富氢水对大鼠肠缺血再灌注损伤以及四氯化碳诱导的肝损伤的保护作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富氢水对大鼠肠缺血再灌注损伤以及四氯化碳诱导的肝损伤的保护作用及其机制
     背景:肠缺血再灌注(intestinal ischemia-reperfusion, IIR)损伤和药物/化学性肝损伤(drug/chemical induced liver injury)是烧伤科以及危重病领域常见的两个临床问题。严重烧伤、急性失血、休克、脓毒症、肠梗阻、肠系膜血栓等因素常常引起肠缺血再灌注损伤,ⅡR可导致肠动力不足,通透性增加,粘膜屏障功能受损,ⅡR不仅引起肠道的局部损伤,尚可引发全身炎症反应和远隔器官的损伤,是引起多器官功能障碍综合征(MODS)的重要原因。药物/化学性肝损伤也是临床常见并且棘手的问题之一,随着药物的不断开发利用,随之而来的副作用也不断增加。另外,肝脏作为体内最大的代谢和解毒器官,常常受到多种不同外源性以及内源性因素的损伤,保肝护肝成为细胞保护策略的首要任务。四氯化碳(carbon tetrachloride, CCl4)是一种亲肝的细胞毒性物质,CCl4诱导的肝损伤模型被广泛用作药物/化学性肝损伤的首选实验动物模型,此外,CCl4还是工业生产中常用的化合物,CCl4中毒的处理也是危重病与急救医学的重要内容之一
     在肠缺血再灌注损伤以及的四氯化碳诱导的化学性肝损伤的致病过程中,氧化应激起到了非常重要的作用。活性氧自由基的大量产生和激活作用是这两种模型共同的发病机制之一。活性氧自由基是活泼的氧自由基与具有氧自由基反应特性的其他含氧物质的总称,包括超氧阴离子自由基(·O2-)、过氧化氢(H2O2)、羟自由基(·OH)以及单线态氧(102)等。过量产生的氧自由基会导致DNA、脂质和蛋白的氧化损伤,其中·OH的毒性最强,并且到目前为止还没有发现哺乳动物体内内源性针对·OH的清除途径。近来,Ohsawa等发现了氢气分子可选择性清除细胞体系中的·OH,动物呼吸气体中一定浓度的氢气可以有效缓解脑缺血再灌注损伤。因此,本研究开发了更为安全和方便使用的氢饱和的生理盐水,这里称为富氢水,以肠缺血再灌注损伤以及的四氯化碳诱导的肝损伤为研究对象,观察富氢水是否具有保护作用并探讨其机制。
     方法:(一)将健康雄性SD大鼠随机分为假手术组(sham)、模型组(I/R)、富氢水处理组(I/R+H2)以及富氮水处理组(I/R+N2)。用无创小血管夹夹闭肠系膜上动脉(superior mesenteric artery, SMA) 45 min,松开血管夹再灌注120 min,建立肠缺血再灌注损伤模型。再灌注开始10 min前,于静脉分别注射5 ml/kg生理盐水、氢饱和生理盐水以及氮饱和生理盐水。再灌注结束后,取血和小肠组织。检测如下指标:
     1)HE染色和病理学检查;
     2)血清二胺氧化酶(diamine oxidase, DAO),组织丙二醛(malondialdehyde, MDA)、蛋白质羰基(protein carbonyl, PC)和髓过氧化物酶(myeloperoxidase, MPO);
     3)血清肿瘤坏死因子-a(tumor necrosis factor-α, TNF-α)、白介素-1β(interleukin-1β,IL-1β)和白介素-6(interleukin-6, IL-6)
     (二)将健康雄性SD大鼠随机分为溶剂对照组(control)、模型对照组(CCl4+N2)、富氢水处理组(CCl4+H2)。大鼠腹腔单次注射CCl4/橄榄油混合液(v:v=l:1)2 ml/kg bw制作急性肝损伤模型(生存分析实验大鼠腹腔注射CCl4/橄榄油混合液7.5 ml/kg bw)。在CCl4注射前10 min以及注射后每3小时腹腔分别给予5 ml/kg生理盐水、氮饱和生理盐水以及氢饱和生理盐水。CCl4注射12hr后,取血和肝组织检测如下指标(MAPK信号分子检测在CCl4注射3hr后取材):
     1)HE染色和病理学检查;
     2)血清AST、ALT、LDH活性和DBIL、TBIL水平;
     3)TUNEL组织化学检查和组织Caspase-3活性;
     4)组织丙二醛(malondialdehyde, MDA)和谷胱甘肽(Glutathione, GSH);
     5)血清肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α);
     6)组织MAP激酶信号分子:JNK、ERK和p38 MAPK磷酸化水平。
     结果:(一)肠缺血再灌注后,组织学检查可见明显粘膜损伤,Chiu氏评分显著增加。血清DAO活性,小肠组织MDA、PC、MPO含量,血清TNF-α、IL-1β、IL-6水平显著增高。富氢水处理可以显著缓解小肠病理学损伤,并显著抑制以上指标的升高,而富氮水处理组与模型组未见明显差别。
     (二)富氢水处理可以显著延长大鼠CCl4中毒后的生存时间,减轻CCl4引起的大鼠肝脏病理学损伤,显著减少气球样变性细胞数量;显著降低CCl4引起的血清AST、ALT、LDH活性和DBIL、TBIL水平升高;显著减少CCl4引起的肝细胞凋亡,降低肝组织Caspase-3活性;显著抑制CCl4引起的肝组织MDA含量、血清TNF-a水平增高以及肝组织GSH含量的下降;显著降低肝组织JNK、ERK和p38MAPK磷酸化水平。
     结论:1)富氢水可以有效减轻肠缺血再灌注损伤,其保护作用可能与富氢水减轻再灌注损伤引起的氧化应激,缓解中性粒细胞浸润和降低炎性因子升高等机制有关。
     2)富氢水可以有效减轻CCl4诱导的肝损伤,其保护作用可能与富氢水抑制CCl4引起的肝细胞凋亡、减轻CCl4引起的氧化应激、降低TNF-α升高以及抑制MAP激酶信号通路激活等机制有关。
     3)本研究开发并应用了富氢盐水用于静脉注射和腹腔注射的新途径,为氢气的应用范围、作用机制、给药方式、临床应用前景提供了新的参考依据,并为烧伤常见临床危重病救治提供了新的可能策略和方向。
Protective Effects and Mechanisms of Hydrogen-rich Saline on Intestinal Ischemia-reperfusion Injury and Carbon Tetrachloride Induced Hepatic Injury in Rats
     Background:Intestinal ischemia/reperfusion (II/R) injury and drug/chemical induced liver injury are two common clinical problems faced in burn department and critical care medicine. II/R injury often occurs in severe burns, acute hemorrhagic, shock, sepsis, intestinal obstruction, mesenteric arterial occlusion by thrombi or embolisms, and so on. II/R is accompanied by decreased contractile activity, increased microvascular permeability and dysfunction of mucosal barrier, which could eventually cause systemic inflammatory response syndrome and remote organ damage, and even to multiple organ dysfunction syndrome (MODS). Drug or chemical induced liver injury is also a major health problem faced in clinical practice and there is still lack of effective therapeutic strategies or specific medicines for such liver diseases. The prevalence of drug or chemicals induced hepatotoxicity went up over the past decades following the drug development. In addition, liver is the main metabolic and detoxifying organ. It is prone to be injured as it is often exposed to environmental toxicants, drugs, and other xenobiotics or endogenous agents, so the protection of liver is the first task for us to conduct cyto-preservation measures. CCl4 is a potent toxicant for producing model of drug or chemical induced hepatic injury. CCl4 is also a common compound used in industry, and the treatment of CCl4 toxicity is an important subject in critical care and emergency medicine.
     Oxidative stress plays a very important role in the pathological process of intestinal ischemia/reperfusion injury and CCl4 induced hepatic injury. The excessive production and activation of radical oxygen species is the mechanism in common in these two models of injury. Reactive oxygen species (ROS) are reactive molecules that contain the oxygen atom. They are highly reactive due to the presence of unpaired valence shell electrons. Major ROS includes hydrogen peroxide, superoxide, and hydroxyl radical. Excessive ROS will damage DNA, lipids and proteins in cells. As we know, the hydroxyl radical is the most reactive product of ROS generated in cells. It is biologically important to eliminate hydroxyl radicals, because superoxide anion and hydrogen peroxide are detoxified by antioxidant defense enzymes, superoxide dismutase, and peroxidase or glutathione-peroxidase, respectively; however, no endogenous enzymatic pathway is known to neutralize hydroxyl radicals. Recently, Ohsawa et al. found that molecular hydrogen could selectively reduce·OH in vitro and inhalation of hydrogen could exert therapeutic antioxidant activity in a rat middle cerebral artery occlusion model. Therefore, in this study, we developed hydrogen saturated physiological saline (hydrogen-rich saline), which is easy and safe to apply. We investigated whether administration of hydrogen-rich saline exerted protective effect in the models of intestinal ischemia/reperfusion injury and CCl4 induced hepatic injury.
     Methods:1. The SD rats were randomly divided into four groups:(1) sham-operated plus vehicle physiological saline treatment; (2) intestinal ischemia/reperfusion plus vehicle physiological saline treatment; (3) intestinal ischemia/reperfusion plus hydrogen-rich saline treatment; (4) intestinal ischemia/reperfusion plus nitrogen-rich saline treatment. A rat small intestinal I/R model was adapted by clamping the superior mesenteric artery maintaining for 45 minutes and removing the clamp for 120 minutes reperfusion. Physiological saline, hydrogen-rich saline or nitrogen-rich saline (5 ml/kg) was given via jugular venous cannula infusion at 10 minutes before reperfusion initiation, respectively. 120 minutes after reperfusion initiation, blood was drawn and intestinal tissue samples were collected. The following markers are measured:
     1) HE staining and histopathological observation;
     2)Serum diamine oxidase (DAO), tissue malondialdehyde (MDA) and myeloperoxidase (MPO)level;
     3) Serum tumor necrosis factor-a (TNF-a), interleukin-1β(IL-1β), and interleukin-6 (IL-6).
     2. The SD rats were randomly divided into three groups:Control, CCl4+ nitrogen-rich saline and CC14+ hydrogen-rich saline. CC14 mixed with olive oil (1:1 v/v, 2 ml/kg) was injected intraperitoneally for hepatic injury model. (For survival analysis experiment, Rats were injected with a lethal dose of CCl4 mixed with olive oil (1:1 v/v,7.5 ml/kg) intraperitoneally.) Hydrogen-rich saline (5 ml/kg) or nitrogen-rich saline of equivalent volume was given intraperitoneally 10 minutes prior to the injection of CCl4 and every 3 hours after the administration of CCl4. The blood and liver tissue samples were collected 12 hours after CCl4 administration (For MAP kinase tested liver tissues were collected 3 hours after CCl4 administration). The following markers are measured:
     1) HE staining and histopathological observation;
     2) Serum AST, ALT, LDH activities and DBIL, TBIL levels;
     3) TUNEL histochemical assay and tissue caspase-3 activity;
     4) Tissue malondialdehyde (MDA) and glutathione (GSH) level;
     5) Serum tumor necrosis factor-α(TNF-α);
     6) Tissue MAP kinase signal molecules:JNK, ERK and p38 MAPK phosphorylation.
     Result:1. The intestine damage was detected microscopically and was assessed by Chiu score system after I/R injury. In addition, serum DAO activity, TNF-α, IL-1βand IL-6 levels, tissue MDA, protein carbonyl and MPO activity were all increased significantly by I/R injury. Hydrogen-rich saline reduced these markers and relieved morphological intestinal injury while no significant reduction was observed in the nitrogen-rich saline treated animals.
     2. Hydrogen-rich saline administration significantly attenuated the CCl4-induced hepatic injury, with the alleviation of pathological hepatic lesions and the reduction of elevated serum hepatic enzyme activities and bilirubin levels, and prolonged the survival time of CCl4-intoxicated rats. In addition, hydrogen-rich saline ameliorated the hepatocytes apoptosis, as well as lowered the increase of hepatic caspase-3 activity in CCl4-treated rats. Furthermore, the increases of malondialdehyde concentrations as well as the reduction of glutathione levels in liver induced by CCl4 were diminished by hydrogen-rich saline treatment. Moreover, the elevated serum TNF-a levels and the activation of JNK, ERK and p38 MAPK induced by CCl4 was downregulated by hydrogen-rich saline treatment.
     Conclusion:1) Hydrogen-rich saline protected the small intestine against I/R injury possibly by relief of oxidative stress, attenuating PMN infiltration and reduction of inflammatory mediators elevation.
     2) Hydrogen-rich saline has a protective effect on CCl4 induced hepatotoxicity in rats and the hepatoprotective effects of hydrogen-rich saline may be mediated through anti-oxidative, anti-inflammatory and anti-apoptotic pathways, as well as the inhibition of MAP kinase activation.
     3) This study developed and applied hydrogen-rich saline for intravenous and intraperitoneal delivery. It supplies evidence for effects, mechanisms, delivery approach, and potential for clinical application of hydrogen. And it supplies potential measurement for treating critical illness patients in burn department.
引文
1. Lafay V, Barthelemy P, Comet B, Frances Y, Jammes Y:ECG changes during the experimental human dive HYDRA 10 (71 atm/7,200 kPa). Undersea Hyperb Med 1995, 22(1):51-60.
    2. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S:Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007,13(6):688-694.
    3. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S:Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 2007,361(3):670-674.
    4. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S et al:Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 2008, 373(1):30-35.
    5. Knight JA:Free radicals:their history and current status in aging and disease. Ann Clin Lab Sci 1998,28(6):331-346.
    6. Pacher P, Beckman JS, Liaudet L:Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007,87(1):315-424.
    7. Imlay JA:Pathways of oxidative damage. Annu Rev Microbiol 2003,57:395-418.
    8. Sies H:Strategies of antioxidant defense. Eur JBiochem 1993,215(2):213-219.
    9. Wood KC, Gladwin MT:The hydrogen highway to reperfusion therapy. Nat Med 2007, 13(6):673-674.
    10. Maier RJ:Availability and use of molecular hydrogen as an energy substrate for Helicobacter species. Microbes Infect 2003,5(12):1159-1163.
    11. Yasuhara H:Acute mesenteric ischemia:the challenge of gastroenterology. Surg Today 2005, 35(3):185-195.
    12. Pierro A, Eaton S:Intestinal ischemia reperfusion injury and multisystem organ failure. Semin Pediatr Surg 2004,13(1):11-17.
    13. Harman D:Aging:a theory based on free radical and radiation chemistry. JGerontol 1956, 11(3):298-300.
    14. Harman D:The biologic clock:the mitochondria? J Am Geriatr Soc 1972,20(4):145-147.
    15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J:Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007,39(1):44-84.
    16. Schoenberg MH, Beger HG:Oxygen radicals in intestinal ischemia and reperfusion. Chem Biol Interact 1990,76(2):141-161.
    17. Simpson R, Alon R, Kobzik L, Valeri CR, Shepro D, Hechtman HB:Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfusion. Ann Surg 1993, 218(4):444-453; discussion 453-444.
    18. D'Autreaux B, Toledano MB:ROS as signalling molecules:mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007,8(10):813-824.
    19. Otamiri T:Oxygen radicals, lipid peroxidation, and neutrophil infiltration after small-intestinal ischemia and reperfusion. Surgery 1989,105(5):593-597.
    20. Fontanari P, Badier M, Guillot C, Tomei C, Burnet H, Gardette B, Jammes Y:Changes in maximal performance of inspiratory and skeletal muscles during and after the 7.1-MPa Hydra 10 record human dive. Eur JAppl Physiol 2000,81(4):325-328.
    21. Tomatsuri N, Yoshida N, Takagi T, Katada K, Isozaki Y, Imamoto E, Uchiyama K, Kokura S, Ichikawa H, Naito Y et al: Edaravone, a newly developed radical scavenger, protects against ischemia-reperfusion injury of the small intestine in rats. Int J Mol Med 2004, 13(1):105-109.
    22. Megison SM, Horton JW, Chao H, Walker PB:A new model for intestinal ischemia in the rat. JSurg Res 1990,49(2):168-173.
    23. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN:Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 1970, 101(4):478-483.
    24. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC:Measurement of protein using bicinchoninic acid. Anal Biochem 1985,150(1):76-85.
    25. Takagi K, Nakao M, Ogura Y, Nabeshima T, Kunii A:Sensitive colorimetric assay of serum diamine oxidase. Clin Chim Acta 1994,226(1):67-75.
    26. Ohkawa H, Ohishi N, Yagi K:Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979,95(2):351-358.
    27. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER:Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990,186:464-478.
    28. Hillegass LM, Griswold DE, Brickson B, Albrightson-Winslow C:Assessment of myeloperoxidase activity in whole rat kidney. JPharmacol Methods 1990,24(4):285-295.
    29. Luk GD, Bayless TM, Baylin SB:Plasma postheparin diamine oxidase. Sensitive provocative test for quantitating length of acute intestinal mucosal injury in the rat. J Clin Invest 1983,71(5):1308-1315.
    30. Poussios D, Andreadou I, Papalois A, Rekka E, Gavalakis N, Aroni K, Kourounakis PN, Fotiadis C, Sechas MN:Protective effect of a novel antioxidant non-steroidal anti-inflammatory agent (compound IA) on intestinal viability after acute mesenteric ischemia and reperfusion. Eur J Pharmacol 2003,465(3):275-280.
    31. Ozacmak VH, Sayan H, Arslan SO, Altaner S, Aktas RG:Protective effect of melatonin on contractile activity and oxidative injury induced by ischemia and reperfusion of rat ileum. Life Sci 2005,76(14):1575-1588.
    32. Abu-Zidan FM, Winterbourn CC, Bonham MJ, Simovic MO, Buss H, Windsor JA:Small bowel ischaemia-reperfusion increases plasma concentrations of oxidised proteins in rats. EurJSurg 1999,165(4):383-389.
    33. Olanders K, Sun Z, Borjesson A, Dib M, Andersson E, Lasson A, Ohlsson T, Andersson R:The effect of intestinal ischemia and reperfusion injury on ICAM-1 expression, endothelial barrier function, neutrophil tissue influx, and protease inhibitor levels in rats. Shock 2002, 18(1):86-92.
    34. Liu SL, Degli Esposti S, Yao T, Diehl AM, Zern MA:Vitamin E therapy of acute CC14-induced hepatic injury in mice is associated with inhibition of nuclear factor kappa B binding. Hepatology 1995,22(5):1474-1481.
    35. Nezu Y, Tagawa M, Sakaue Y, Hara Y, Tsuchida S, Ogawa R:Kinetics of endotoxin concentration and tumor necrosis factor-alpha, interleukin-lbeta, and interleukin-6 activities in the systemic and portal circulation during small intestinal ischemia and reperfusion in dogs. Am J Vet Res 2002,63(12):1680-1686.
    36. Nezu Y, Nezu Y, Shigihara K, Harada Y, Yogo T, Hara Y, Tagawa M:Effects of small intestinal ischemia and reperfusion on expression of tumor necrosis factor-alpha and
    interleukin-6 messenger RNAs in the jejunum, liver, and lungs of dogs. Am J Vet Res 2008, 69(4):512-518.
    37. Tracey KJ, Cerami A:Tumor necrosis factor and regulation of metabolism in infection:role of systemic versus tissue levels. Proc Soc Exp Biol Med 1992,200(2):233-239.
    38. Ogle CK, Mao JX, Haisselgren PO, Ogle JD, Alexander JW:Production of cytokines and prostaglandin E2 by subpopulations of guinea pig enterocytes:effect of endotoxin and thermal injury. J Trauma 1996,41(2):298-305.
    39. Tracey KJ, Cerami A:Tumor necrosis factor:an updated review of its biology. Crit Care Med 1993,21(10 Suppl):S415-422.
    40. Sun Z, Wang X, Lasson A, Borjesson A, Leveau P, Haraldsen P, Andersson R:Roles of platelet-activating factor, interleukin-lbeta and interleukin-6 in intestinal barrier dysfunction induced by mesenteric arterial ischemia and reperfusion. J Surg Res 1999, 87(1):90-100.
    41. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A et al: Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. PLoS One 2009,4(9):e7247.
    42. Halegoua-De Marzio D, Navarro VJ:Drug-induced hepatotoxicity in humans. Curr Opin Drug DiscovDevel 2008, 11(1):53-59.
    43. Russmann S, Kullak-Ublick GA, Grattagliano I:Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 2009,16(23):3041-3053.
    44. Lee WM:Drug-induced hepatotoxicity. NEngl JMed 2003,349(5):474-485.
    45. Slater TF:Free-radical mechanisms in tissue injury. Biochem J 1984,222(1):1-15.
    46. Recknagel RO, Glende EA, Jr., Dolak JA, Waller RL:Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther 1989,43(1):139-154.
    47. Ritter C, Reinke A, Andrades M, Martins MR, Rocha J, Menna-Barreto S, Quevedo J, Moreira JC, Dal-Pizzol F:Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Crit Care Med 2004,32(10):2079-2083.
    48. Aleynik SI, Leo MA, Ma X, Aleynik MK, Lieber CS:Polyenylphosphatidylcholine prevents carbon tetrachloride-induced lipid peroxidation while it attenuates liver fibrosis. J Hepatol 1997,27(3):554-561.
    49. Srinivasan S, Balwani JH:Effect of zinc sulphate on carbon tetrachloride hepatotoxicity. Acta Pharmacol Toxicol (Copenh) 1969,27(6):424-428.
    50. Hafeman DG, Hoekstra WG:Protection against carbon tetrachloride-induced lipid peroxidation in the rat by dietary vitamin E, selenium, and methionine as measured by ethane evolution. JNutr 1977,107(4):656-665.
    51. Miller JA, Jr., Kessler M:Tissue PO2 levels in the liver of warm and cold rats artificially respired with different mixtures of O2 and CO2. Adv Exp Med Biol 1973,37A:361-370.
    52. de Groot H, Noll T:The crucial role of low steady state oxygen partial pressures in haloalkane free-radical-mediated lipid peroxidation. Possible implications in haloalkane liver injury. Biochem Pharmacol 1986,35(1):15-19.
    53. Halliwell B, Gutteridge JM:Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 1992,307(1):108-112.
    54. Icho T, Kojima S, Shinohara N, Kajiwara Y, Kitabatake K, Kubota K:Protective effects of tetrahydroneopterin against free radical-induced injury. Biochem Pharmacol 1993, 45(10):1953-1958.
    55. Decker K:Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 1990,192(2):245-261.
    56. Wang DH, Ishii K, Zhen LX, Taketa K:Enhanced liver injury in acatalasemic mice following exposure to carbon tetrachloride. Arch Toxicol 1996,70(3-4):189-194.
    57. Campo GM, Squadrito F, Ceccarelli S, Calo M, Avenoso A, Campo S, Squadrito G, Altavilla D: Reduction of carbon tetrachloride-induced rat liver injury by IRFI 042, a novel dual vitamin E-like antioxidant. Free Radic Res 2001,34(4):379-393.
    58. Nakamoto N, Tada S, Kameyama K, Kitamura K, Kurita S, Saito Y, Saito H, Ishii H:A free radical scavenger, edaravone, attenuates steatosis and cell death via reducing inflammatory cytokine production in rat acute liver injury. Free Radic Res 2003, 37(8):849-859.
    59. Terblanche J, Hickman R:Animal models of fulminant hepatic failure. Dig Dis Sci 1991, 36(6):770-774.
    60. Comporti M:Three models of free radical-induced cell injury. Chem Biol Interact 1989, 72(1-2):1-56.
    61. Malhi H, Gores GJ:Cellular and molecular mechanisms of liver injury. Gastroenterology 2008,134(6):1641-1654.
    62. Shi J, Aisaki K, Ikawa Y, Wake K:Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am JPathol 1998,153(2):515-525.
    63. Berlett BS, Stadtman ER:Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997,272(33):20313-20316.
    64. Halliwell B:Biochemistry of oxidative stress. Biochem Soc Trans 2007,35(Pt 5):1147-1150.
    65. Bast A, Goris RJ:Oxidative stress. Biochemistry and human disease. Pharm Weekbl Sci 1989, 11(6):199-206.
    66. Poli G, Albano E, Dianzani MU:The role of lipid peroxidation in liver damage. Chem Phys Lipids 1987,45(2-4):117-142.
    67. Venardos KM, Perkins A, Headrick J, Kaye DM:Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium:a review. Curr Med Chem 2007, 14(14):1539-1549.
    68. Sies H:Oxidative stress:oxidants and antioxidants. Exp Physiol 1997,82(2):291-295.
    69. Bannister JV, Bannister WH, Rotilio G:Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 1987,22(2):111-180.
    70. Zamocky M, Koller F:Understanding the structure and function of catalases:clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 1999,72(1):19-66.
    71. Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ:Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol 1990,106(1):1-19.
    72. Brigelius-Flohe R:Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 1999,27(9-10):951-965.
    73. Hayes JD, Flanagan JU, Jowsey IR:Glutathione transferases. Annu Rev Pharmacol Toxicol 2005,45:51-88.
    74. Gorla N, de Ferreyra EC, Villarruel MC, de Fenos OM, Castro JA:Studies on the mechanism of glutathione prevention of carbon tetrachloride-induced liver injury. Br J Exp Pathol 1983,64(4):388-395.
    75. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND:Glutathione metabolism and its implications for health. JNutr 2004,134(3):489-492.
    76. Bradham CA, Plumpe J, Manns MP, Brenner DA, Trautwein C:Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am JPhysiol 1998,275(3 Pt 1):G387-392.
    77. Ding WX, Yin XM:Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 2004,8(4):445-454.
    78. Schumann J, Tiegs G:Pathophysiological mechanisms of TNF during intoxication with natural or man-made toxins. Toxicology 1999,138(2):103-126.
    79. Towner RA, Reinke LA, Janzen EG, Yamashiro S:In vivo magnetic resonance imaging study of Kupffer cell involvement in CC14-induced hepatotoxicity in rats. Can J Physiol Pharmacol 1994,72(5):441-446.
    80. Edwards MJ, Keller BJ, Kauffman FC, Thurman RG:The involvement of Kupffer cells in carbon tetrachloride toxicity. ToxicolAppl Pharmacol 1993,119(2):275-279.
    81. Czaja MJ, Xu J, Alt E:Prevention of carbon tetrachloride-induced rat liver injury by soluble tumor necrosis factor receptor. Gastroenterology 1995,108(6):1849-1854.
    82. Strniskova M, Barancik M, Ravingerova T:Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys 2002,21(3):231-255.
    83. Johnson GL, Lapadat R:Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002,298(5600):1911-1912.
    84. Krishna M, Narang H:The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 2008,65(22):3525-3544.
    85. Rosseland CM, Wierod L, Oksvold MP, Werner H, Ostvold AC, Thoresen GH, Paulsen RE, Huitfeldt HS, Skarpen E:Cytoplasmic retention of peroxide-activated ERK provides survival in primary cultures of rat hepatocytes. Hepatology 2005,42(1):200-207.
    86. Abdelmegeed MA, Kim SK, Woodcroft KJ, Novak RF:Acetoacetate activation of
    extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes:role of oxidative stress. J Pharmacol Exp Ther 2004, 310(2):728-736.
    87. Czaja MJ, Liu H, Wang Y:Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology 2003,37(6):1405-1413.
    88. Liao JH, Chen JS, Chai MQ, Zhao S, Song JG:The involvement of p38 MAPK in transforming growth factor betal-induced apoptosis in murine hepatocytes. Cell Res 2001, 11(2):89-94.
    89. Czaja MJ:Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis 2007, 27(4):378-389.
    90. Schwabe RF, Brenner DA:Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006, 290(4):G583-589.
    91. Iida C, Fujii K, Kishioka T, Nagae R, Onishi Y, Ichi I, Kojo S:Activation of mitogen activated protein kinase (MAPK) during carbon tetrachloride intoxication in the rat liver. Arch Toxicol 2007,81(7):489-493.
    92. Mendelson KG, Contois LR, Tevosian SG, Davis RJ, Paulson KE:Independent regulation of JNK/p38 mitogen-activated protein kinases by metabolic oxidative stress in the liver. Proc Natl Acad Sci U S A 1996,93(23):12908-12913.
    93. Wen J, Watanabe K, Ma M, Yamaguchi K, Tachikawa H, Kodama M, Aizawa Y:Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol Pharm Bull 2006,29(4):713-718.
    94. Watanabe K, Ma M, Wen J, Kodama M, Aizawa Y:Effects of edaravone in heart of aged rats after cerebral ischemia-reperfusion injury. Biol Pharm Bull 2007,30(3):460-464.
    95. Kawasaki T, Kitao T, Nakagawa K, Fujisaki H, Takegawa Y, Koda K, Ago Y, Baba A, Matsuda T:Nitric oxide-induced apoptosis in cultured rat astrocytes:protection by edaravone, a radical scavenger. Glia 2007,55(13):1325-1333.
    96. Tsujimoto I, Hikoso S, Yamaguchi O, Kashiwase K, Nakai A, Takeda T, Watanabe T, Taniike M, Matsumura Y, Nishida K et al: The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy. Hypertension 2005,45(5):921-926.
    97. Weber LW, Boll M, Stampfl A:Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003,33(2):105-136.
    98. Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S:Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2009, 34(2):501-508.
    99. Oharazawa H, Igarashi T, Yokota T, Fujii H, Suzuki H, Machide M, Takahashi H, Ohta S, Ohsawa I:Rapid Diffusion of Hydrogen Protects the Retina:Administration to the Eye of Hydrogen-Containing Saline in Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2009.
    100. Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A:Oral hydrogen water prevents chronic allograft nephropathy in rats. Kidney Int 2010, 77(2):101-109.
    101. Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K:Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBSLett 2009,583(13):2157-2159.
    102. Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, Shanmugam KT, Kawai T:Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009,386(2):316-321.
    103. Shimouchi A, Nose K, Yamaguchi M, Ishiguro H, Kondo T:Breath hydrogen produced by ingestion of commercial hydrogen water and milk. Biomark Insights 2009,4:27-32.
    1. Lafay V, Barthelemy P, Comet B, Frances Y, Jammes Y:ECG changes during the experimental human dive HYDRA 10 (71 atm/7,200 kPa). Undersea Hyperb Med 1995,
    22(1):51-60.
    2. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S:Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007,13(6):688-694.
    3. Maier RJ:Availability and use of molecular hydrogen as an energy substrate for Helicobacter species. Microbes Infect 2003,5(12):1159-1163.
    4. Dole M, Wilson FR, Fife WP:Hyperbaric hydrogen therapy:a possible treatment for cancer. Science 1975,190(4210):152-154.
    5. Gharib B, Hanna S, Abdallahi OM, Lepidi H, Gardette B, De Reggi M:Anti-inflammatory properties of molecular hydrogen:investigation on parasite-induced liver inflammation. C R Acad Sci Ⅲ 2001,324(8):719-724.
    6. Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, Ohta S, Sun X, Xu W, Tao H et al: Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett 2008,441(2):167-172.
    7. Cai J, Kang Z, Liu K, Liu W, Li R, Zhang JH, Luo X, Sun X:Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res 2009,1256:129-137.
    8. Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N et al: Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun
    2008,375(3):346-350.
    9. Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S:Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2009, 34(2):501-508.
    10. Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M et al: Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neurosci Lett 2009, 453(2):81-85.
    11. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A et al: Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. PLoS One 2009,4(9):e7247.
    12. Matchett GA, Fathali N, Hasegawa Y, Jadhav V, Ostrowski RP, Martin RD, Dorotta IR, Sun X, Zhang JH:Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res 2009,1259:90-97.
    13. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S et al: Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 2008, 373(1):30-35.
    14. Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH, Denoble PJ, Tao H, Sun X:Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood) 2009,234(10):1212-1219.
    15. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S:Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 2007,361(3):670-674.
    16. Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S:Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol 2009,64(4):753-761.
    17. Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A:Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 2008,8(10):2015-2024.
    18. Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, Zhang JH, Sun X, Yuan H:Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 2009, 43(5):478-484.
    19. Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, Yan RL, Su N, Ruan CP, Sun XJ et al:The Effects of Hydrogen-Rich Saline on the Contractile and Structural Changes of Intestine Induced by Ischemia-Reperfusion in Rats. JSurg Res 2009.
    20. Mao YF, Zheng XF, Cai JM, You XM, Deng XM, Zhang JH, Jiang L, Sun XJ:Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun 2009,381(4):602-605.
    21. Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T:Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun 2009, i 386(1):11-15.
    22. Xie K, Yu Y, Pei Y, Hou L, Chen S, Xiong L, Wang G:Protective Effects of Hydrogen Gas on Murine Polymicrobial Sepsis via Reducing Oxidative Stress and HMGB1 Release. Shock 2009.
    23. Oharazawa H, Igarashi T, Yokota T, Fujii H, Suzuki H, Machide M, Takahashi H, Ohta S, Ohsawa I:Rapid Diffusion of Hydrogen Protects the Retina:Administration to the Eye of Hydrogen-Containing Saline in Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2009.
    24. Kikkawa YS, Nakagawa T, Horie RT, Ito J:Hydrogen protects auditory hair cells from free radicals. Neuroreport 2009,20(7):689-694.
    25. Saitoh Y, Yoshimura Y, Nakano K, Miwa N:Platinum nanocolloid-supplemented hydrogendissolved water inhibits growth of human tongue carcinoma cells preferentially over normal cells. Exp Oncol 2009,31(3):156-162.
    26. Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S:Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun 2008,377(4):1195-1198.
    27. Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, Nakamura N, Kitawaki J, Imai S, Nakano K, Ohta M et al:Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008,28(3):137-143.
    28. Cardinal JS, Zhan JH, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, Nakao A:Oral Administration of hydrogen water prevents chronic allograft nephropathy in rat renal transplantation. Kidney Int 2009:in press.
    29. Itoh T, Fujita Y, Ito M, Masuda A, Ohno K, Ichihara M, Kojima T, Nozawa Y, Ito M: Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun 2009,389(4):651-656.
    30. Olson JW, Maier RJ:Molecular hydrogen as an energy source for Helicobacter pylori. Science 2002,298(5599):1788-1790.
    31. Maier RJ, Olson J, Olczak A:Hydrogen-oxidizing capabilities of Helicobacter hepaticus and in vivo availability of the substrate. JBacteriol 2003,185(8):2680-2682.
    32. Simren M, Stotzer PO:Use and abuse of hydrogen breath tests. Gut 2006,55(3):297-303.
    33. Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K:Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract? FEBS Lett 2009,583(13):2157-2159.
    34. Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, Shanmugam KT, Kawai T:Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 2009,386(2):316-321.
    35. Shimouchi A, Nose K, Yarhaguchi M, Ishiguro H, Kondo T:Breath hydrogen produced by ingestion of commercial hydrogen water and milk. Biomark Insights 2009,4:27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700