几类二阶常微分方程周期边值问题正解的全局结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文主要运用分歧理论和线性二阶常微分方程周期边值问题谱理论研究了几类含参非线性二阶常微分方程周期边值问题正解的全局结构.全文共分为六章.
     第一章是绪论.阐明本文的研究背景,介绍所研究的主要问题、所得的主要结果以及所需要的一些预备知识.
     第二章运用Rabinowitz全局分歧定理[48,50]研究二阶常微分方程周期边值问题正解的全局结构以及正解分支的稳定性.这里λ∈(?)是参数.本章在非线性项f在原点处满足渐近线性增长条件下,分f在(0,+∞)有无零点及加权项a是否变号,分别获得了问题(0.0.1)正解的全局结构,并在此基础上,获得问题(0.0.1)在λ的某个区间上正解和多个正解的存在性结果.更进一步,通过给非线性项f的二阶导数附加符号条件,我们还讨论了正解连通分支的分歧方向和正解的稳定性.本章主要结果改进和推广了已有的关于二阶常微分方程周期边值问题正解存在性的诸多结果.
     第三章运用分歧理论及逼近的方法,在非线性项f在原点处满足次线性增长的条件下,分f在(0,+∞)有无零点及加权项a是否变号,继续讨论问题(0.0.1)正解的全局结构.对这种情形,直接应用Rabinowitz全局分歧定理来讨论问题(0.0.1)从平凡解线上产生的正解连通分支已不可行,我们利用逼近的思想发展了一种新的方法克服了这一困难,仍然获得了问题(0.0.1)正解的全局结构.本章的结果改进和推广了文[22](J. R. Greaf, L. J. Kong, H. Y. Wang, J. Diff. Equ.,2008)中的一些主要结果,而且本章研究问题的方法也有较大创新.
     第四章继续运用分歧理论及逼近的方法,在非线性项f在原点处满足超线性增长的条件下,分f在(0,+∞)有无零点及加权项a是否变号,讨论问题(0.0.1)正解的全局结构.与第三章比较,本章证明难度更大.本章的结果也改进和推广了文[22](J. R. Greaf, L. J. Kong, H. Y. Wang, J. Diff. Equ.,2008)中的一些主要结果.
     第五章运用区间分歧定理[41,42]和拓扑度理论,在不存在及a(·)非负时获得了问题(0.0.1)正解的全局结构,并将该结果推广到了一类更广泛的二阶常微分方程周期边值问题与前三章不同,在本章中正解的连通分支都是从一个区间上分歧出的,而且本章研究问题的方法也是全新的.
     在文献[74]中,B. P. Rynne讨论了Dirichlet边值条件下一类非线性椭圆特征值问题的无穷多个正解的存在性.受这篇文献启发,在第六章中,我们讨论了二阶常微分方程周期边值问题正解连通分支的振荡性及无穷多个正解的存在性.在问题(0.0.3)中,通过给非线性项g附加振荡性条件(例如g是周期的),获得的正解连通分支也相应地开始振荡,而且振荡的振幅有界且不趋于零.本章将文献[74]中的一些结论推广到了周期边值情形下,同时也改进和推广了文献[24]中的主要结果.
This thesis focuses on the global structure of positive solutions of some periodic boundary value problems for second order ordinary differential equations with a pa-rameter, via bifurcation techniques and the theory of spectrum of periodic boundary value problems of linear second order ordinary differential equations. It is divided into six chapters.
     In chapter one, The background material and some preliminaries are introduced. The main problems as well as the corresponding results are also presented.
     By using Rabinowitz global bifurcation theorems [48,50], chapter two is con-cerned with the global structure and the stability of positive solutions for periodic boundary value problems of second order ordinary differential equation whereλ∈R is a parameter. Different global structures of positive solutions for (0.0.1) are achieved with the condition that f satisfies asymptotically linear growth at the origin, according to whether f has zeros in (0,∞) and whether a is sign changing. Based on these results, the existence and multiplicity of positive solutions for (0.0.1) are obtained in an interval of A. Furthmore, by adding sign condition for the second derivative of f, we also discuss bifurcation direction and stability of the branch of positive solutions. The main results in this chapter improve and generalize many previous theroems on the existence of positive solutions.
     Chapter three continue to study the global structures of positive solutions for (0.0.1). In this chapter,f is required to satisfy sublinear growth at the origin, in the case that whether f has zeros in (0,∞) or not and whether a is sign changing or not. Such circumstances, Rabinowitz global bifurcation theorem can not applied directly to discuss the branch of positive solutions for (0.0.1) bifurcated from the trivial solution. To overcome this difficulty, a brand new approach by approximation is developed, and then the global structures of positive solutions for (0.0.1) can be also achieved. The results in this chapter improve and generalize some main results of [22] (J. R. Greaf, L. J. Kong, H. Y. Wang, J. Diff. Equ.,2008).
     In chapter four,∫is needed to satisfy suplinear growth condition at the origin. To achieve different global structures of positive solutions of (0.0.1) according to whether f has zeros in (0,∞) and whether a is sign changing, more difficulties is appearing compared to chapter three. The results in this chapter also improve and generalize some main results of [22](J. R. Greaf, L. J. Kong, H. Y. Wang, J. Diff. Equ.,2008).
     The fifth chapter is devoted to obtaining global structures of positive solutions for (0.0.1) under the conditions that the limits lims→0+(f(s))/s and limss→∞+(f(s))/sdon't exist and the weighted term a is nonnegative. Furthermore, the results are extended to a more generalized problem The main methods applied in the chapter include topological degree theory and the bifurcation theorems from an interval[41,42], which are brand new in the sence for periodic boundary value problems. Different from the first three chapter, the branch of positive solutions bifurcates from an interval in this chapter.
     Inspired by [74], in which B. P. Rynne studied the existence of infinitely many positive solutions for a semilinear elliptic problems, in the sixth chapter we pay our attention to the oscillation property of the branch of positive solutions and the existence of infinitely many positive solutions for the problem For the above problem, we show that with certain oscillation condition on the non-linearity g, the continuum of positive solutions of the problem (0.0.3) also begin to oscillate correspondingly,and the amplitude of these oscillations is bounded away from zero.The results in this chapter generalize some results of[74]to the periodic boundary value problems and improve the main conclusions of[24].
引文
[1]L.H.Erbe,Shouchuan Hu,Haiyan Wang.Multiple positive solutions of some boundary value problems[J].J.Math.Anal.Appl.,1994,184(3):640-648.
    [2]Z.L.Liu,F.Y.Li.Multiple positive solutions of nonlinear two-point boundary value problems[J].J.Math.Anal.Appl.,1996,203(3):610-625.
    [3]马如云. 非线性常微分方程非局部问题[M].北京:科学出版社,2004.
    [4]R.Y.Ma.Positive solutions of a nonlinear three-point boundary value prob-lem[J].Electronic J.Differential Equations.,1999,(34):1-8.
    [5]R.Y.Ma.Existence of positive solutions of a fourth-order boundary value problem[J].applied Math.Comput.,2005,168(2):1219-1231.
    [6]J.Henderson,H.Y.Wang.Positive solutions for nonlinear eigenvalue prob-lems[J].J.Math.Anal.Appl.,1997,208:252-259.
    [7]D.Q.Jiang,J.J.Wei.Monotone method for first-and second-order periodic boundary value problems and periodic solutions of functional differential equa-tions[J] .Nonlinear Analysis,2002,50:885-898.
    [8]P.J.Torres.Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J].J.Differential Equations,2003,190:643-662.
    [9]M.Zhang.A relationship between the periodic and the Dirichlet BVPs of singu-lar differential equations[J].Proc.Roy.Soc.Edinbourgh Sect.,1998,128:1099-1114.
    [10]F.Merivenci Atici,G.Sh.Guseinov.On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions[J].J.Comput. Appl.Math.,2001,132:341-356.
    [11]I.Rachunkova.Existence of two positive solutions of a singular nonlinear pe-riodic boundary value problem[J].J.Comp.Appl.Math.,2000,113:27-34.
    [12]I.Rachunkova,M.Tvrdy,I.Vrkoc.Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems[J].J.Differential Equations,2001,176:445-469.
    [13]S.Gaete,R.F.Manasevich.Existence of a pair of periodic solutions of an O.D.E.generalizing a problem in nonlinear Elasticity,via variational methods[J]. J.Math.Anal.Appl.,1988,134:257-271.
    [14]I.Kiguradze,S.Stanek.On periodic boundary value problem for the equation u"=f(t,u,u')with one-sided growth restrictions on f[J].Nonlinear Analysis, 2002,48:1065-1075.
    [15]Y.Tian,D.Q.Jiang,W.G.Ge.Multiple positive solutions of periodic bound-ary value problems for second order impulsive differential equations[J].Applied Mathematics and Computation,2008,200:123-132.
    [16]D.Q.Jiang.On the existence of positive solutions to second order periodic BVPs[J].Acta Math.Sci.,1998,18:31-35.
    [17]F.Z.Cong.Periodic solutions for second order differential equations[J].Appl. Math.Lett.,2005,18:957-961.
    [18]Z.X.Zhang,J.Y.Wang.On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations[J].J.Math.Anal.Appl.,2003,281:99-107.
    [19]R.Y.Ma.Bifurcation from infinity and multiple solutions for periodic bound-ary value problems[J].Nonlinear Analysis,2000,42:27-39.
    [20]J.R.Graef,L.J.Kong,H.Y.Wang.A periodic boundary value problem with vanishing Green's function[J].Applied Mathematics Letters,2008,21:176-180.
    [21]D.Q.Jiang,J.Chu,D.O'Regan,R.Agarwal.Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces[J]. J.Math.Anal.Appl.,2003,286:563-576.
    [22]J.R.Graef,L.J.Kong,H.Y.Wang.Existence,multiplicity, and dependence on a parameter for a periodic boundary value problem[J].J.Differential Equations, 2008.245:1185-1197.
    [23]X.Liu,W.Li.Existence and uniqueness of positive periodic solutions of func-tional differential equations[J].,Math.Anal.Appl.,2004,293:28-39.
    [24]Q.L.Yao.Positive solutions of nonlinear second-order periodic boundary value problems[J].Applied Mathematics Letters,2007,20:583-590.
    [25]K.Schmitt.Periodic Solutions of Nonlinear Second Order Differential Equa-tions[J].Maht.Zeitschr.,1967,98:200-207.
    [26]V.Lakshmikantham.Periodic boundary value problems of first and second order differential equations[J].Journal of Applied Mathernatics and Simulation, 1989,2:131-138.
    [27]W.Ding,Maoan Han.Periodic boundary value problem for the second order impulsive functional differential equations[J].Applied Mathernatics and Compu-tation,2004,155:709-726.
    [28]D.Guo,V.Lakshmikantham.Nonlinear Problems in Abstract Cones[M].Aca-demic Press,San Diego,1988.
    [29]M.A.Krasnosel'skii.Positive Solutions of Operator Equations[M].Noordhoff, Groningen,1964.
    [30]S.Leela,M.N.Oguztoreli.Periodic boundary value problems for differential equations with delay and monotone iterative methods[J].J.Math.Anal.Appl., 1987,122:301-307.
    [31]J. R. Haddock, M. N. Nkashama. Periodic boundary value problems and mono-tone iterative methods for functional differential equations[J]. Nonlinear Anal, 1994,22:267-276.
    [32]E. Liz, J. J. Nieto. Periodic boundary value problems for a class of functional differential equations[J]. J. Math. Anal. Appl,1996,200:680-686.
    [33]L. Fernandes, F. Zanolin. Periodic solutions of a second order differential equa-tion with one-sided growth restrictions on the restoring term[J]. Sonderdruek aus Arch. Math.,1988,51:151-163.
    [34]F. Merivenci Atici, G.Sh. Guseinov. Positive periodic solutions for nonlinear dicoefficients[J]. J.Math.Anal.Appl.,1999,232:166-182.
    [35]V. Lakshmikantham. Periodic boundary value problems for second order im-pulsive differential systems [J]. Nonlinear analysis,1989,13:75-85.
    [36]V. Lakshmikantham, S. Lssla. Remarks on first and second order periodic boundary value problems[J]. Nonlinear analysis,1984,8:281-287.
    [37]P. Omari, M. Trombetta. Remarks on the lower and upper solutions method for second-and third-order periodic boundary value problems[J]. Applied Math-ematics and Computation archive,1992,50:1-21.
    [38]J. Y. Wang, D. Q. Jiang. A singular nonlinear second-order periodic boundary value problem[J]. Tohoku Math. J.,1998,50:203-210.
    [39]A. Cabada, J. J. Nieto. A generalization of the monotone iterative technique for nonlinear second order periodic boundary value problems[J]. J.Math.Anal.Appl., 1990,151:181-189.
    [40]A. Constantin. A general-weighted Sturm-Liouville problem[J]. Estratto dagli Annali della Scuola Normale Superiore di Pisa Scienze Fisiche e Matematiche e Matematiche-Sene IV,1997, XXIV:767-782.
    [41]P. H. Rabinowitz, H. Paul. Some aspects of nonlinear eigenvalue problems[J]. Rocky Mountain Consortium Symposium on Nonlinear Eigenvalue Problems (Santa Fe, N.M.,1971), Rocky Mountain J. Math.,1973,3:161-202.
    [42]K. Schmitt. Positive solutions of semilinear elliptic boundary value problems. Topological methods in differential equations and inclusions [J]. A. Garnas and M. Frigon, eds., Kluwer, Dordrecht,1995,447-500. A. Garnas and M. Frigon, eds., Kluwer, Dordrecht,1995,447-500.
    [43]S. N. Chow, J. K. Hale. Methods of Bifurcation Theory[M]. Springer-Verlag, New York,1984.
    [44]E. Zeidler. Nonlinear Functional Analysis and its Applications[M],Vol Ⅳ. Springer,1988.
    [45]E. Zeidler. Nonlinear Functional Analysis and its Applications[M], Vol Ⅰ, Springer,1986.
    [46]K. Deimling. Nonlinear functional analysis[M]. Springer,1985.
    [47]J. K. Hale. Bifurcation Theory, An Introduction with Applications to PDEs[M]. Springer-Verlag, New York,2004.
    [48]P. H. Rabinowitz. On bifurcation from infinity [J]. J. Diff. Eqs.,1973,14:462-475.
    [49]M. G. Crandall, P. H. Rabinowitz. Nonlinear Sturm-Liouville eigenvalue prob-lems and topological degree[J]. J. Math. Mech.,1970,19:1083-1102.
    [50]P. H. Rabinowitz. Some global results for nonlinear eigenvalue problems[J]. J. Func. Anal,1971,7:487-513.
    [51]E. M. Landesman, A. C. Lazer. Nonlinear perturbations of linear elliptie bound-ary value problems at resonanee[J]. J.Math.Meeh.,1969/1970,19:609-623.
    [52]丁同仁.在共振点的非线性振动[J].中国科学似(A),1982,1-13.
    [53]R. Y. Ma, Bevan Thompson. Nodal solutions for nonlinear eigenvalue prob-lems[J]. Nonlinear Anal,2004,59:707-718.
    [54]R. Y. Ma. Global behavior of the components of nodal solutions of asymptot-ically linear eigenvalue problems[J]. Appl. Math. Lett,2008,21:754-760.
    [55]R. Y. Ma. Nodal solutions of second-order boundary value problems with super-linear or sublinear nonlinearities[J]. Nonlinear Analysis TMA,2007,66(4):950-961.
    [56]R. Y. Ma. Nodal solutions for singular nonlinear eigenvalue problems [J]. Non-linear Analysis TMA,2007,66:1417-1427.
    [57]R. Y. Ma, Bevan Thompson. Nodal solutions for singular nonlinear eigenvalue problems[J]. Applied Mathematics Letters,2005,18(5):587-595.
    [58]R. Y. Ma, Bevan Thompson. Multiplicity results for second-order two-point boundary value problems with superlinear or sublinear nonlinearities prob-lems[J]. J.Math.Anal.Appl,2005,303(2):726-735.
    [59]H. Amann. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM. Rev.,1976,18:620-709.
    [60]A. Ambrosetti, P. Hess. Positive solutions of asymptotically linear elliptic eigen-value problems [J]. J. Math. Anal. Appl,1980,73(2):411-422.
    [61]K. Q. Lan, J. R. L. Webb. Positive solutions of semilinear differential equations with singularities [J]. J. Differential Equations,1998,148:407-421.
    [62]B. Ruf. Remarks and generalizations related to a recent multiplicity result of A. Lazer and P. McKenna[J]. Nonlinear Anal. TMA,1985,9:1325-1330.
    [63]B. P. Rynne. Global bifurcation for 2mth-order boundary value problems and infinity many solutions of superlinear problems [J]. J. Differential Equations, 2003,188:461-472.
    [64]R. Y. Ma, Xiaoling Han. Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function[J]. Nonlinear Anal. TMA, Available on-line 16 January 2009.
    [65]D. D. Hai. Positive solutions to a class of elliptic boundary value problems[J]. J. Math. Anal. Appl.,1998,227:195-199.
    [66]K. J. Brown, S. S. Lin. On the existence of positive eigenfunction for an eigen-value problem with indefinite weight function [J]. J. Math. Anal. Appl.,1980, 75:112-120.
    [67]B. Ruf, P. N. Srikanth. Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues [J]. Nonlinear Anal. TMA,1986, 10(2):157-163.
    [68]S. Alama, G. Tarantello. Elliptic problems with nonlinearities indefinite in sign[J]. J. Fund. Anal,1996,141:159-215.
    [69]H. Amann, J. Lopez-Gomez. A priori bounds and multiple solutions for su-perlinear indefinite elliptic problems[J]. J. Differential Equations,1998,146: 336-374.
    [70]M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight [J]. Comm. Pure Appl. Anal.,2003, 2:411-423.
    [71]R. Y. Ma. A note on bifurcation from an interval [J]. Nonlinear Analysis,2005, 62(4):743-749.
    [72]B. P. Rynne. Bifurcation from zero or infinity in Sturm-Liouville problems which are not linearizable[J]. J. Math. Anal. Appl,1998,228(1):141-156.
    [73]H. Berestycki. On some nonlinear Sturm-Liouville problems[J]. J. Differential Equations,1977,26(3):375-390.
    [74]B.P.Rynne.Oscillation global continnua of positive solutions of semilinear elliptic problems[J].Proc.American Math.Soci.,1999,128:229-236.
    [75]M.Holzmann,H.Kielhofer.Uniqueness of global positive solution branches of nonlinear elliptic problems[J].Math.Ann.,1994,300:221-224.
    [76]H.Kielhofer,S.Maier.Infinitely many positive solutions of semilinear ellip-tic problems via sub-and supersolutions[J].Comm.Part.Diff.Equns,1993, 18:1219-1229.
    [77]S.Maier-Paape,K.Schmitt.Asymptotic behaviour of solution continua for semilinear elliptic problems[J].Can.Appl.Math.Quart.,1996,4:211-228.
    [78]R.Schaaf,K.Schmitt.A class of nonlinear Sturm-Liouville problems with infinitely many solutions[J].Trans.Am.Math.Soc.,1988,306:853-859.
    [79]R.Schaaf,K.Schmitt.Asymptotic behaviour of positive solution branches of elliptic problems with linear part at resonance[J].ZAMP,1992,43:645-676.
    [80]陈文(山原),范先令.隐函数定理[M].兰州:兰州大学出版社,1986.
    [81]钟承奎,范先令,陈文(山原).非线性泛函分析引论[M].兰州:兰州大学出版社,1998.
    [82]徐登州,马如云. 线性微分方程的非线性扰动(第2版)[M].北京:科学出版社,1994.
    [83]郭大钧. 非线性泛函分析[M].济南:山东科学技术出版社,1985.
    [84]郭大钧,孙经先,刘兆理. 非线性微分方程泛函方法[M].济南:山东科学技术出版社,2005.
    [85]尤秉礼. 常微分方程补充教材[M].北京:高等教育出版社,1981.
    [86]G.T.Whyburn.Topological analysis[M].P rinceton University Press,Princeton, 1958.
    [87]张恭庆.拓扑学引论[M].上海:上海科技出版社,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700