Jiang, et al. Photoconductive characteristics of single-crystal CdS nanoribbons[J]. Nano. Lett.,2006,6,1887.
    [5] Y. Ahn, J. Dunning, J. Park, Scanning photocurrent imaging and electronic band studies in siliconnanowire field effect transistors [J]. Nano. Lett.,2005,5,1367.
    [6] G. A. O’Brien, A. J. Quinn, D. A. Tanner, et al. A single polymer nanowire photodetector [J]. Adv.Mater.,2006,18,2379.
    [7] S. Ju, A. Facchetti, Y. Xuan, et al. Fabrication of fully transparent nanowire transistors for transparentand flexible electronics [J]. Nat. Nanotechnol.,2007,2,378.
    [8] M. Freitag, Y. Martin, J. A. Misewich, et al. Photoconductivity of single carbon nanotubes [J]. Nano.Lett.,2003,3,1067.
    [9] Y. B. Wang, H. B. Fu, A. D. Peng, et al. Distinct nanostructures from isomeric molecules ofbis(iminopyrrole) benzenes: effects of molecular structures on nanostructural morphologies [J]. Chem.Commun.,2007,16,1623.
    [10] X. J. Zhang, X. H. Zhang, X. M. Meng, et al. Morphology-Controllable Synthesis of PyreneNanostructures and Its Morphology Dependence of Optical Properties [J]. J. Phys. Chem. B.,2005,109,18777.
    [11] J. S. Hu, Y. G. Guo, H. P. Liang, et al. Three-dimensional self-organization of supramolecularself-assembled porphyrin hollow hexagonal nanoprisms [J]. J. Am. Chem. Soc.,2005,127,17090.
    [12] T. Q. Nguyen, R. Martel, P. Avouris, et al. Molecular interactions in one-dimensional organicnanostructures [J]. J. Am. Chem. Soc.,2004,126,5234.
    [13] Y. Che, A. Datar, K. Balakrishnan, et al. Ultralong nanobelts self-assembled from an asymmetricperylene tetracarboxylic diimide [J]. J. Am. Chem. Soc.,2007,129,7234.
    [14] A. L. Briseno, S. C. B.Mannsfeld, C. Reese, et al. Perylenediimide nanowires and their use infabricating field-effect transistors and complementary inverters [J]. Nano. Lett.,2007,7,2847.
    [15] Q. Tang, H. Li, Y. Liu, et al. High-performance air-stable n-type transistors with an asymmetricaldevice configuration based on organic single-crystalline submicrometer/nanometer ribbons [J]. J. Am.Chem. Soc.,2006,128,14634.
    [16] H. Liu, Q. Zhao, Y. Li, et al. Field emission properties of large-area nanowires of organiccharge-transfer complexes [J]. J. Am. Chem. Soc.,2005,127,1120.
    [17] A. D. Schwab, D. E. Smith, B. Bond-Watts, et al. Photoconductivity of self-assembled porphyrinnanorods [J]. Nano. Lett.,2004,4,1261.
    [18] Y. Yamamoto, T. Fukushima, Y. Suna, et al. Photoconductive coaxial nanotubes of molecularlyconnected electron donor and acceptor layers [J]. Science.,2006,314,1761.
    [19] Kardos. M, Ger. Pat. Appl. DE275220A,1913.
    [20] H. E. Katz, Z. Bao, S. L. Gilat, Synthetic Chemistry for Ultrapure, Processable, and High-MobilityOrganic Transistor Semiconductors [J]. Acc. Chem. Res.,2001,34,359.
    [21] F. Fǔrthner, Plastic Transistors Reach Maturity for Mass Applications in Microelectronics [J]. Angew.Chem. Int. Ed.,2001,40,1037.
    [22] M. A. Angadi, D. Gosztola, M. R. Wasielewski, Organic light emitting diodes usingpoly(phenylenevinylene) doped with perylenediimide electron acceptors [J]. Mater. Sci. Eng. B.,1999,63,191.
    [23] P. Ranke, I. Bleyl, J. Simmerer, et al. Electroluminescence and electron transport in a perylene dye [J].Appl. Phys. Lett.,1997,71,1332.
    [24] K.-Y. Law, Organic photoconductive materials:recent trends and developments [J]. Chem. Rev.,1993,93,449.
    [25] B. A. Gregg, R. A. Cormier, Doping Molecular Semiconductors:n-Type Doping of a Liquid CrystalPerylene Diimide [J]. J. Am. Chem. Soc.,2001,123,7959.
    [26] A. J. Breeze, A. Salomon, D. S. Ginley, et al. Polymer-perylene diimide heterojunction solar cell [J].AppL. Phys. Lett.,2002,81,3085.
    [27] R. T. Hayes, M. R. Wasielewski, D. Gosztola, Ultrafast Photoswitched Charge Transmission throughthe Bridge Molecule in a Donor-Bridge-Acceptor System [J]. J. Am. Chem. Soc.,2000,122,5563.
    [28] W. B. Davis, W. A. Svec, M. A. Ramer, et al. Molecular-wire behaviour in P-phenylenevinyleneoligomers [J]. Nature.,1998,396,60.
    [29] C. Hippius, F. Schlosser, M. O. Vysotsky, et al. Energy Transfer in Calixarene-BasedCofacial-Positioned Perylene Bisimide Arrays [J]. J. Am. Chem. Soc.,2006,128,3870.
    [30] F. Yukruk, A. L. Dogan, H. Canpinar, et al. Water-Soluble Green Perylenediimide (PDI) Dyes asPotential Sensitizers for Photodynamic Therapy [J]. Org. Lett.,2005,7,2885.
    [31] J. H. Oh, H. W. Lee, S. Mannsfeld, et al. Solution-processed, high-performance n-channel organicmicrowire transistors [J]. Proc. Natl. Acad. Sci. U.S.A.,2009,106,6065.
    [32] B. A Jones, S. Facchetti, M. R. Wasielewski, et al. Tuning Orbital Energetics in Arylene DiimideSemiconductors. Materials Design for Ambient Stability of n-Type Charge Transport [J]. J. Am.Chem.Soc.,2007,129,15259.
    [33] K. Balakrishnan, A. Datar, T. Naddo, et al. Effect of side-chain substituents on self-assembly ofperylene diimide molecules: morphology control [J]. J. Am. Chem. Soc.,2006,128,7390.
    [34] Q. Bao, B. M. Goh, B. Yan, et al. Polarized Emission and Optical Waveguide in Crystalline PeryleneDiimide Microwires [J]. Adv. Mater.,2010,22,3661.
    [35] M. Mǒbus, N. Karl, Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halidecrystal substrates [J]. J. Cryst. Growth.,1992,116,495.
    [36] K. Tojo, J. Mizuguchi, Z. Kristallogr. Electronic structure of perylene pigments as viewed from thecrystal structure and excitonic interactions [J], NCS.,2002,217,253.
    [37] S. M. Yoon, I. C. Hwang, N. Shin,et al. Vaporization-condensation-recrystallization process-mediatedsynthesis of helical m-aminobenzoic acid nanobelts [J]. Langmuir.,2007,23,11875.
    [38] S. M. Yoon, I.-C. Hwang, K. S. Kim et al. Synthesis of Single-Crystal Tetra (4-pyridyl) porphyrinRectangular Nanotubes in the Vapor Phase [J]. Angew. Chem. Int. Ed.,2009,48,2506.
    [39] F. Würthner, Supramolecular pn-heterojunctions by co-self-organization of oligo (p-phenylenevinylene) and perylene bisimide dyes [J], Chem. Commun.,2004,40,1564.
    [40] H. Liu, J. Xu, Y. Li, et al. Aggregate Nanostructures of Organic Molecular Materials [J], Acc. Chem.Res.,2010,43,1496.
    [1] L.-M. Chen, Z. Hong, G. Li, et al. Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells [J], Adv. Mater.,2009,21,1434.
    [2] R. J. Li, W. P. Hu, Y. Q. Liu, et al. Micro-and Nanocrystals of Organic Semiconductors [J], Acc. Chem.Res.,2010,43,529.
    [3] M. Helgesen, R. Sondergaard, F. C. Krebs, Product integration of compact roll-to-roll processedpolymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating androtary screen printing [J], J. Mater. Chem.,2010,20,36.
    [4] S. R. Forrest, M. E. Thompson, Introduction: Organic Electronics and Optoelectronics [J], Chem.Rev.,2007,107,923.
    [5] A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, et al. Introducing organic nanowire transistors [J],Mater. Today.,2008,11,38.
    [6] Q. X. Tang, L. Jiang, Y. H. Tong, et al. Micrometer-and Nanometer-Sized Organic Single-CrystallineTransistors [J], Adv. Mater.,2008,15,2947.
    [7] L. Jiang, H. Dong, W. Hu, Organic single crystal field-effect transistors: advances and perspectives [J],J. Mater. Chem.,2010,20,4994.
    [8] S. Reineke, F. Lindner, G. Schwartz, et al. White organic light-emitting diodes with fluorescent tubeefficiency [J], Nature.,2009,459,234.
    [9] A. W. Hains, Z. Q. Liang, M. A. Woodhouse, et al. Molecular semiconductors in organic photovoltaiccells [J], Chem. Rev.,2010,110,6689.
    [10] B. P. Rand, J. Genoe, P. Heremans, et al. Solar cells utilizing small molecular weight organicsemiconductors [J], Prog. Photovoltaics.,2007,15,659.
    [11] Y. Zhao, A. Peng, H. Fu, et al. Nanowire waveguides and ultraviolet lasers based on small organicmolecules [J], Adv. Mater.,2008,20,1661.
    [12] Y. Zhao, H. Fu, A. Peng, et al. Construction and optoelectronic properties of organic one-dimensionalnanostructures [J], Acc. Chem. Res.,2010,43,409.
    [13] Y. Che, X. Yang, G. Liu, et al. Ultrathin n-type organic nanoribbons with high photoconductivity andapplication in optoelectronic vapor sensing of explosives [J], J. Am. Chem. Soc.,2010,132,5743.
    [14] Y. Huang, L. Fu, W. Zou, et al. Self-Assembled Organic Functional Nanotubes and Nanorods andTheir Sensory Properties [J], J. Phys. Chem. C.,2011,115,10399.
    [15] C. Reese, Z. Bao, Organic single-crystal field-effect transistors [J], Mater. Today.,2007,10,20.
    [16] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, et al. Patterning organic single-crystal transistor arrays[J], Nature.,2006,444,913.
    [17] V. Podzorov, E. Menard, A. Borissov, et al. Intrinsic charge transport on the surface of organicsemiconductors [J], Phys. Rev. Lett.,2004,93,86602.
    [18] F. S. Kim, G. Ren, S. A. Jenekhe, One-Dimensional Nanostructures of π-Conjugated MolecularSystems: Assembly, Properties, and Applications from Photovoltaics, Sensors, and Nanophotonics toNanoelectronics [J], Chem. Mater.,2011,23,682.
    [19] J. H. Ryu, D. J. Hong, M. Lee, Aqueous self-assembly of aromatic rod building blocks [J], Chem.Commun.,2008,9,1043.
    [20] L. Jiang, Y. Fu, H. Li, et al. Single-crystalline, size, and orientation controllable nanowires andultralong microwires of organic semiconductor with strong photoswitching property [J], J. Am. Chem.Soc.,2008,130,3937.
    [21] N. Chen, C. S. Huang, W. L. Yang, et al. Growth Control for Architecture Molecular Conductor ofLow Dimension Nanostructures [J], J.Phys. Chem. C.,2010,114,12982.
    [22] L. Zang, Y. Che, J. S. Moore, One-dimensional self-assembly of planar π-conjugated molecules:Adaptable building blocks for organic nanodevices [J], Acc. Chem. Res.,2008,41,1596.
    [23] A. Borras, M. Aguirre, O. Groening, et al. Synthesis of Supported Single-Crystalline OrganicNanowires by Physical Vapor Deposition [J], Chem. Mater.,2008,20,7371.
    [24] S. M. Yoon, H. J. Song, I.-C. Hwang, et al. Single crystal structure of copperhexadecafluorophthalocyanine (F16CuPc) ribbon [J], Chem. Commun.,2010,46,231.
    [25] S. M. Yoon, I.-C. Hwang, K. S. Kim, et al. Synthesis of Single-Crystal Tetra (4-pyridyl) porphyrinRectangular Nanotubes in the Vapor Phase [J], Angew. Chem. Int. Ed.,2009,48,2506.
    [26] S. M. Yoon, J. Lee, J. H. Je, et al. Optical Waveguiding and Lasing Action in Porphyrin RectangularMicrotube with Subwavelength Wall Thicknesses [J], ACS. Nano.,2011,5,2923.
    [27] Y. S. Zhao, D. B. Xiao, W. S. Yang, et al.2,4,5-triphenylimidazole nanowires with fluorescencenarrowing spectra prepared through the adsorbent-assisted physical vapor deposition method [J],Chem. Mater.,2006,18,2302.
    [28] Y. S. Zhao, P. Zhan, J. Kim, et al. Patterned growth of vertically aligned organic nanowire waveguidearrays [J], ACS. Nano.,2010,4,1630.
    [29] H. F. Ji, R. Majithia, X. Yang, et al. Self-assembly of perylenediimide and naphthalenediimidenanostructures on glass substrates through deposition from the gas phase [J], J. Am. Chem. Soc.,2008,130,10056.
    [30] Y. Huang, J. Hu, W. Kuang, et al. Modulating helicity through amphiphilicity-tuning supramolecularinteractions for the controlled assembly of perylenes [J], Chem. Commun.,2011,47,5554.
    [31] J. H. Oh, H. W. Lee, S. Mannsfeld, et al. Solution-processed, high-performance n-channel organicmicrowire transistors [J], Proc. Natl. Acad. Sci. U.S.A,2009,106,6065.
    [32] Y. Huang, Y. Yan, B. M. Smarsly, et al. Helical supramolecular aggregates, mesoscopic organisationand nanofibers of a perylenebisimide–chiral surfactant complex via ionic self-assembly [J], J. Mater.Chem.,2009,19,2356.
    [33] Y. Che, H. Huang, M. Xu, et al. Interfacial engineering of organic nanofibril heterojunctions intohighly photoconductive materials [J], J. Am. Chem. Soc.,2011,133,1087.
    [34] Y. Huang, B. Quan, Z. Wei, et al. Self-assembled organic functional nanotubes and nanorods and theirsensory properties [J], J. Phys. Chem. C.,2009,113,3929.
    [35] A. A. Levin, T. Leisegang, R. Forker, et al. Preparation and crystallographic characterization ofcrystalline modifications of3,4,9,10-perylenetetracarboxylic dianhydride at room temperature [J],Cryst. Res. Technol.,2010,45,439.
    [36] S.-C. Suen, W.-T. Whang, F.-J. Hou, et al. Growth enhancement and field emission characteristics ofone-dimensional3,4,9,10-perylenetetracarboxylic dianhydride nanostructures on pillared titaniumsubstrate [J], Org. Electronics.,2007,8,505.
    [37] A. B. Djuri i, A. M. C. Ng, K.-Y. Cheung, et al. Small molecule organic nanostructures-fabricationand properties [J], J. Mater. Sci. Technol.,2008,24,563.
    [38] Although the d-spacing value is consistent with that of reported PTCDA molecules in reference35, thepi-stacking distance (0.372nm) in this study is slightly larger than that of reported perylenediimide(0.36nm) in reference20and other perylenediimide derivatives (0.34nm) bearing2-phenylethylgroup at the imide positions in reference31.
    [39] K. Tojo, J. Mizuguchi, Z. Kristallogr, Electronic structure of perylene pigments as viewed from thecrystal structure and excitonic interactions [J], NCS.,2002,217,253.
    [40] P. Hartman, P. Bennema, The attachment energy as a habit controlling factor:: I. Theoreticalconsiderations [J], J. Cryst. Growth.,1980,49,145.
    [41] C. J. Casewit, K. S. Colwell, A. K. Rappe, UFF, a full periodic table force field for molecularmechanics and molecular dynamics simulations [J], J. Am. Chem. Soc.,1992,114,10035.
    [42] E. V. Tsiper, Z. G. Soos, Charge redistribution and polarization energy of organic molecular crystals[J], Phys. Rev. B.,2001,64,195124.
    [43] M. Mura, X. Sun, F. Silly, et al. Experimental and theoretical analysis of H-bonded supramolecularassemblies of PTCDA molecules [J], Phys. Rev. B.,2010,81,195412.
    [44] C. Weiss, C. Wagner, R. Temirov, et al. Single molecule and single atom sensors for atomic resolutionimaging of chemically complex surfaces [J], J. Am. Chem. Soc.,2010,132,11864.
    [45] K. Akers, R. Aroca, A. M. Hor, et al. Molecular organization in perylenetetracarboxylic dianhydridefilms [J], J. Phys. Chem.,1987,91,2954.
    [46] G. C. Krueger, C. W. Miller, A study in the mechanics of crystal growth from a supersaturatedsolution [J], J. Chem. Phys.,1953,21,2018.
    [1] Y. S. Zhao, J. S. Wu, X. J. Huang, Vertical organic nanowire arrays: controlled synthesis and chemicalsensors [J], J. Am. Chem. Soc.,2009,131,3158.
    [2] Y. S. Zhao, P. Zhan, J. Kim, et al. Patterned growth of vertically aligned organic nanowire waveguidearrays [J], ACS Nano.,2010,4,1630.
    [3] H. Zheng, Y. Li, H. Liu, et al. Construction of heterostructure materials toward functionality [J], Chem.Soc. Rev.,2011,40,4506.
    [4] M. Law, L. E. Greene, J. C. Johnson, et al. Nanowire dye-sensitized solar cells [J], Nat. Mater.,2005,4,455.
    [5] C. K. Chan, H. Peng, G. Liu, et al. High-performance lithium battery anodes using silicon nanowires [J],Nat. Nanotechnol.,2008,3,31.
    [6] J. J. Chen, K. Wang, L. Hartman, et al. H2S detection by vertically aligned CuO nanowire array sensors[J], J. Phys. Chem. C.,2008,112,16017.
    [7] C.-Y. Lee, M.-P. Lu, K.-F. Liao, et al. Vertically well-aligned epitaxial NiSi nanowire arrays withexcellent field emission properties [J], Appl. Phys. Lett.,2008,93,113109.
    [8] E. Lai, W. Kim, P. Yang, Vertical nanowire array-based light emitting diodes [J], Nano. Res.,2008,1,123.
    [9] J. Goldberger, A. Hochbaum, R. Fan, et al. Silicon vertically integrated nanowire field effect transistors[J], Nano. Lett.,2006,6,973.
    [10] M. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers [J], Science.,2001,292,1897.
    [11] Z. L. Wang, J. Song, A common genetic variant is associated with adult and childhood obesity [J],Science.,2006,312,342.
    [12] L. Zang, Y. Che, J. S. Moore, One-dimensional self-assembly of planar π-conjugated molecules:Adaptable building blocks for organic nanodevices [J], Acc. Chem. Res.,2008,41,1596.
    [13] A. L. Briseno, S. C. B. Mannsfeld, X. Lu, et al. Perylenediimide nanowires and their use in fabricatingfield-effect transistors and complementary inverters [J], Nano Lett.,2007,7,668.
    [14] Y. S. Zhao, H. Fu, A. Peng, et al. Low-dimensional nanomaterials based on small organic molecules:preparation and optoelectronic properties [J], Adv. Mater.,2008,20,2859.
    [15] R. O. Al-Kaysi, A. M. Muǒller, C. J. Bardeen, Photochemically driven shape changes of crystallineorganic nanorods [J], J. Am. Chem. Soc.,2006,128,15938.
    [16] X. J. Zhang, X. H. Zhang, K. Zou, et al. Single-crystal nanoribbons, nanotubes and nanowires fromintramolecular charge-transfer organic molecules [J], J. Am. Chem. Soc.,2007,129,3527.
    [17] X. J. Zhang, X. H. Zhang, W. S. Shi, et al. Single-crystal organic microtubes with a rectangular crosssection [J], Angew. Chem. Int. Ed.,2007,46,1525.
    [18] H. Nakanotani, M. Yahiro, C. Adachi, et al. Ambipolar field-effect transistor based onorganic-inorganic hybrid structure [J], Appl. Phys. Lett..2005,90,262104.
    [19] B. N. Pal, P. Trottman, J. Sun, et al. Solution-deposited zinc oxide and zinc oxide/pentacene bilayertransistors: High mobility n-channel, ambipolar, and nonvolatile devices [J], Adv. Funct. Mater.,2008,18,1832.
    [20] H. S. Nalwa, Handbook of organic-inorganic hybrid materials and nanocomposites [C], AmericanScientific Publishers.,2003,1-2.
    [21] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Organic-inorganic hybrid materials assemiconducting channels in thin-film field-effect transistors [J], Science.,1999,286,945.
    [22] Y. B. Guo, Q. X. Tang, H. B. Liu, et al. Light controlled organic/inorganic P-N junction nanowires [J],J. Am. Chem. Soc.,2008,130,9198.
    [23] A. L. Briseno, T. W. Holcombe, A. I. Boukai, et al. Oligo-and polythiophene/ZnO hybrid nanowiresolar cells [J], Nano. Lett.,2010,10,334.
    [24] G. D. Yuan, W. J. Zhang, J. S. Jie, et al. p-Type ZnO nanowire arrays [J], Nano. Lett.,2008,8,2591.
    [25] M. H. Huang, Y. Wu, H. Feick, et al. Catalytic growth of zinc oxide nanowires by vapor transport [J],Adv. Mater.,2001,13,113.
    [26] H. Huang, S. Chen, X. Y. Gao, et al. Structural and electronic properties of PTCDA thin films onepitaxial graphene [J], ACS Nano.,2009,11,3431.
    [27] S. Yim, K.–l. Kim, T. S. Jones, Growth morphology of perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA) thin films: Influence of intermolecular interactions and step-edge barriers [J], J. Phys. Chem.C.,2007,111,10993.
    [28] I. Chizhov, A. Kahn, G. Scoles, Initial growth of3,4,9,10-perylenetetracarboxylic-dianhydride(PTCDA) on Au(111): a scanning tunneling microscopy study [J], J. Cryst. Growth.,2000,208,449.
    [29] M. Stohr, M. Gabriel, R. Moller, Investigation of the growth of PTCDA on Cu (110): an STM study[J], Surf. Sci.,2002,507,330.
    [30] A. Gerlach, S. Sellner, F. Schreiber, Substrate-dependent bonding distances of PTCDA: Acomparative x-ray standing-wave study on Cu (111) and Ag (111)[J], Phys. Rev. B.,2007,75,045401.
    [31] J. M. Mativetsky, S. A. Burke, S. Fostne, Templated growth of3,4,9,10-perylenetetracarboxylicdianhydride molecules on a nanostructured insulator [J], Nanotechnology.,2007,18,105303.
    [32] N. Nicoaraa, E. Romána, José. M. Gómez-Rodríguezb, Scanning tunneling and photoemissionspectroscopies at the PTCDA/Au(111) interface [J], Org. Electronics.,2006,7,287.
    [33] E. Monroy, F. Omnes, Wide-bandgap semiconductor ultraviolet photodetectors [J]. Semicond. Sci.Technol.,2003,18, R33.
    [34] N. Biyikli OA, I. Kimukin, T. Tut, et al. Solar-blind AlGaN-based schottky photodiodes with lownoise and high detectivity [J]. Appl. Phys. Lett.,2002,81,3272.
    [35] M. L. Lee JKS, W. C. Lai, S. J. Chang, et al. GaN schottky barrier photodetectors with alow-temperature GaN cap layer [J], Appl. Phys. Lett.,2003,82,2913.
    [36] J. C. Johnson, K. P. Knutsen, H. Yan, et al. Ultrafast carrier dynamics in single ZnO nanowire andnanoribbon lasers [J], Nano. Lett.,2004,4,197.
    [37] M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers [J], Science.,2001,292,1897.
    [38] P. C. Chang, Z. Y. Fan, C. J. Chien, et al. High-performance ZnO nanowire field effect transistors [J],Appl. Phys. Lett.,2006,89,133113.
    [39] G. J. Woong-Ki Hong, Jung. Inn. Sohn, Woojin. Park, et al. Tuning of the electronic characteristics ofZnO nanowire field effect transistors by proton irradiation [J], ACS Nano.,2010,4,811.
    [40] H. Kind, H. Yan, B. Messer, et al. Nanowire ultraviolet photodetectors and optical switches [J]. Adv.Mater.,2002,14,158.
    [41] M. Mǒbus, N. Karl, Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halidecrystal substrates [J], J. Cryst. Growth.,1992,116,495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700