基于多模光纤声发射检测的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今伴随着科学技术的不断深入,国家的基础设施建设正处于飞速发展的阶段。因此,探求可靠的混凝土结构健康性能评价和缺陷检测的无损检测技术具有重要意义。
     本文首先简要的介绍了声发射技术研究的进展、光纤传感技术的概况和声发射光纤探测的研究现状。介绍了声发射产生的机理、声波在固体中传播的基本特性和常用的声发射光纤传感器。重点讨论了基于多模光纤模式间干涉的理论,并设计了多模光纤声发射传感器。与传统的声发射传感器相比较,具有结构简单、功耗低、耐用、检测区域广、抗电磁干扰、抗腐蚀以及价格低廉等一系列的优点。因此,声发射光纤传感器可以应用在许多特殊环境中,如强磁场、强辐射、易燃易爆和污染较为恶劣等环境中进行实时动态检测。并可以克服传统的声发射传感器因谐振点的限制而导致检测频率范围相对有限的缺点。
     由经典电磁理论可知,相干光在多模光纤中会有不同模式,则不同模式间会相互叠加形成干涉散斑。当光纤受到扰动时,不同的传输模式受到的作用效果不相同,模式间干涉便会重组,这时散斑的总强度是不变的,而不同模式间相位差发生相对变化,表现为不同模式间发生干涉导致散斑随之发生相应的强度变化,其变化的的频率与引起光纤振动的频率是一致的。用单模光纤与多模光纤对接的方式可以滤掉部分高阶模,利用多模光纤中相对低阶的模式间进行干涉,实现了固体中传输的声发射信号的检测。用Matlab7.0仿真出两个低阶的线偏振模式发生干涉的图样和不断减少散斑数量在扰动前后的相对强度变化的图形,并设计相应的实验方案,其实验结果与理论仿真结果一致。
     本文通过用结构简单和灵敏度较高的单模光纤Sagnac结构的传感器检测的声信号与多模光纤传感器检测的声信号进行对比。实验证明了多模光纤传感器对声发射信号检测的准确性,并说明了此传感器用于声发射检测的可实用性。为研究基础设施建设与特种设备在在人们生活中和工业生产中广泛使用的健康性能评价和缺陷检测的无损检测技术探寻一种新的方法。
With today's science and technology continued to deepen, the country's infrastructure construction is in a stage of rapid development. Therefore the reliable non-destructive technology of health assessment and flaw detection for the concrete structure of is of great significance.
     This article begins with a brief introduction to the study of acoustic emission technology progress, an overview of optical fiber sensing technology to detect optical and acoustic emission study of the status quo. And introduce the mechanism of acoustic emission, sound waves spread in the solid and the basic characteristics and used fiber optic acoustic emission sensors. Focus on multimode fiber based on the mode-mode interference between the theoretical and design a multimode optical fiber acoustic emission sensors. With traditional acoustic emission sensors, compared to simple structure, low power consumption, durable, wide area detection, anti-electromagnetic interference, corrosion resistance, as well as a series of low-cost advantages. Therefore, fiber-optic acoustic emission sensors can be applied in a number of special circumstances, such as the strong magnetic field, strong radiation, and pollution are more serious explosive environment, such as real-time dynamic detection. And be able to overcome the traditional acoustic emission sensor resonant points because of the restrictions caused by the relatively limited frequency range of detected shortcomings.
     From classical electromagnetic theory, we can see, coherent light in multimode optical fiber will have different modes, different modes will interfere with each other to form speckle superposition. When the optical fiber by the disturbance, the transfer mode by a different effect of different modes will interfere with the reorganization, when the total speckle intensity is unchanged, The phase difference between different modes of occurrence of relative changes in performance between different modes resulting speckle interference led to corresponding changes in the intensity, the change caused by optical frequency and the frequency of vibration is the same. With a single-mode fiber and multimode fiber link can be filtered out of the way some higher modes, to receive multi-mode fiber in the module generated some inter-speckle interference, achieved solid in the transmission of the acoustic emission signal detection. Matlab7.0 simulation with two low order modes of linear polarization interference speckle pattern and the steady decline in the number of pre-and post-disturbance changes in the relative intensity of the graphics, and design the corresponding experimental program, experimental results and theoretical simulation results.
     In this paper, by using a simple structure and high sensitivity of the structure of single-mode fiber Sagnac acoustic sensor detection the acoustic signals and multi-mode fiber-optic sensors detect the acoustic signals are compared. Experimental proof of multimode optical fiber sensors for acoustic emission signal detection accuracy, as well as a description of this sensor for acoustic emission testing can be practical. To further study the construction of infrastructure and special equipment in people's lives and industrial production in the health of the wider use of performance evaluation and defect detection of non-destructive testing techniques to explore a new approach.
引文
[1]沈公田.中国特种设备无损检测的进展及国际交流与合作.无损检测,2008,30(3):133-134页
    [2]王彬.基于声发射技术的预应力混凝土损伤检测理论及应用.江苏大学硕士学位论文.2006:1-3,8-15页
    [3]彭永恒,宋凤立.混凝土无损检测技术的发展与应用.大连民族学院学报,2003,5(3):52-54页
    [4]姚锋,廖烈奎.无损检测技术在混凝土工程中的应用.铁道技术监督,2002(1):34-35页
    [5]Barren B. W. Particle filters beamforming for acoustic source localization in a reverberant environment. NDT&E International,2003: 37-42 P
    [6]Rajtar J. M, Muthiah R. Pipe line leak detection system for oil and gas flowlines. Journal of Manufacturing Science and Engineering,1997: 119-122P
    [7]Crha J, Havlicek F, Molinek J, KozeIsky P. Acoustic emission monitoring during solidification processes. Acoustic Emission Testing. Proceedings of the 27th European Conference on Acoustic Emission Testing (EWGAE 2006),2006:299-304P
    [8]Borinski J. W, Duke J C, Home M R. Fiber optic acoustic emission sensors for harsh environment health monitoring. Proceedings of the SPIE-The International Society for Optical Engineering,2001(4335): 399-409P
    [9]Lackner G, Tscheliesnig P. Detection of corrosion damage on pressure equipment with acoustic emission. Acoustic Emission Testing, Proceedings of the 27th European Conference on Acoustic Emission Testing (EWGAE 2006),2006:127-132P
    [10]Xun Chen, Griffin J, Qiang Liu. Mechanical and thermal behaviours of grinding acoustic emission. International Journal of Manufacturing Technology and Management,2007,1(12):184-199P
    [11]纪洪广,蔡美峰.混凝土材料断裂的声发射自相似性识别特征.岩石力学与工程学报,1999,18(2):157-160页
    [12]张鸿天,柏森,方光旦.磁盘表面质量及磁头力学特性的声发射研究.应用科学学报,1989,7(4):371-373页
    [13]蒋海昆,张流,周永胜.不同温度条件下花岗岩变形破坏及声发射时序特征.地震,2000,20(3):87-94页
    [14]李光海,胡兵,刘时风,刘正义.多通道全波形声发射检测系统的研究.计算机测量与控制,2002,10(6):355-358页
    [15]杨盛良,刘军,杨德明,尹新方.复合材料损伤过程的声发射研究方法.无损检测,2000,22(7):303-306页
    [16]杨瑞峰,马铁华.声发射技术研究及应用进展.中北大学学报,2006,27(5):456-461页
    [17]Kexing Liu, Suzannc M, Ferguson and Measures R M. Damage detection in composites with embeded fiber optic interferometric sensors. Proc SPIE-Int Soc Opt Eng.1989(1107):205-210P
    [18]Yuan L B, Zhou L M, Jin W. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures. Optics & Laser Technology,2004(36):11-17P
    [19]藤山邦久[日]编著,冯夏庭译.声发射(AE)技术的应用.北京:冶金工业出版社,1996,1-16页
    [20]Geng Rongsheng, Shen Gongtian, Liu Shifeng.An overview on the development of acoustic emission signal pro-gressing and analysis technique. NDT,2002,24(1):23-28P
    [21]Grabecl Sachse W. Application of an intelligent signal processing system to AE analysis. Journal of Acoustical So-ciety of America,1989, 85(3):79-82P
    [22]沈功田.声发射源定位技术无损检测.2002,24(3):114-117页
    [23]李光海.声发射检验技术进展.南昌航空工业学院学报,2001,15(2):39-43页
    [24]易若翔,刘时风等.人工神经网络在声发射检测中的应用.无损检测,2002,24(11):488-491页
    [25]Yi Ruoxiang, Liu Shifeng. Application of artificial neural network to testing NDT,2002,24(11):488-492P
    [26]Li Guanghai, Liu Shifeng. The Up-to-date methods for acoustic emission source recognition. NDT,2002,24(12):534-538P
    [27]Grabec I, Sachse W. Application of an intelligent signal processing system to AE analysis. Journal of Acoustical Society of America, 1989,85(3):1226-1235页
    [28]Dai Guang, Xu Yanting, Wang Yali, etal. AE monitoring and data analysis for large spherical tanks. NDT&EInternational,1993,26(6): 287-290P
    [29]沈功田等.金属压力容器的声发射在线监测和安全评定.第四届压力容器学术会议,1997:477-481页
    [30]陈玉华,刘时风,耿荣生,沈功田.声发射信号的谱分析和相关分析.2002,24(9):395-399页
    [31]Geng Rongsheng. Prediction of fatigue crack initiation of aircraft using AE[C]. Proc of international Conference on Failure Analysis And Prevention, Beijing:1995,1535-1539P
    [32]Zhang Ping, Shi Keren. Application of wavelet transform to acoustic emission testing. NDT,2002,24(10):436-439P
    [33]耿荣生,沈功田,刘时风.声发射信号处理和分析技术.无损检测,2002,24(1):23-28页
    [34]Shen Gongtian, Zhang Wanling. A review of non-destructive testing techniques for pressure vessels. NDT,2004,26(1):37-39P
    [35]Dai Guang, Wang Yali, Xu Yanting, etal. AE testing of a low alloy steel pressure vessel. NDT&E Internation-al,1993,26(6):291-294P
    [36]Liu Huaixi, Zhang Heng. Application and study progress of acoustic emission technology in composite material. Fiber Composites,2002(4): 50-53P
    [37]刘怀喜,张恒.复合材料无损检测方法.无损检测,2003,25(12):631-633页
    [38]Xie Lisheng. AE and aplication of AE in wood industry. Wood Industry Mechanism And Woodwork Equipment 2004,32(2):41-45P
    [39]Gorman M R.Plate wave acoustic emission. J AS A,1991,90(1): 358-364P
    [40]孙圣和,王廷云.光纤测量传感技术,哈尔滨,哈尔滨工业大学出版社,2000,98-131页
    [41]Vengsarkar A M, Murphy K Aetal. Novel fiber optic hydrophone for ultrasonic measurements. IEEE 1988 Ultrasonics Symposium. Proceedings,1988(1):603-603P
    [42]Staudenraus J, Eisenmenger W. Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics.1993, 31(4):35-38 P
    [43]Wilkens V, Koch C. Fiber-optic multilayer hydrophone for ultrasonic measurement. Ultrasonics.1999,37(2):13-22P
    [44]P. Kwiek, W. Molkenstruck, R. Reibold. Optical mapping of ultrasonic fields in the intermediate range between weak and strong acousto-optical interaction. Ultrasonics.1997,35(7):499-507P
    [45]Maslouhi A, Proulx D et al. Use of embeded optical fiber sensors for acoustic emission detection within composite materials. International SAMPE Symposium and Exhibition.1991,1(36):259-271P
    [46]Chen Zhongyu, Farhad Ansari. Embeded fiber optic sensors for detection of acoustic emissions in structures. Acta Optica Sinica.2000, 8(20):1060-1064P
    [47]Matsuo T, Cho H, Takemoto M. Optical fiber acoustic emission system for monitoring molten salt attack. Science and Technology of Advanced Material.2006,1(7):104-110P
    [48]Finkel P, Miller Retal. Development of fiber optic acoustic emission sensors. AIP Conference Proceedings,2001(557):1844-1851P
    [49]Kageyama K, Murayama H, Ohsawa Ietal. Acoustic emission monitoring of a reinforced concrete structure by applying new fiber-optic sensors. Smart Materials and Structures,2005,3(14):52-59P
    [50]郝俊才.应用光纤声发射传感器对复合材料进行损伤检测.哈尔滨工业大学硕士学位论文,2006:1-5页
    [51]Flatau A B, Chong K P, Dynamic smart material and structural systems. Engineering Structures,2002,24(3):261-270P
    [52]Measure R M. Advances toward fiber optic based smart structures. Optic Engineering,1992,31(1):87-89P
    [53]Glossop N D. An Embedded Fiber Optic Sensor for Impact Damage Detection in Composite Materials. University of Toronto, institute for Aerospacr Studies,1989(332):2-13P
    [54]Waite S R.Use of Embedded Optical Fiber for Significant Fatigue Damage Detection in Composite Materials Compositers.1990,21(3): 225-231P
    [55]梁艺军.光纤声发射检测技术研究.哈尔滨工程大学博士论文.2006:17-38页
    [56]王彬.基于声发射介绍的预应力混凝土损伤检测理论及应用.江苏大学硕士论文.2006:8-14页
    [57]国防科技工业无损检测人员资格坚定与认证培训教材.声发射检测.机械工业出版社.2005:6-18页
    [58]耿荣生,沈功田,刘时风.声发射信号处理和分析技术.无损检测,2002,24(2):72-77页
    [59]刘茂军.钢筋混凝土梁受载过程的声发射特性实验研究.广西大学硕士学位论文.2008:9-11页
    [60][美]罗斯J L著,何存富,吴斌,王秀彦译.固体中的超声波.北京:科学出版社,2004:1-35页
    [61]梁艺军,邓虎,徐彦德.光纤Fizeau干涉仪的声发射检测研究.光子学报,2007,36(4):681-685页
    [62]梁艺军,徐彦德,刘志海,苑立波.环形光纤声发射传感器的相位调 制特性研究.光子学报,2006,9(35):1337-1340页
    [63]邓虎,穆琳琳,梁艺军等.光纤Michelson干涉仪的声发射检测实验研究.哈尔滨工程大学学报,2007,28(12):1401-1405页
    [64]廖延彪.光纤光学.清华大学出版社,2001:1-17,27-29页
    [65]黄伟明.基于模间干涉的光纤振动传感器的研究.浙江大学.硕士学位论文.2007:18-20页
    [66]W. B. Spillm, B. R. Kline. Statistiael-mode sensor for fiber optic vibration sebsinguses, opt,1989,28(15):3166-3176P
    [67]Zhijun Zhang. Farhad Ansari. fiber-optic laser speck-intensity crack sensor for embedment In concrete. Sensor and Actuators 2006: 107-111P
    [68]J. S. Leng, A Asundi, NDE of smart structures using multimode fiber optic vibration sensor, NDT&E International,2002(35):45-51P
    [69]Juan A Pomarieo, Enrique E. Sicre, Dante Patrignani, Lorenzo De Pasquale, Optical fiber strain gauge based on speckle correlation, Optics&Laser Technology,1999(31):219-222页
    [70]雷辉,周双娥.用ANSYS软件分析压电陶瓷的振动状态.湖北大学学报,2008,30(1):29-33页
    [71]冈村廸夫.OP放大电路设计.北京:科学出版社,2004:219-221页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700