高盐水杨酸废水的膜萃取生物降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜萃取是膜过程和液-液萃取相结合的一种新型萃取分离技术。该技术具有效率高、能耗低、过程简单、运行稳定等优点。生物法是污水处理中应用最广、最为经济的方法。它具有效率高、工艺操作管理方便、运转维护费用低等优点,目前己成为环境污染治理与控制中最为常用的技术。但对于高盐有机废水,高盐度和极端环境条件使得微生物难以生存,生物法的应用受到限制。基于膜萃取技术和生物处理法各自在水处理领域的优点——膜分离的高效性和生物降解的经济性,本文构建了萃取膜生物反应器,以水杨酸为目标污染物,开展了膜萃取分离/生物降解处理高盐水杨酸废水的膜传质特性和生物降解特性研究。主要的研究工作:
     (1)水杨酸的生物降解研究。对水杨酸降解菌进行了驯化培养,考察了不同盐度对菌降解水杨酸的影响。实验表明:盐度达到60 g/L时,水杨酸降解菌不能生存。
     (2)高盐水杨酸模拟废水的渗透萃取研究。探讨了进水流量F、运行温度T、萃取液pH值、料液进水浓度Cf,in等操作条件对膜传质特性、水杨酸去除效果和水杨酸回收特性的影响。实验表明:总传质系数Kov随进水流量的增大而近似呈指数关系上升,随运行温度、萃取液pH值、料液初始浓度的增大而升高。膜阻是影响传质的决定因素,Kov的数量级均为10-7m/s。在Cf,in=854.2±19.7 mg/L、F=3 L/d、T=323 K、萃取液侧pH=11.5±0.2、膜管长L=50 m的条件下,水杨酸去除率达到97%。膜萃取过程中,各操作条件下膜管中有不同量的水杨酸残留,水杨酸回收率在40~145%之间。
     (3)萃取膜生物反应器处理高盐水杨酸模拟废水的研究。在适宜生物生长的条件下,改变料液进水浓度Cf,in,考察了膜传质特性和生物降解特性。实验表明:随着进水浓度的不断降低,传质推动力不断减小,总传质系数Kov整体上呈现下降趋势。反应器生物相中经过27 d的培养,膜管外壁上的生物膜逐渐形成。生物相中微生物在适宜的环境条件下可以充分利用透过膜的水杨酸,生物相中水杨酸浓度基本维持在18.7+6.0 mg/L之间。
     (4)萃取膜生物反应器和膜萃取反应器传质特性的对比。与膜萃取反应器相比,在温度和进水流量相同而pH不同的操作条件下,萃取膜生物反应器中总传质系数Kov在不同进水浓度下有不同程度的提高,萃取膜生物反应器中的膜传质性能优于单独的膜萃取反应器。
Membrane extraction is a new separation technology which combines membrane process with liquid-liquid extraction. It has advantages in high efficiency, low energy consumption, simple process, stable running, and so on. Biological process is the most widely used and economical technology in the treatment of wastewater. It has advantages in high efficiency, simpleness and conveniency in operation and management, low cost in maintenance. It has been to the most widely used technology in the treatment and control of environmental pollution. But for the hyper-saline organic wastewater, it is hard for microorganisms to survive under the conditions of high salinity and extreme environment. The application of biological process is limited. Based on the respective advantages of membrane extraction and biological process in the field of wastewater treatment, high efficiency in membrane separation and economics in biological process, an extractive membrane bioreactor was constructed. Salicylic acid (SA) was chosen to be the target compound. The research on a new treatment process that a membrane separation combined with biodegradation was carried out. The characteristics of membrane mass transfer and biodegradation were investigated. The following studies were carried out:
     (1) The research on biodegradation of SA. SA-degrading bacteria were acclimated by serial batch culture. The effects of salinity on biodegradation of SA were investigated. The results showed that:If the salinity came to 60 g/L, the SA-degrading bacteria can not survive.
     (2) The research on membrane extraction of hyper-saline SA simulation wastewater. In the membrane extraction reactor, the effects of influent flow rate, system temperature, pH in the stripping solution and initial SA concentration in the influence on mass transfer process, the SA removal efficiency, and the SA recovery efficiency were investigated. The results showed that:The Kov is exponentially related to influent flow rate. And Kov increased as the influent flow rate, system temperature, pH in the stripping solution or initial SA concentration increased. Membrane resistance was determined to be the major factors affecting mass transfer process. The order of magnitude of Kov was 10-7 m/s. Around 97% SA removal was obtained under conditions of influent SA concentration of 854.2±19.7 mg/L, flow rate of 3 L/d, system temperature of 323 K, pH of 11.5±0.2 in the stripping solution and membrane length of 50 m. In the membrane extraction process, different amounts of SA residues were left in the membrane under different operating conditions. The SA recovery efficiency was basically between 40~145%.
     (3) The research on treatment of hyper-saline SA simulation wastewater in an extractive membrane bioreactor. Under appropriate conditions for microorganisms to grow, influent SA concentration was changed to investigate the characteristics of membrane transfer and biodegradation. The results showed that:With the continuous decrease of influent SA concentration, the mass transfer driving force decreased, and Kov mainly showed a downward trend. After 27 d of cultivation in the biological zone in the reactor, the biofilm gradually formed on the outside of membrane tube. SA extracted through the membrane was effectively utilized by microorganisms in the biological zone under appropriate environmental conditions. The SA concentration in the biological zone was basically maintained at 18.7±6.0 mg/L.
     (4) The research on contrast of the characteristics of membrane transfer between the extractive membrane bioreactor and the membrane extraction reactor. Compared with the membrane extraction reactor, under the same system temperature and influent flow rate, but different pH conditions, Kov in the extractive membrane bioreactor increased in different degrees as different influent SA concentration. The mass transfer process in the extractive membrane bioreactor was better than that in the membrane extraction reactor.
引文
[1]于振云.水杨酸的合成与应用进展[J].化工中间体,2003,21:27-32.
    [2]王学江,张全兴,赵建夫,等.水杨酸生产废水的治理与资源化[J].环境污染治理技术与设备,2005,6(1):62-67.
    [3]Livingston A G. A novel membrane bioreactor for detoxifying industrial wastewater:I. Biodegradation of phenol in a synthetically concocted wastewater [J]. Biotechnology and Bioengineering,1993,41:915-926.
    [4]Han S J, Ferreira F C, Livingston A G. Membrane aromatic recovery system (MARS) a new membrane process for the recovery of phenols from wastewaters [J]. Journal of Membrane Science,2001,188(2):219-233.
    [5]Ferreira F C, Peeva L, Boam A, Pilot scale application of the Membrane Aromatic Recovery System (MARS) for recovery of phenol from resin production condensates [J]. Journal of Membrane Science,2005,257(1-2):120-133.
    [6]肖敏,周集体,张爱丽,等.均质硅橡胶膜萃取含酚水溶液传质特性研究[J].大连理工大学学报,2009,49(3):20-25.
    [7]周集体,吴丽丽,张爱丽,等.膜萃取处理高浓度苯胺废水膜传质动力学[J].大连理上大学学报,2010,50(1):20-25.
    [8]Livingston A G. A novel membrane bioreactor for detoxifying industrial wastewater: Ⅱ. Biodegradation of 3-chloronitrobenzene in an industrially produced wastewater [J]. Biotechnology and Bioengineering,1993,41:927-936.
    [9]Brookes P R, Livingston A G. Biological detoxification of a 3-chloronitrobenzene manufacture wastewater in an extractive membrane bioreactor [J]. Water Research, 1994,28:1347-1354.
    [10]Brookes P R, Livingston A G. Biotreatment of a point-source industrial wastewater arising in 3,4-dichloroaniline manufacture using a membrane bioreactor [J]. Biotechnology Progress,1994,10:65-75.
    [11]Pampel L W, Livingston A G. Anaerobic dechlorination of perchloroethene in an extractive membrane bioreactor [J]. Applied Microbiology and Biotechnology. 1998,50(3):303-308.
    [12]Wang X J, Zhang Q X, Li A M. The treatment of salicylic acid manufacturing wastewater by hypercrosslinked polymeric adsorbent (NDA-100) [J]. Chinese Journal of Reactive Polymers,2002,11 (1):69-77.
    [13]Pirkanniemi K, Sillanp K, Heterogeneous water phase catalysis as an environmental application:a review [J]. Chemosphere,2002,48:1047-1060.
    [14]Chen X M, Silva D R, Martinez-Huitle C A. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters [J]. Chinese Chemical letters, 2010,21:101-104.
    [15]农少梅,李汉东,张树增,等.高盐废水处理技术研究新进展[J].江苏环境科技,2008,21(3):72-75.
    [16]康群,马文臣,许建民,等.高盐浓度对工业废水生化处理的影响研究[J].环境污染治理技术与设备,2005,6(8):42-45.
    [17]王志霞,工志岩, 武周虎.高盐度废水生物处理现状与前景展望[J].工业水处理,2002,22(1):1-4.
    [18]孙越,谢敷,陈金龙,等.树脂吸附法3-6-二氯水杨酸生产废水[J].离子交换与吸附.2007,23(6):506-511.
    [19]王宏,郑一新,钱彪,等.电解凝絮法处理高盐度有机废水的实验研究[J].环境科学研究,2001,14(2):51-53.
    [20]时文中,华杰,朱国才,等.电化学法处理高盐苯酚废水的研究[J].化工环保,2003,23(3):129-133.
    [21]杨蕴哲,杨卫身,杨凤林,等.电化学法处理高含盐活性艳蓝KN—R废水的研究[J].化工环保,2005,25(3):178-181.
    [22]孙道华,胡月琳,李清彪,等.溶剂萃取法处理含硫酸及硫酸盐的废水[J].化工环保,2003,23(1):25-26.
    [23]王玉军,骆广生,戴献元.膜萃取的应用研究[J].现代化工,2000,20(1):13-17.
    [24]Gomec C Y. Behavior of an Up-flow Anaerobic Sludge Bed (UASB) reactor at extreme salinity [J].Water Science and Technology,2005,51(11):115-120.
    [25]Boran K, Mariana K, Roumen A, et al. Adaptation of a freshwater anammox population to high salinity wastewater [J].Journal of Biotechnology,2006,126(4):546-553.
    [26]An L, Gu G W. The treatment of saline wastewater using a two stage contact oxidation method [J]. Water Science and Technology,1993,28(7):31-37.
    [27]王雪清.树脂吸附-生物再生法处理高盐水杨酸废水[D].大连:大连理工大学,2010.
    [28]王宏,周旭.一体式膜-生物活性炭法处理高盐度有机废水[J].环境污染与防治,2001,23(5):232-234.
    [29]罗川南,杨勇.高分子分离膜材料亲水改性及对膜性能的影响[J].合成技术及应用,2002,17(2):23-26.
    [30]Kumar M R, Saravanan K. Textile effluent treatment with reverse osmosis membrane using anova model [J]. European Journal of Scientific Research,2011,53(1):6-16.
    [31]Drewes J E, Reinhard M, Fox P. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water [J]. Water Research, 2003,37:3612-3621.
    [32]张英,徐章法,徐伯兴.电化学工艺在废水处理领域的应用[J].上海化工,2002,27(13):6-9.
    [33]Yang X, Grosjean C, Tai Y C. Design, fabrication, and testing of micromachined silicone rubber membrane valves [J]. Journal of Microel Ectromechanical Systems, 1999,8(4):393-397.
    [34]Onodera M, Harashima I, Toda K, et al. Silicone Rubber Membrane Bioreactors for Bacterial Cellulose Production [J]. Biotechnology and Bioprocess Engineering, 2002,7:289-294.
    [35]范敏,马文石,汪国杰.硅橡胶膜的改性与应用研究进展[J].特种橡胶制品,2006,27(1):50-54.
    [36]Cho C W, Hwang S T. Continuous membrane fermentor separator for ethanol fermentation [J]. Journal of Membrane Science,1991,57:21-42.
    [37]Schafer T, Bengtson G, Pingel H, et al. Recovery of aroma compounds from a wine-must fermentation by organophilic pervaporation [J]. Biotechnology and Bioengineering, 1999,62(4):412-421.
    [38]肖泽仪,黄卫星,邢新会,等.新型硅橡胶膜生物反应器用于有机废水处理时的膜传质动力学[J].高校化学工程学报,2001,15(1):71-77.
    [39]Watson J M, Payne P A. A study of organic compound pervaporation through silicone rubber [J]. Journal of Membrane Science,1990,49:171-205.
    [40]Cocchini U, Nicolella C, Livingston A G. Effect of ionic strength on extraction of hydrophobic organics through silicone rubber membranes [J]. Journal of Membrane Science,1999,162:57-72.
    [41]刘青鑫,李金龙,隋国哲.硅橡胶膜渗透蒸发去除水中VOC性能的研究[J].]:业水处理,2010,30(6):44-47.
    [42]黄卫星,钟月华,肖泽仪,等.硅橡胶膜生物反应器及其用于乙醇连续发酵的研究[J].四川大学学报(工程科学版),2003,35(1):1-7.
    [43]伍勇,肖泽仪,黄卫星,等.乙醇发酵与渗透汽化在硅橡胶膜生物反应器中的耦合强化[J].高校化学工程学报,2004,18(2):241-245.
    [44]钟月华,肖泽仪,黄卫星,等.硅橡胶膜生物反应器乙醇连续发酵传质动力学实验研究[J].四川大学学报(工程科学版),2003,35(3):49-53.
    [45]Nicolella C, Livingston, A G. Mathematical modeling of membrane-attached biofilms [J]. Engineering in Life Sciences,2001,1:43-46.
    [46]Ferreira F C, Han S, Boam, et al. Membrane aromatic recovery system (MARS):lab bench to industrial pilot scale [J]. Desalination,2002,148(1-3):267-273.
    [47]Ferreira F C, Peeva A G, Livingston A G. Mass transfer enhancement in the membrane aromatic recovery system (MARS):experimental results and comparison with theory [J]. Chemical Engineering Science,2005,60(4):1029-1064.
    [48]吴丽丽,周集体,张爱丽,等.膜萃取处理高浓度工业苯胺废水[J].环境污染与控制,29(4):300-306.
    [49]殷国监,周集体,张爱丽,等.硅橡胶平板复合膜萃取处理含酚废水的分离性能[J].中国环境科学,2008,28(4):365-369.
    [50]周集体,吴丽丽,张爱丽,等.膜萃取处理高浓度苯胺废水膜传质动力学[J].大连理工大学学报,2010,50(1):20-24.
    [51]Strachan L F, Livingston A G. The effect of membrane module configuration on extraction efficiency in an extractive membrane bioreactor [J]. Journal of Membrane Science, 1997,128:231-242.
    [52]Livingstona A G, Arcangelib J P, Boamb A W, et al. Extractive membrane bioreactors for detoxification of chemical industry wastes:process development [J]. Journal of Membrane Science,1998,151:29-44.
    [53]林红军,陆晓峰,段伟,等.膜生物反应器中膜过滤特征及膜污染机理的研究[J].环境科学,2006,27(12):2511-2517.
    [54]Freitas L M, Livingston A G. Extraction and biodegradation of a toxic volatile organic compound (1,2-dichloroethane) from waste-water in a membrane bioreactor [J]. Applied Microbiology and Biotechnology,1994,42:421-431.
    [55]Visvanathan C, Ben A R, Parameshwaran K. Membrane separation bioreactors for wastewater treatment [J]. Environmental Science and Technology,2000,30(1):1-48.
    [56]Strachan L F, Livingston A G. The effect of membrane module configuration on extraction efficiency in an extractive membrane bioreactor [J]. Journal of Membrane Science, 1997,128:231-242.
    [57]张凤君,马根祥,李德谦,等.氨化HEH/EHP膜基萃取钕、钐及传质研究[J].中国稀土学报,1999,20(4):8-11.
    [58]曹敬华.萃取膜生物反应器去除地下水硝酸盐研究[D].山东:中国海洋大学,环境科学与工程学院,2006.
    [59]戴宁,张晟禹,张凤君,等.萃取膜生物反应器处理苯酚废水的试验研究[J].环境科学,2008,29(8):2214-2217.
    [60]Katsivela E, Bonse D, Krtlger A, An extractive membrane biof ilm reactor for degradation of 1,3-dichloropropene in industrial waste water [J]. Applied Microbiology and Biotechnology,1999,52:853-862.
    [61]Freitas dos Santos L M, Lo Biundo G. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor [J]. Environmental Progress, 1999,18(1):34-39.
    [62]Freitas dos Santos L M, Livingston A G. Extraction and biodegradation of a toxic volatile organic compound (1,2-dichloroethane) from wastewater in a membrane bioreactor [J]. Applied Microbiology and Biotechnology,1994,42:421-431.
    [63]Pampel L W, Livingston A G. Anaerobic dechlorination of perchloroethene in an extractive membrane bioreactor [J]. Applied Microbiology and Biotechnology. 1998,50(3):303-308.
    [64]白玲,蓝伟光,严滨,等.废水处理中膜生物反应器的研究进展[J].膜科学与技术,2008,28(1):91-95.
    [65]Howell J A. Future of membranes and membrane reactors in green technologies and for water reuse [J]. Desalination,2004,162:1-11.
    [66]Zhang J S, Chua H C, Zhou J T, et al. Factors affecting the membrane performance in submerged membrane bioreactors [J], Journal of Membrane Science,2006,1016(10):1-49.
    [67]胡建东,完颜毕.污水处理中膜生物反应器工艺的探讨[J].炼油技术与工程,2004,34(4):59-62.
    [68]张素琴,朱湘民,马国华,等.恶臭假单胞菌H2-3降解水杨酸和烷烃的研究[J].环境科学学报,1991,11(4):501-505.
    [69]蔡宝立,王淑芳,张心平,等.产碱杆菌SB1菌株的分离和降解水杨酸的研究[J].南开大学学报(自然科学版),1998,31(3):80-84.
    [70]潘学芳,罗雁非,周天.3,5-二硝基水杨酸降解菌的分离鉴定及生长条件初探[J].长春师范学院学报(自然科学版),2005,24(3):97-99.
    [71]肖敏.硅橡胶膜用于含酚水溶液的渗透萃取性能与传质研究[D].大连:大连理工大学,2007.
    [72]Cocchini U, Nicolella C, Livingston A G. Effect of ionic strength on extraction of hydrophobic organics through silicone rubber membranes [J]. Journal of Membrane Science,1999,162(1-2):57-72
    [73]殷国监.硅橡胶膜膜萃取处理高浓度含酚废水[D].大连:大连理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700