MR-1在血管紧张素Ⅱ诱导心肌肥厚中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MR-1(Myofibrillogenesis regulatorl,肌纤基因调节因子)编码基因是从人体骨骼肌cDNA文库中获得的与心肌肥厚相关的一个新基因,位于人类第2条染色体(NT_005403.11)上,跨越2887bp片段,由3个外显子组成。在细胞水平的研究发现,MR-1与血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导的心肌细胞肥大有关,并且在过表达MR-1的小鼠中发现MR-1是通过活化NF-κB恶化AngⅡ诱导的心肌肥厚。在此基础上,本研究拟在动物体内通过降低MR—1的表达研究其与AngⅡ致心肌肥厚的关系,以探讨其作为防治心肌肥厚新靶点的可能性。为此,我们首先构建了腺病毒重组载体AdSiR-MR-1,然后采用雄性C57BL/6小鼠和背部置入ALZET微型注射泵,经背部皮下灌注AngⅡ(溶于PBS),同时,设立对照PBS泵入组和对照未置入组。两周后,经超声心动图检查、小鼠心脏形态学、组织学、RT—PCR和Western分析,确定成功建立了AngⅡ诱导的小鼠心肌肥大的模型。
     进而利用所构建的模型通过颈静脉和尾静脉分别注射腺病毒重组载体AdSiR-MR-1,研究了不同途径和不同剂量沉默MR1基因表达的效果。最后确定以2×10~9pfu/100μl/只的病毒量术后第二天经颈静脉注射1次,13天后进行小鼠心脏的超声心动图检查、免疫组织学检查,同时对心肌肥厚标志基因如心钠素(ANF)、β-肌球蛋白(β-myosin)、胶原纤维蛋白(collagenⅢ)进行RT—PCR和/或Western检测,结果表明在此条件下AdSiR-MR-1能够明显的抑制AngⅡ所致的心肌肥厚,同时降低肥厚标志基因如ANF、β-myosin、collagenⅢ的表达,降低心肌的纤维化。Southern-blot分析证明注射13天后腺病毒载体DNA可以在小鼠心肌组织中检出。
     采用基因芯片技术检测表明在AngⅡ诱导小鼠心肌沉默MR-1基因表达后,可引起2倍上调的基因1453个,超过10倍上调的有6个;下调超过2倍的基因1081个,而超过10倍下调的有43个。基因表达变化的基因主要涉及参与肌肉收缩、免疫反应、Ca离子、G蛋白信号和代谢等多种通路途径。比较MR-1沉默组与AngⅡ处理组可发现多种肌肉收缩蛋白差异表达(有21个)、与基质蛋白相关差异表达有51个、与代谢相关的有117个、细胞信号传导蛋白表达差异的有219个,其中与G-蛋白相关表达差异的有135个、MAPK通路相关的有42个,和钙离子相关的差异表达有175个,其中97个与钙离子的结合相关、25个与钙信号通路相关,12个与钙通道相关。比较值得注意的是MR-1沉默组中有9个HSP蛋白和8个硫氧还蛋白表达上调。以上分析为我们探讨MR-1在AngⅡ诱导的心肌肥厚中的作用机制提供了思路。
     通过对基因芯片分析提示的几个有显著差异表达基因的RT—PCR和/或Western检测,表明在AngⅡ诱导心肌肥厚小鼠中沉默MR1基因的表达,其心肌中热休克蛋白72、硫氧还蛋白的表达明显提高,而钙调神经磷酸酶CaAβ表达降低。这一结果提示MR1在AngⅡ诱导小鼠心肌肥厚作用中包含了对热休克蛋白、硫氧还蛋白和钙调神经磷酸酶的调节机制。本研究为探讨MR-1在AngⅡ诱导的心肌肥厚中的作用机制提供了思路,并展示了MR—1作为防治AngⅡ诱导心肌肥厚新靶点的可能性。
Myofibrillogenesis regulator-1 (MR-1) was cloned from a human skeletal muscle cDNA library. The MR-1 gene (NCBI GeneBank accession no. AF417001) is located on human chromosome 2q35 (AC021016) and spans about 2887 bp of contiguous DNA. The MR-1 gene is composed of three distinct exons and encodes a protein of 142 amino acids. Myofibrillogenesis regulator-1 (MR-1) as a novel homo gene augments cardiomyocytes hypertrophy induced by AngII in vivo and in vitro. Overexpression of MR1 aggravates cardiac hypertrophy induced by AngII in mice. In this study the effect of silencing MR-1 with RNAi on cardiac hypertrophy induced by AngII in mice was investigated. Cardiac hypertrophy mice was induced by chronic infusion of AngII through implanted pumps. Recombinant adenoviral vector (pAdxsi) expressing MR-1 SiRNA was constructed and used to treat cardiac hypertrophy in mice. AdSiR-MR-1 was administered to the mice via the jugular or tail vein at first in order to define the route of delivery and the effective silencing dose. Significant silencing was observed with 2×10~9 pfu of AdSiR-MR-1 via jugular vein. Western blot analysis showed that AdSiR-MR-1 effectively silenced the expression of MR-1 in cardiomyocytes as well as in other tissues except the skeletal muscle. AdSiR-MR-1 suppressed dose-dependent myocardial MR-1 protein expression in AngII-infused mice. Administration of AdSiR-MR-1 via the jugular vein almost abolished the overexpression of MR-1 induced by AngII resulting in decreased left-ventricular hypertrophy assessed by echocardiography. Moreover, cardiac hypertrophy-related protein levels, such as ANF, andβ-myosin were attenuated significantly in the heart of AngII-infused mice by knockdown of MR-1. AdSiR-MR-1 treatment also significantly diminishes the cardiac fibrosis accompanied with the decrease of collagen contents as observed morphologically and by immunohistochemical determination. Our results identify, for the first time, that MR-1 serves as a new target in protecting and suppressing cardiac hypertrophy induced by AngII in vivo.
     Genechip microarray expression analysis ( Affymetrix, over 18, 000cDNA sequences) was applied to evaluate the changes in the genes expression in AngII-infused AdSiR-MR-1 treated mice verse to AngII-infused mice without treatment(control). About 1453 genes expression were increased in more than two fold, among them 6 genes were expressed in ten fold higher than control. In the same time 1081 genes were expressed lower in two fold more and 43 genes expression were decreased in ten fold comparing with control. The altered expression genes mostly involved in the pathways related to muscle relaxation and contraction, immune reaction, G-protein related signaling , calcium ion binding or regulation as well as amino-acid metabolisms. Differentially expressed genes in AdSiR-MR-1 treated mice could be grouped into the functions of muscle contraction and relaxation, signaling transduction, calcium ion biding and signaling etc. Nine genes encoding for heat shock proteins (HSP) and eight genes encoding for thioredoxins (TRX) were up-regulated and eighty four genes related to calcium functions were down-regulated in AdSiR-MR-1 treated mice vs control.. The up-regulated gene expression of HSP72 and TRX as well as down-regulated calcineurin gene expression were confirmed by RT-PCR and Western blot analyses. These findings indicate the possible involvement of HSPs, TRXs and calcineurin in the MR1 regulatory pathways governing the development of cardiac hypertrophy induced by AngII. This work paves the way for better understanding of MR1 regulation mechanism in cardiac hypertrophy induced by AngII and suggests that MR1 would be considered as a new target for the treatment or prevention of cardiac hypertrophy and heart failure in future.
引文
[1] Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure[J].N Engl J Med, 1999, 341(17):1276-1283.
    
    [2]Ritter O, Neyses L. The molecular basis of myocardial hypertrophy and heart failure. Trends Mol Med. 2003, 9(7):313-321.
    
    [3]Zhang J. Myocardial energetics in cardiac hypertrophy. Clinical and Experimental Pharmacology and Physiology. 2002 , 29(4):351-359.
    
    [4]Geeves MA, Holmes KC. Structural mechanism of muscle contraction. Annu Rev Biochem 1999;68:687-728.
    
    [5]Yamauchi-Takihara K, Sole MJ, Liew J, Ing D, Liew CC. Characterization of human cardiac myosin heavy chain genes. Proc Natl Acad Sci USA. 1989, 86(10):3504-3508.
    
    [6]A. J. Marian and R. Roberts. The Molecular Genetic Basis for Hypertrophic Cardiomyopathy. J Mol Cell Cardiol 2001(33), 655 - 670.
    
    [7]Dwyer JP, Ritchie ME, Smyth GK, Harrap SB, Delbridge L, Domenighetti AA, Di Nicolantonio R. Myocardial gene expression associated with genetic cardiac hypertrophy in the absence of hypertension. Hypertens Res. 2008, May;31(5):941-55.
    
    [8]Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. and Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr.Biol 2002, 12,735-739.
    
    [9] Ambros, V. The functions of animal microRNAs.Nature.2004, 431, 350 - 355.
    
    [10] Hwang, H. W. and Mendell, J. T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 2006, 94,776-780.
    
    [11] Jovanovic, M. and Hengartner, M. O. miRNAs and apoptosis: RNAs to die for. Oncogene 2006; 25,6176-6187.
    
    [12] Bentwich, I., Avniel, A., Karov, Y. et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766 - 770.
    
    [13]Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H. and Cuppen, E. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120,21-24.
    
    [14] Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005)Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120,15-20.
    
    [15] Ji, R., Cheng, Y., Yue, J. et al. (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res. 100,1579 - 1588.
    
    [16] Cheng, Y., Ji, R., Yue, J. et al. (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. 170,1831 - 1840.
    
    [17] van Rooij, E., Sutherland, L. B., Liu, N. et al. (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl.Acad. Sci. U.S.A. 103,18255-18260.
    
    [18] Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. and Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res 2007; 100,416-424.
    
    [19] Tatsuguchi, M., Seok, H. Y., Callis, T. E. et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol 2007; 42,1137-1141.
    
    [20] Care, A., Catalucci, D., Felicetti, F. et al.MicroRNA-133 controls cardiac hypertrophy. Nat. Med 2007; 13,13-618.
    
    [21] van Rooij, E., Sutherland, L. B., Qi, X., Richardson, J. A., Hill, J. and Olson, E. N. Control of stressdependent cardiac growth and gene expression by a microRNA. Science 2007; 316,575-579.
    
    [22] Thum, T., Galuppo, P., Wolf, C. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007; 116,258-267.
    [23]Str(?)m CC, Kruh(?)ffer M, Knudsen S, Stensgaard-Hansen F, Jonassen TE, Orntoft TF, Hauns(?) S, Sheikh SP. Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy. Comp Funct Genomics. 2004;5(6-7): 459-70.
    
    [24].Zolk O, Kouchi I, Schnabel P, Bohm M. Heterotrimeric G proteins in heart disease. Can J Physiol Pharmacol. 2000;78:187-198.
    
    [25].Iwaki K, Sukhatme VP, Shubeita HE, Chein KR. α-, and β-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. J Biol Chem. 1990;265:13809-13817.
    
    [26]Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G. Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophy ing myocardium. J Biol Chem 1997;272:4500-8.
    
    [27]Lu H, Fedak PW, Dai X, Du C, Zhou YQ, Henkelman M, et al.Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 2006;114:2271-9.
    
    [28]Lu H, Fedak PW, Dai X, Du C, Zhou YQ, Henkelman M, et al.Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 2006;114:2271-9.
    
    [29] Aoki H, Richmond M, lzumoS, et al. Specific role of the extra, cellular sign-al-regulated kinase pathway in Angiotensin II indueed cardiac hypertrophy in vitro[J]. Biochem J,2000,347(1):275-284.
    
    [30] Pellieux C, SautllierT, Anbert JF, et al. Angioteminll. induced Cardiac hyper-trophyin associated with different mitogen-activated protein kinase activation normotensive and hypertension mice[J].J Hypertemion, 2000, 18(9):1307-1317.
    
    [31] Ruf S, Piper M, Schluter KD. Specific roleforthe extracellular signalregulated kinase pathway in Angiotensin II but not pbenylephrino-indueed cardiac hypertrophy in vitro[J]. Pllugers Arch, 2002, 443(3): 483-490.
    
    [32] Pellieux C, Sauthier T, Aubert JF. Angiotensin Ⅱ-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normo-tensive and hypertensive mice[J].J Hypertens, 2000, 18(9):1307-1317.
    
    [33] Brancaccio M, Hirsch E, Notte A, et al. Integrin signalling: The tug-of-war in heart hypertrophy[J]. Cardiovascular Research 2006, 70(3):422-433.
    
    [34] Harrison JC, Zyla TR, Bardes ES, et al. Stress-specific activation Mech-anisms for the "cell integrity" MAPK pathway[J]. J Biol Chem, 2004, 279(4):2616-2622.
    
    [35] Aikawa R, Nagai T, Kudoh S, et al. Integrins play a critical role in mechanical stress-induced p38 MAPK activation[J]. Hypertension, 2002, 39(2): 233-238.
    
    [36]Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional coactivators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem 2003;278:6838-47.
    
    [37]Yanazume T, Hasegawa K, Morimoto T, Kawamura T, Wada H, MatsumoriA, et al. Cardiac p300 is involved inmyocyte growth with decompensated heart failure. Mol Cell Biol 2003; 23:3593-606.
    
    [38]Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, et al.Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling aftermyocardial infarction in adult mice in vivo. Circulation 2006;113:679-90.
    
    [39]Davidson SM, Townsend PA, Carroll C, Yurek-George A, Balasubramanyam K, Kundu TK, et al. The transcriptional coactivator p300 plays a critical role in the hypertrophic and protective pathways induced by phenylephrine in cardiac cells but is specific to the hypertrophic effect of urocortin. Chem Bio Chem 2005;6:162 - 70.
    [40]Davis FJ, Pillai JB, Gupta M, Gupta MP. Concurrent opposite effects of trichostatin A, an inhibitor of histone deacetylases, on expression of alpha-MHC and cardiac tubulins: Implication for gain in cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2005;288:H1477-90.
    
    [41]McKinsey TA, Olson EN. Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp 2004;259:132-41.
    
    [42] Fiedler B, Lohmann SM, Smolenski A, et al . Inhibition of calcineurin-NFAT hypert rophy singnaling by cGMP2dependent protein kinase type I in cardiac myocytes[J]. Proc Natl Acad Sci USA, 2002, 99 (17) : 11363-11368.
    
    [43] Fladmrk KE, Brostugun OT, mellgren G, et al . Ca2 + / calmodulin-dependent protein kinase Ⅱis required fflr microeystin-induced apoptosis[J]. J Biol Chem,2002, 277:2804-2811.
    
    [44] Prabhu SD, Wang G, Luo J, et al . Beta-Adrenergic receptor blockade modulates Bcl2X (S) expression and reduces apoptosis in failing myocardium[J]. J Mol Cell Cardiol ,2003,35(5) :483-493.
    
    [45]Barry SP, Davidson SM, Townsend PA。 Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40(10):2023-39.
    
    [46]van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103:18255-60.
    
    [47]Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007;100:416-24.
    
    [48]Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al.MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007;13:613-8.
    
    [49] Majhen D , Ambriovic2Ristov A. Adenoviral vectors2How to use them in cancer gene therapy ? [J ] . Virus Res 2006, 119(2): 121-133.
    
    [50]Zinn KR, Douglas JT, Smyth CA, Liu HG, Wu Q, Krasnykh VN, Mountz JD, Curiel DT,Mountz JM.Imaging and tissue biodistribution of 99mTc-labeled adenovirus knob(serotype 5).Gene Ther.1998;5(6):798-808.
    [51]Xia H,Mao Q,Paulson HL,Davidson BL.siRNA-mediated gene silencing in vitro and in vivo.Nat Biotechnol.2002;20(10):1006-10.
    [52]Clemente CF,Tornatore TF,Theizen TH,Deckmann AC,Pereira TC,LopesCendes I,Souza JR,Franchini KG.Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice.Circ Res.2007 Dec 7;101(12):1339-48.
    [53]郭志荣,胡晓抒,喻荣彬,等。一、二级预防中冠状动脉心脏病风险的评估中国公共卫生,2004,20(2):174-176.
    [54]Li TB,Liu XH,Feng S,Hu Y,Yang WX,Han Y,Wang YG,Gong LM.Characterization of MR-1,a novel myofibrillogenesis regulator in human muscle.Acta Biochim Biophys Sin.2004;36:412-418.
    [55]Liu X,Li T,Sun S,Xu F,Wang Y.Role of myofibrillogenesis regulator-1 in myocardial hypertrophy.Am J Physiol Heart Circ Physiol.2006;290:H279-H285.
    [56]Hong-Liang Li,Zhi-Gang She,Tian-Bo Li,Ai-Bing Wang,Qinglin Yang,Yu-Sheng Wei,Yi-Guang Wang,De-Pei Liu.Overexpression of Myofibrillogenesis Regulator-1 Aggravates Cardiac Hypertrophy Induced by Angiotensin Ⅱ in Mice.Hypertension.2007:49(6):1399-408.
    [57]Tomko RP,Xu R,Philipson L.HCAR and MCAR:the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses.Proc Natl Acad Sci U S A 1997;94(7):3352-6.
    [58]Kuethe F,Sigusch HH,Hilbig K,Tresselt C,Gl(u|¨)ck B,Egerer R,Figulla HR.Detection of viral genome in the myocardium:lack of prognostic and functional relevance in patients with acute dilated cardiomyopathy.Am Heart J.2007 May;153(5):850-8.
    [59]K(u|¨)hl U,Pauschinger M,Noutsias M,Seeberg B,Bock T,Lassner D,Poller W,Kandolf R,Schultheiss HP.High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation. 2005 Feb 22;111(7):887-93.
    
    [60] Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol. (1997) 59:551-571.
    
    [61] Molkentin J. D, Dorn I.G II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. (2001) 63:391-426.
    
    [62] Olson E. N, Schneider M. D. Sizing up the heart: development redux in disease. Genes Dev. (2003) 17:1937-1956.
    
    [63] Reid IA, Morris BJ, Ganong WJ. The renin-angiotensin system. Ann Rev Physiol. 1978;40:377-410.
    
    [64] Gunning ME, Ingelfinger JR, King AJ, Brenner BM. Vasoactive peptide and the kidney. In: Brenner BM, ed. The Kidney. Philadelphia, Pa: WB Saunders Co; 1996:627-712.
    
    [65]Dahlof B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am. J. Hypertens 1992;5:95-110.
    
    [66] Dahlof B, Herlitz H, Aurell M, Hansson L: Reversal of cardiovascular structural changes when treating essential hypertension. The importance of the renin-angiotensin-aldosterone system. Am J Hypertens 1992;5:900-911.
    
    [67] Nagano M, Higaki J, Mikami H, et al: Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue in angiotensin II in spontaneously hypertensive rats. J Hypertens 1991;9:595-599.
    
    [68] Schelling P, Fischer H, Ganten D: Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertens 1991;9:3-5.
    
    [69]. Everett AD, Tufro-McReddie A, Fischer A, Gomez A: Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-b1 expression. Hypertension 1994;23:587-592.
    
    [70] Lavie CJ, Ventura HO, Messerli FH: Regression of increased left ventricular mass by antihypertensives. Drugs 1991;42:945-961.
    
    [71]Dahlof B, Pennert K, Hansson L: Reversal of left ventricular hypertrophy in hypertensive patients. Metaanalysis of 109 treatment studies. Am J Hypertens 1992;5:95-110.
    
    [72] Schmieder RE, Martus P, Klingbeil A: Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996;275:1507-1513.
    
    [73] Gottdiener JS, Reda DJ, Massie BM, Materson BJ, Williams DW, Anderson RJ, for the VA Cooperative Study Group on Antihypertensive Agents: Effect of single-drug therapy on reduction of left ventricular mass in mild to moderate hypertension. Comparison of six antihypertensive agents. Circulation 1997;95:2007-2014.
    
    [74] Baltzer AW, Lattermann C, Whalen JD, Wooley P, Weiss K, Grimm M, Ghivizzani SC, Robbins PD, Evans CH. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 2000; 7(9):734-9.
    
    [75] Fasbender A, Zabner J, Chillon M, Moninger TO, Puga AP, Davidson BL, Welsh MJ. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem 1997; 272(10): 6479-89.
    
    [76] Huard J, Lochmüller H, Acsadi G, Jani A, Massie B, Karpati G. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995; 2(2) :107-15.
    
    [77] Boquet MP, Wonganan P, Dekker JD, Croyle MA. Influence of method of systemic administration of adenovirus on virus-mediated toxicity: focus on mortality, virus distribution, and drug metabolism. J Pharmacol Toxicol Methods 2008; 58(3): 222-32.
    
    [78]Zhao LJ, Jian H, Zhu H. Specific gene inhibition by adenovirus- mediated expression of small interfering RNA. Gene 2003; 316: 137- 141.
    
    [79] Bardelmeijer HA, Buckle T, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O. Cannulation of the jugular vein in mice: a method for serial withdrawal of blood samples. Lab Anim 2003; 37(3):181-7.
    
    [80] Sakurai H, Sakurai F, Kawabata K, Sasaki T, Koizumi N, Huang H, Tashiro K, Kurachi S, Nakagawa S, Mizuguchi H. Comparison of gene expression efficiency and innate immune response induced by Ad vector and lipoplex. J Control Release 2007; 117(3):430-7.
    
    [81] Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 1997;94(7):3352-6.
    
    [82] Lorell BH. Role of angiotensin AT1, and AT2 receptors in cardiac hypertrophy and disease. Am J Cardiol. 1999 Jun 17;83(12A):48H-52H.
    
    [83] Matsubara H. Pathophysiological role of angiotensin Ⅱ type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998;83(12):1182-91.
    
    [84] Valdes JA, Hidalgo J, Galaz JL, Puentes N, Silva M, Jaimovich E, Carrasco MA. NF-kappaB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals. Am J Physiol Cell Physiol. 2007 May;292(5):C1960-70.
    
    [85] Collins P., Hightower L. E. Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J. Virol. (1982) 44:703-707.
    
    [86] Khandijan E. W., Turler H. Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol. Cell. Biol. (1983) 3:1-8.
    
    [87] La Thangue N. B., Latchman D. S. A cellular protein related to heat shock protein 90 accumulates during herpes simplex virus infection and is over-expressed in transformed cells. Exp. Cell Res. (1988) 178:169-179.
    
    [88] Li G. C. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster f ibroblasts by sodium arsenite and by ethanol. J. Cell. Physiol. (1983) 115:116-122.
    [89] Norton P. M., Latchman D. S. Levels of the 90 kd heat shock protein and resistance to glucocorticoid mediated cell killing in a range of human and murine lymphocyte cell lines. J. Steroid Biochem. (1989) 33:149-154.
    
    [90] Li G. C., Laszlo A. Amino acid analogues while inducing heat shock protein sensitive cells to thermal damage. J. Cell. Physiol. (1985) 122:91-97.
    
    [91] Polla B. S. A role for heat shock proteins in inflammation? Immunol. Today (1988) 9:134-137.
    
    [92] Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res. 2001 Sep;51(4): 637-46.
    
    [93]Moalic J. M., Bauters C., Himbert D., et al. Phenylephrine vasopressin and angiotensin as determinants of heat shock protein gene expression in adult rat heart and aorta. J. Hypertens. (1989) 7:195-201.
    
    [94]Das D.K., Engelman R. M., Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischaemia. Cardiovasc. Res 1993; 27:578-584.
    
    [95]Maulik N., Engelman R. M., Wei Z., et al. Drug-induced heat-shock preconditioning improves postischemic ventricular recovery after cardiopulmonary bypass. Circulation 1995; 92(Suppl_II):II381 - II388.
    
    [96]Garrido C., Bruey J.-M., Fromentin A., et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999;13:2061-2070.
    
    [97]Bruey J.-M., Ducasse C., Bonniaud P., et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol.2000; 2:645-652.
    
    [98]Beere H.M., Wolf B.B., Cain K., et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol 2000; 2:469-475.
    [99]Saleh A., Srinivasula S.M., Balkir L., Robbins P. D., Alnemri E. S. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2000; 2:476-483.
    
    [100]Jaattela M., Wissing D., Kokholm K., Kallunki T., Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 1998; 17:6124-6134.
    
    [101]Gabai V. L., Yaglom J.A., Volloch V., et al. Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol. Cell. Biol. 2000;20:6826-6836.
    
    [102]Park H.-S., Lee J.-S., Huh S.-H., Seo J.-S., Choi E.-J. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J.2001; 20:446-456.
    
    [103]Bellmann K., Burkart V., Bruckhoff J., Kolb H., Landry J. p38-dependent enhancement of cytokine-induced nitric-oxide synthase gene expression by heat shock protein 70. J. Biol. Chem. 2000; 275:18172-18179.
    
    [104]Sakamoto M, Minamino T, Toko H, Kayama Y, Zou Y, Sano M, Takaki E, Aoyagi T, Tojo K, Tajima N, Nakai A, Aburatani H, Komuro I. Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy. Circ Res. 2006 8;99(12):1411-8.
    
    [105] Feinstein DL, Galea E, Aquino DA, Li GC, Xu H, Reis DJ. Heat shock protein 70 suppresses astroglial-inducible nitric-oxide synthase expression by decreasing NFkappaB activation. J Biol Chem. 1996 26;271(30):17724-32.
    
    [106] Curry HA, Clemens RA, Shah S, Bradbury CM, Botero A, Goswami P, Gius D. Heat shock inhibits radiation-induced activation of NF-kappaB via inhibition of I-kappaB kinase. J Biol Chem. 1999 13:274(33):23061-7.
    
    [107]Grossman BJ, Shanley TP, Odoms K, Dunsmore KE, Denenberg AG, Wong HR. Temporal and mechanistic effects of heat shock on LPS-mediated degradation of IkappaBalpha in macrophages. Inflammation. 2002 Jun;26(3): 129-37.
    
    [108] Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS. Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol. 2000 May 15;164(10):5416-23.
    
    [109] DeMeester SL, Buchman TG, Qiu Y, Jacob AK, Dunnigan K, Hotchkiss RS, Karl I, Cobb JP. Heat shock induces IkappaB-alpha and prevents stress-induced endothelial cell apoptosis. Arch Surg. 1997 Dec;132(12):1283-7.
    
    [110] Wong HR, Ryan M, Wispe JR. Stress response decreases NF-kappaB nuclear translocation and increases I-kappaBalpha expression in A549 cells. J Clin Invest. 1997 May 15;99(10):2423—8.
    
    [111] Wong HR, Ryan MA, Menendez IY, Wispe JR. Heat shock activates the I-kappaBalpha promoter and increases I-kappaBalpha mRNA expression. Cell Stress Chaperones. 1999;4(1):1-7.
    
    [112] E. S. J. Arne r, A. Holmgren, Physiological functions of thioredoxin and thioredoxin reductase, Eur. J. Biochem. 267 2000;6102-6109.
    
    [113] S. Gromer, S. Urig, K. Becker, The thioredoxin system-from science to clinic, Med. Res. Rev. 24 2004;40 - 89.
    
    [114]. Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner SF, Sadoshima J. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest. 2003 Nov;112(9):1395-406.
    
    [115].Kuster GM, Pimentel DR, Adachi T, Ido Y, Brenner DA, Cohen RA, Liao R, Siwik DA, Colucci WS. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation. 2005; 8;111 (9):1192-8.
    [116] Masutani H, Yodoi J. Thioredoxin. Overview. Methods Enzymol 2002;347:279-86.
    
    [117] Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997;15:351-69.
    
    [118] Ago T, Sadoshima J. Thioredoxin and ventricular remodeling. J Mol Cell Cardiol. 2006 Nov;41(5):762-73.
    
    [119]Rigobello MP, Vianello F, Folda A, Roman C, Scutari G, Bindoli A. Differential effect of calcium ions on the cytosolic and mitochondrial thioredoxin reductase. Biochem Biophys Res Commun. 2006 May 12;343(3): 873-8.
    [1] Behrami AP,Urbanek K,Kajstura J,et al.Evidence t hat human cardiac myocytes divide after myocardialinfarction[J].N Engl J Med,2001,344(23):1750-1757.
    
    [2] Hunter JJ,Chien KR.Signaling pathways for cardiac hypertrophy and failure[J].N Engl J Med,1999,341(17):1276-1283.
    
    [3] Yamazaki T, Komuro I, Yazaki Y.Signaling pathways for cardiac hypertrophy[J].Cell Signal,1998,10(10):693-698.
    
    [4]Ishigai Y, Mori T , Ikeda T , et al. Role of bradykinin NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes[J]. Am J Physiol,1997,273:H2659-H2663.
    
    [5] Calderone A, Thaik CM, Takahashi N, et al. Nitric oxide , atrial natriuretic peptide,and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts[J]. J Clin Invest,1998,101:812-818.
    
    [6] Kanai AJ, Mesaros S, Finkel MS, et al. Beta-adrenergic regulation of constitutive nitric oxide synthase in cardiac myocytes[J]. Am J Physiol, 1997,273:C 1371-C1377.
    
    [7] Nakagami H, Takemoto M, Liao J K. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypert rophy[J]. J Mol Cell Cardiol,2003,35(7):851-859
    
    [8] Johnson JA. An epsilon PKC-selective inhibitor attenuates back phosphorylation of a low molecular weight protein in cardiac myocytes[J]. Cell Signal, 2003,15:123-130.
    
    [9] Aoki H, Richmond M, lzumo S, et al. Specific role of the extra, cellular sign-al-regulated kinase pathway in Angiotensin II indueed cardiac hypertrophy in vitro[J].Biochem J,2000,347( 1 ):275-284.
    
    [10] Pellieux C, SautllierT, Anbert JF, et al. Angioteminll. induced Cardiac hyper-trophyin associated with different mitogen-activated protein kinase activation normotensive and hypertension mice [J].J Hypertemion,2000,18(9):1307-1317.
    
    [11] Ruf S, Piper M, Schluter KD. Specific roleforthe extracellular signal regulated kinase pathway in Angiotensin II but not pbenylephrino-indueed cardiac hypertrophy in vitro[J].Pllugers Arch,2002,443(3):483-490.
    
    [12] Pellieux C, Sauthier T, Aubert JF.Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normo-tensive and hypertensive mice[J].J Hypertens,2000,18(9): 1307-1317.
    
    [13] Brancaccio M, Hirsch E, Notte A, et al. Integrin signalling: The tug-of-war in heart hypertrophy[J]. Cardiovascular Research,2006,70(3):422-433.
    
    [14] Harrison JC, Zyla TR, Bardes ES, et al. Stress-specific activation Mech-anisms for the "cell integrity" MAPK pathway [J]. J Biol Chem,2004,279(4):2616-2622.
    
    [15] Aikawa R, Nagai T, Kudoh S, et al.Integrins play a critical role in mechanical stress-induced p38 MAPK activation[J]. Hypertension,2002,39(2):233-238.
    
    [16] Yasuda N, Akazawa H, Qin Y, et al. A novel mechanism of mechanical stress-induced angiotensin II type 1-receptor activation without the involvement of angiotensin II. Naunyn Schmiedebergs Arch Pharmacol[J],2008,377:393-399.
    
    [17] Fiedler B, Lohmann SM, Smolenski A, et al . Inhibition of calcineurin-NFAT hypert rophy singnaling by cGMP2dependent protein kinase type I in cardiac myocytes[J]. Proc Natl Acad Sci USA,2002,99 (17): 11363-11368.
    
    [18] Fladmrk K.E, Brostugun OT, mellgren G, et al . Ca~(2+) / calmodulin-dependent protein kinase Ⅱis required fflr microeystin-induced apoptosis[J]. J Biol Chem,2002,277:2804-2811.
    
    [19] Prabhu SD, Wang G, Luo J, et al. Beta-Adrenergic receptor blockade modulates Bcl2X (S) expression and reduces apoptosis in failing myocardium[J]. J Mol Cell Cardiol ,2003,35(5) :483-493.
    
    [20] Shiojima I, Walsh K. Regulation of cardiac growth and coronary Angiogenesis by the Akt/PKB signaling pathway[J]. Genes Dev 2006,20:3347-3365.
    
    [21] Brazil DP,Yang ZZ,Hemmings BA. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem[J]. Sci. 2004;29:233-242.
    
    [22] Bi L,kabe I,Bernard DJ,et al. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110 alpha subunit of phosphoinositide 3-kinase[J]. J. Biol.Chem. 1999;274:10963-10968.
    
    [23] McMullen JR, Shioi T, Zhang L,et al. Phosphoinositide 3-kinase(p110 alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy[J]. Proc. Natl. Acad. Sci. U. S. A. 2003;100:12355-12360.
    
    [24] Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice[J]. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12333-12338.
    
    [25]Cho H; Thorvaldsen JL; Chu Q;et al. Aktl/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 2001 ;276:38349-38352.
    
    [26] Shioi T.Mcmullen JR,Kang PM,et al.Akt/protein kinase B promotes organ growth in transgenic mice[J]. Mol Cell Biol,2002,22(8):2799-2809.
    
    [27] Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways[J]. Cell 2002;110:737-749.
    
    [28] Di Cristofano A, Pesce B, Cordon-Cardo C,et al. PTEN is essential for embryonic development and tumour suppression[J]. Nat Genet 1998; 19:348-55.
    
    [29] Schwartzbuer G,Robbins J.The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J].J Biol Chem,2001,276(38):35786-93.
    
    [30] Pan J, Fukuda K, Kodama H,et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart[J].Circ Res.l997,81(4):611-617.
    [1]:Campbell EM & Hope TJ.Role of the cytoskeleton in nuclear import. Adv Drug Deliv Rev 2003;55:761-771
    
    [2]:Nadeau I,Kamen A.Production of adenovirus vector for gene therapy.BiotechnolAdv,2003,20(7-8):475-489.
    
    [3]:J St George JA.Gene therapy progress and prospects: adenoviral vectors.Gene Ther.2003 Jul; 10( 14): 1135-41.
    
    [4]:Morelli AE et al.Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway.J Virol 2000;74:9617-9628.
    
    [5]:Schnell MA et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001;3(Part 1):708-722.
    
    [6]:Morral N et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002;13:143-154.
    
    [7]:Crystal RG et al. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther 2002; 13:65-100.
    
    [8]:Harvey BG et al. Safety of local delivery of low-and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002; 13:15-63.
    
    [9]:Majhen D,Ambriovic-Ristov A. Adenoviral vectors2How to use them in cancer gene therapy ?[J].Virus Res,2006,119(2):121-133.
    
    [10]:Nemerow GR. Adenoviral vectors - new insights. Trends Microbiol 2000;8:391-394.
    
    [11]:Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nat Med 2003 ;9:135-139.
    
    [12]:Krasnykh VN, Douglas JT,van Beusechem VW. Genetic targeting of adenoviral vectors. Mol Ther 2000;1(Part 1):391-405.
    
    [13]:Ostapchuk P,Hearing P.Pseudopackaging of adenovirus type 5 genomes into capsids containing the hexon proteins of adenovirus serotypes B,D,or E.J Virol 2001;75:45-51.
    [14]:Havenga MJ et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 2002;76:4612-4620.
    
    [15]:Su EJ et al. A genetically modified adenoviral vector exhibits enhanced gene transfer of human smooth muscle cells. J Vasc Res 2001; 38:471-478.
    
    [16]:van Beusechem VW et al.Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Therapy 2000;7: 1940-1946.
    
    [17]:Dmitriev I ,Krasnykh V ,Miller CR ,et al.An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor2independent cell entry mechanism. J Virol 1998 ,72(12):9706-9713.
    
    [18]:Hemminki A ,Zinn KR ,Liu B ,et al .In vivo molecular chemotherapy and noninvasive imaging with an infectivity2enhanced adenovirus. J Natl Cancer Inst ,2002,94(10):741-749.
    
    [19]:Koizumi N ,Mizuguchi H ,Utoguchi N ,et al . Generation of fiber modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med ,2003,5 (4):267-276.
    
    [20]: Nicol CG,Graham,Miller WH, et al.Effect of adenovirus serotype5 fiber and penton modifications on in vivo tropism in rats.Mol Ther,2004,10(2):344-354.
    
    [21]:Rancourt C , Rogers BE , Sosnowski BA , et al . Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin Cancer Res,1998,4(10):2455-2461.
    
    [22]:Gu DL ,Gonzalez AM,Printz MA ,et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res, 1999,59(11):2608-2614.
    
    [23]:Umana P et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat Biotechnol 2001; 19:582-585.
    
    [24]:Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Therapy 2001;8:846-854.
    
    [25]:Sakhuja K. et al. Optimization of the generation and propagation of gutless adenoviral vectors. Hum Gene Ther 2003; 14: 243-254.
    [26]:Buller RE et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002;9: 553-566.
    
    [27]:Moffatt S, Hays J, HogenEsch H, Mittal SK. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000;272:159-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700