LTCC专用烧结炉的结构设计及温度场实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着LTCC(Low Temperature Co-fired Ceramic,低温共烧陶瓷)产业规模的不断扩大,国内外企业和研究机构加大了对LTCC专用烧结炉的研制。长期研究表明,烧结炉的温度均匀性和烧结曲线的满足性一直是影响高性能LTCC产品质量的重要因素,因此深入研究烧结炉内传热过程的物理机理,建立一套完善的理论模型,优化烧结炉的结构设计和开展温度场实验研究是十分必要的。
     本文根据目前LTCC烧结设备发展的趋势,结合“微组装关键设备研制及集成技术研究”项目的具体要求,对采用辐射与强制对流综合传热方式、用于LTCC低温共烧工艺的LTCC专用烧结炉系统的结构设计及其温度场技术,开展基础性的研究,在充分研究论证的基础上,提出了具体的整体设计方案。论文系统阐述了LTCC专用烧结炉炉内的热工过程特点,分析了炉内气体的流动状态,进行了温度场的实验研究。重点阐述系统关键技术的设计和实现。应用已有技术,并通过温度场实验研究和关键技术攻关,深入探讨LTCC专用烧结炉炉内传热过程的物理机理,理论上分析炉内温度场和气氛流场,建立了传热数学模型,从而为合理地设计和布置炉内结构及组织炉内气体流动来改善炉内温度均匀性提供了有力的理论依据,并进一步通过实验予以验证,得出的结论可准确地指导生产实践,有利于节能降耗,提高产品产量和质量,并为炉子的结构优化奠定基础。
With the manufacturing expansion of LTCC (Low Temperature Co-fired Ceramic) industry, national and international enterprises and research institutes quickly develop LTCC sintering furnace. According to the Long-term research, the results showed that the temperature uniformity in a sintering furnace was an important factor that affects the quality of LTCC products, and therefore, it is necessary to study the physical mechanism of heat transfer in a furnace, establish a complete theoretical model, optimize structure design of the sintering furnace and study on temperature field experiment.
     According to the current development trends of the LTCC sintering equipment, based on and combined with the "Micropackage equipment manufacture and integrated technique research" project concrete requirements, this paper carry out foundational research on the structure design and the temperature field technology of LTCC dedicated sintering furnace system, which adopt the manner of radiation and forced convection heat transfer integrated approach, is used for LTCC low temperature co-fired technics. Based on the sufficient full feasibility study and argumentation, a concrete overall design project is put forward in this paper. In the present work, the characteristics of thermal process were first described, then gas flow pattern was analyzed, and finally experiments were performed. Thesis focuses on describe the pivotal technologies design and realization of the system. Through application of the mature technique, experiments of temperature field, and solving difficult situation of pivotal technique, the physical mechanism of heat transfer in the LTCC special sintering furnace has been discussed intensively, both temperature and flow fields were analyzed in theory, the mathanatics modeling of temperature field has been constructed, and, further give an identification through experiment and then temperature uniformity in the furnace can be obtained by the optimizing physical structure and gas flow, these measures can guide process correctly, be propitious to economize energy and decline consume, increase output and quality, and establish the basis for structure optimization.
引文
[1]Sutono A, Apham A, Laskar J. [A]. Proc Elect Perf Electron Packa[C].1998.83-86
    [2]Albert Sutono, Anh-Vu H Pham, William R Smith. [J]. IEEE Trans Adv Pack,1999.326-331
    [3]Sarmad Al-Taei, David Haigh, George Passiopoulos. [J]. IEEE Trans MicrowaveTheory Tech,2001.43-46
    [4]曾志毅,王浩勤,尉旭波等.低温共烧陶瓷(LTCC)技术应用进展[J].磁性材料及器件,2007.4.
    [5]王睿,王悦辉,周济,杜波等.低温共烧陶瓷技术及其应用[J].硅酸盐学报,2007.4.
    [6]郎鹏.微组装中的LTCC基板制造技术[J].电子工艺技术,2008.1.
    [7]徐忠华,马苔生,耿志挺,韩振宇,唐祥云等.低温共烧陶瓷发展进程及研究热点[J].材料导报,2000.4.
    [8]王悦辉,周济,崔学民,沈建红等.低温共烧陶瓷(LTCC)技术在材料学上的进展[J].无机材料学报,2006,21.
    [9]http://info.china.alibaba.coin/new/detail/v5000441-d5415282.htxnl
    [10]Barnwell P, Zhang W, Lebowitz J, et al. Proc. International Symposium on Microelectronics, IMAPS,Boston, MA, USA,659-664.
    [11]Penn S J, Alford N McN, Texnpleton A, et al. Proc. IEE Colloquium on Advanced in Passive Microwave Components. London, UK,1997,6:1-6.
    [12]Miyake H, Kitazawa S, Ishizaki T, et al. Proc. IEEE MMT-S International Microwave Symposium Digest, Boston, MA, USA,2000,1:195-198.
    [13]Dernovsek 0, Naeini A, Preu G, et al. J Eur Ceram Soc 2001, (21):1693.
    [14]王悦辉等.低温共烧陶瓷(LTCC)技术新进展.2006年中国电子学会第十四届电子元件学术年会论文集.
    [15]What is LTCC? LTCC process. http://www.ltcc.de/en/wbat is pro.php,2005-05.
    [16]Hongwei L, Barnes H L, Laskar J, et al. IEEE Trans Microwave Theory Techn,2000, (48):2644.
    [17]Kumar A H, Knickerbocker S, Tummala R. IEEE Trans Compond Hybrids Manuf Techn,1992, CHMTIS:678.
    [18]董兆文.电子元件与材料[M].1998,(5):24.
    [19]Kondo K, Okuyama M, et al.电子陶瓷技术,1988,24.
    [20]崔学民,周济,沈建红,缪春林等.低温共烧陶瓷(LTCC)材料的应用及研究现状[J].材料导报,2005.4.
    [21]熊钢.低温共烧陶瓷技术[J].咸宁学院学报,2007.6.
    [22]赵全明,滕建辅,周国飞,李锵等.低温共烧陶瓷技术及发展[J].河北工业大学学报,2002.10.
    [23]姬忠涛,张正富.共烧陶瓷多层基板技术及其发展应用[J].中国陶瓷工业,2006.8.
    [24][英]理查德J.布鲁克.陶瓷工艺(第Ⅰ部分)[M].清华大学新型陶瓷与精细工艺国家重点实验室译.北京:科学出版社,1999.6.
    [25][英]理查德J.布鲁克.陶瓷工艺(第Ⅱ部分)[M].清华大学新型陶瓷与精细工艺国家重点实验室译.北京:科学出版社,1999.6.
    [26]刘浩斌.低温共烧陶瓷的现状和发展趋势[J].电子元器件应用,2005.4.
    [27]AKI N, LAWRENCE W. Automating and optimizing high performance LTCC design [J]. Microwave J,2004, 47(9):176-188.
    [28]董兆文.LTCC基板制造工艺研究[J].电子元件与材料,1998(5):24-28.
    [29]杨邦朝,蒋明,胡永达等.LTCC组件技术及未来发展趋势[J].混合微电子技术,2002,13(1):1-11.
    [30]李桂云.低温共烧陶瓷系统及其应用[J].世界产品与技术BCN,2002(6):20-24.
    [31]钟慧,张怀武.低温共烧结陶瓷(LTCC)特点、应用及问题[J].磁性材料及器件,2003,34(4):34-42.
    [32]王瑞庭.LTCC技术的发展和应用[J].第十四届全国混合集成电电路学术会议论文集.
    [33]杨邦朝,付贤民,胡永达等.低温共烧陶瓷(LTCC)技术新进展[J].电子元件与材料,2008.6.
    [34]Marko H, Janez H, Sihvo D, et al. Femoelectric Hick films on LTCC substrates-prelunurary results [A].26th International Spring Seminar on Electronics technology [C]. SlovalcStar& Lesnb,2003,179-183.
    [35]Tzou W C, Yang C F, Clien Y C, et al. Improvements in the sinterurg and microwave properties of BiNbO4 microwave ceramics by V2O5 addition [J]. J Eur Ceram Soc,2000,20:991-996.
    [36]Zhong H, Zhang H W. Effects of different sintering temperature and Mncontent on magnetic properties of NiZn ferrites [J]. J Magn Magn Mater,2004,283:247-250.
    [37]Lee C H, Sutono A, Han S, et al. [A]. Proc IEEE Int Microwave Symp[C].2001.945-948.
    [38]Kyutae Lim, Stephane Pinel. [J]. IEEE Magazine,2002.88-99.
    [39]Albert Sutono, Deukhyoun Heo, Yi-Jan Emery Chen. [J]. IEEE Trans Microwave Theory and Techniques, 2001,1715-1723.
    [40]BAKER A, LANAGAN M, RANDALL C, et al. Integration concepts for the fabrication of LTCC structures [J]. Int J Appl Ceram Technol,2005,2 (6):514-520.
    [41]8500 Series Elevator Batch Ovens, http://www.sierrathern.com/products/8500,2008-11.
    [42]http://www.btu.com/convection batch.html,2008-10.
    [43]LTCC Sintering Press, http://wwwatv-tech.com/en/products-ltcc-sintering-press.htm,2008-12.
    [44]Kumar A H, Knickerhocker S, Tummala R R. Sinterable glass-ce-ramic for high-performance substrates [J]. IEEE Trans Compon Hvbrids Manuf TechnoL 1992, CHMT-15:673.
    [45]韩振宇,马营生,徐忠华,张广能等.低温共烧陶瓷基板制备技术研究进展[J].电子元件与材料,2000.12.
    [46]Scherer G W, Garino TViscous sintering on a rigid substrate. J.Am.Ceram. Soc.1985,68(4):216-220.
    [47]Lin Y C, Jean J H, Constrained densification kinetics of Alumina/Borosilicate glass+Alumina/Alumina sandwich structure. J. Am. Ceram. Soc.2002.85(1):150-154.
    [48]孙义传,章瑜,徐政等.低温烧多层陶瓷基板烧结收缩控制技术[J].现代技术陶瓷,1994(1).
    [49]Valant, M, Suvorov, D. Chemical compatibility between silver electrode and low-firing binary oxide compounds-conceptual study. J. Am. Ceram. Soc.2000,83(10):2721-2729.
    [50]Dong C, Bower H K, Hot-stage of bubble formation during biuding, burnout [J].J Am Ceram Soc,1989, 72(6):1082-1087.
    [51]Alex Beiley etc Miniature Filter For Digital Receiver [J]. IEEE MTT-S Digest Part,1997 (2):999-1002.
    [52]Kumar A H, K nickerhocker S, Turnrnala R R, Sinterable glass-ceramic for high-performance substrates [J]. IEEE Trans Compon Hybrids Manuf Technol,1992, CHMT215:678-682.
    [53]Alex Beiley, et al. IEEE MTT-S Digest Part,1997, (2):999.
    [54]韩振宇,马苔生,徐忠华,唐祥云等.低温共烧玻璃陶瓷基板烧结过程分析Ⅰ—低温区有机物的分解及变化[J].功能材料,2001,32(3).
    [55]韩振宇,马苔生,徐忠华等.低温共烧玻璃陶瓷基板烧结过程分析Ⅱ—高温区基板结构及变化[M].
    [56]Doug C, Howen H K [J]. J Am Ceram Soc,1989,72(6),1082-1087.
    [57]Paul Calvert, Michael Cima [J]. J Am Ceram Soc,1990,73(3):575-579.
    [58]Dernovsek U, Naeini A, Preu G, et al. [J]. Eur Ceram, Soc 2001, (21):1693.
    [59]Wang H, Du H L, Peng Z, et al. Improvements of sintering and dielectricproperties on Bi2O3-ZnO-Nb2O5 pyrochlore ceramics by V2O5 substitution [J]. Ceram Int,2004,30:1225-1229.
    [60]江尧忠.工业电炉[M].北京:清华大学出版社,1993.6.
    [61]F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine.传热和传质基本原理[M].葛新石,叶宏译,北京:化学工业出版社,2007.7.
    [62]徐慧忠,周明.绝热材料生产及应用[M].北京:中国建材工业出版社,2001.
    [63]王秉铨.工业炉设计手册[M].北京:机械工业出版社,2002.
    [64]戚翠芬.加热炉[M].北京:冶金工业出版社,2004.2.
    [65]曾祥模.热处理炉[M].西安:西北工业大学出版社,1992.
    [66]秦允豪.热学[M].北京:高等教育出版社,2004.
    [67]杨世铭,陶文锉.传热学[M].北京:高等教育出版社,1998.
    [68]张奕.传热学[M].南京:东南大学出版社,2004.
    [69]Ceramic Fiber Heaters, http://www.watlow.com/products/heaters/ht_ceram.cfm,2008-11.
    [70]Watlow Innovations in Heating the World. (WATLOW加热器样本).
    [71]徐灏,邱宣怀,蔡春源等.机械设计手册[M].北京:机械工业出版社,2004.
    [72]Robert L. Mott. Machine Elements in Mechanical Design. [M]. Beijing:Publishing House of Electronics Industry,2007.5.
    [73]林述温.机电装备设计[M].北京:机械工业出版社,2002.
    [74]米思米(中国)精密机械贸易有限公司.MiSUmi FA工厂自动化用零件产品目录.2008-2009.
    [75]WATLOW ST. LOUIS. Fluid Heater Installation & Maintenance Manual. W.I.6.008. (WATLOW气体加热器说明书).
    [76]Ho, C. Y., R. W. Powell, and P. E. Liley, J. Phys.Chem. Ref. Data,3, Supplement 1,1974.
    [77]史光梅,刘朝.工业炉内辐射换热模型研究进展[J].工业加热,2004,33(5):9-12.
    [78]国家标准《GBl0066.4-2004电热设备的试验方法间接电阻炉》.北京:中国标准出版社,2004.
    [79]FERRO PTCR-ETH测温环温度对照表及温度补偿曲线图.
    [80]F. P. Incropera, D. P. DeWitt,T. L. Bergman, A. S. Lavine.传热和传质基本原理习题详解[M].葛新石,叶宏译,北京:化学工业出版社,2007.7.
    [81]American Society of Heating, Refrigerating and Air Conditioning Engineer, ASHRAE Handbook of Fundamentals, ASHRAE, New York,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700